Properties

Label 1900.4.a.l.1.5
Level $1900$
Weight $4$
Character 1900.1
Self dual yes
Analytic conductor $112.104$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,4,Mod(1,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.103629011\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 158x^{10} + 9117x^{8} - 255920x^{6} + 3734252x^{4} - 26837136x^{2} + 73273600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 380)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-3.73144\) of defining polynomial
Character \(\chi\) \(=\) 1900.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.73144 q^{3} +12.0773 q^{7} -13.0764 q^{9} +11.9264 q^{11} -55.5478 q^{13} +39.7521 q^{17} +19.0000 q^{19} -45.0655 q^{21} +42.6893 q^{23} +149.542 q^{27} +280.201 q^{29} -298.661 q^{31} -44.5027 q^{33} -444.568 q^{37} +207.273 q^{39} -53.2291 q^{41} +178.936 q^{43} +518.932 q^{47} -197.140 q^{49} -148.332 q^{51} +383.465 q^{53} -70.8973 q^{57} +243.246 q^{59} -129.042 q^{61} -157.927 q^{63} -624.571 q^{67} -159.292 q^{69} -60.2379 q^{71} -856.683 q^{73} +144.039 q^{77} -160.342 q^{79} -204.945 q^{81} +192.126 q^{83} -1045.55 q^{87} +1038.38 q^{89} -670.865 q^{91} +1114.43 q^{93} +1639.09 q^{97} -155.955 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{9} - 110 q^{11} + 228 q^{19} - 8 q^{21} + 76 q^{29} + 80 q^{31} - 60 q^{39} - 648 q^{41} + 886 q^{49} - 328 q^{51} - 984 q^{59} - 1970 q^{61} - 364 q^{69} - 3060 q^{71} - 552 q^{79} - 3388 q^{81}+ \cdots - 2366 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.73144 −0.718115 −0.359058 0.933315i \(-0.616902\pi\)
−0.359058 + 0.933315i \(0.616902\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 12.0773 0.652111 0.326055 0.945351i \(-0.394280\pi\)
0.326055 + 0.945351i \(0.394280\pi\)
\(8\) 0 0
\(9\) −13.0764 −0.484311
\(10\) 0 0
\(11\) 11.9264 0.326905 0.163453 0.986551i \(-0.447737\pi\)
0.163453 + 0.986551i \(0.447737\pi\)
\(12\) 0 0
\(13\) −55.5478 −1.18509 −0.592545 0.805537i \(-0.701877\pi\)
−0.592545 + 0.805537i \(0.701877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 39.7521 0.567135 0.283568 0.958952i \(-0.408482\pi\)
0.283568 + 0.958952i \(0.408482\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −45.0655 −0.468290
\(22\) 0 0
\(23\) 42.6893 0.387015 0.193507 0.981099i \(-0.438014\pi\)
0.193507 + 0.981099i \(0.438014\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 149.542 1.06591
\(28\) 0 0
\(29\) 280.201 1.79421 0.897105 0.441818i \(-0.145666\pi\)
0.897105 + 0.441818i \(0.145666\pi\)
\(30\) 0 0
\(31\) −298.661 −1.73036 −0.865179 0.501463i \(-0.832795\pi\)
−0.865179 + 0.501463i \(0.832795\pi\)
\(32\) 0 0
\(33\) −44.5027 −0.234756
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −444.568 −1.97531 −0.987655 0.156645i \(-0.949932\pi\)
−0.987655 + 0.156645i \(0.949932\pi\)
\(38\) 0 0
\(39\) 207.273 0.851031
\(40\) 0 0
\(41\) −53.2291 −0.202756 −0.101378 0.994848i \(-0.532325\pi\)
−0.101378 + 0.994848i \(0.532325\pi\)
\(42\) 0 0
\(43\) 178.936 0.634594 0.317297 0.948326i \(-0.397225\pi\)
0.317297 + 0.948326i \(0.397225\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 518.932 1.61051 0.805255 0.592929i \(-0.202028\pi\)
0.805255 + 0.592929i \(0.202028\pi\)
\(48\) 0 0
\(49\) −197.140 −0.574752
\(50\) 0 0
\(51\) −148.332 −0.407269
\(52\) 0 0
\(53\) 383.465 0.993830 0.496915 0.867799i \(-0.334466\pi\)
0.496915 + 0.867799i \(0.334466\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −70.8973 −0.164747
\(58\) 0 0
\(59\) 243.246 0.536745 0.268372 0.963315i \(-0.413514\pi\)
0.268372 + 0.963315i \(0.413514\pi\)
\(60\) 0 0
\(61\) −129.042 −0.270854 −0.135427 0.990787i \(-0.543241\pi\)
−0.135427 + 0.990787i \(0.543241\pi\)
\(62\) 0 0
\(63\) −157.927 −0.315824
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −624.571 −1.13886 −0.569429 0.822041i \(-0.692836\pi\)
−0.569429 + 0.822041i \(0.692836\pi\)
\(68\) 0 0
\(69\) −159.292 −0.277921
\(70\) 0 0
\(71\) −60.2379 −0.100689 −0.0503446 0.998732i \(-0.516032\pi\)
−0.0503446 + 0.998732i \(0.516032\pi\)
\(72\) 0 0
\(73\) −856.683 −1.37352 −0.686761 0.726883i \(-0.740968\pi\)
−0.686761 + 0.726883i \(0.740968\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 144.039 0.213178
\(78\) 0 0
\(79\) −160.342 −0.228352 −0.114176 0.993461i \(-0.536423\pi\)
−0.114176 + 0.993461i \(0.536423\pi\)
\(80\) 0 0
\(81\) −204.945 −0.281132
\(82\) 0 0
\(83\) 192.126 0.254079 0.127040 0.991898i \(-0.459452\pi\)
0.127040 + 0.991898i \(0.459452\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1045.55 −1.28845
\(88\) 0 0
\(89\) 1038.38 1.23671 0.618357 0.785897i \(-0.287798\pi\)
0.618357 + 0.785897i \(0.287798\pi\)
\(90\) 0 0
\(91\) −670.865 −0.772810
\(92\) 0 0
\(93\) 1114.43 1.24260
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1639.09 1.71572 0.857859 0.513885i \(-0.171794\pi\)
0.857859 + 0.513885i \(0.171794\pi\)
\(98\) 0 0
\(99\) −155.955 −0.158324
\(100\) 0 0
\(101\) −1956.55 −1.92757 −0.963783 0.266687i \(-0.914071\pi\)
−0.963783 + 0.266687i \(0.914071\pi\)
\(102\) 0 0
\(103\) 373.058 0.356878 0.178439 0.983951i \(-0.442895\pi\)
0.178439 + 0.983951i \(0.442895\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2110.00 1.90637 0.953185 0.302388i \(-0.0977838\pi\)
0.953185 + 0.302388i \(0.0977838\pi\)
\(108\) 0 0
\(109\) −1171.53 −1.02947 −0.514736 0.857349i \(-0.672110\pi\)
−0.514736 + 0.857349i \(0.672110\pi\)
\(110\) 0 0
\(111\) 1658.88 1.41850
\(112\) 0 0
\(113\) 499.266 0.415637 0.207818 0.978167i \(-0.433364\pi\)
0.207818 + 0.978167i \(0.433364\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 726.364 0.573952
\(118\) 0 0
\(119\) 480.097 0.369835
\(120\) 0 0
\(121\) −1188.76 −0.893133
\(122\) 0 0
\(123\) 198.621 0.145602
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2435.04 1.70138 0.850690 0.525668i \(-0.176185\pi\)
0.850690 + 0.525668i \(0.176185\pi\)
\(128\) 0 0
\(129\) −667.689 −0.455711
\(130\) 0 0
\(131\) 282.543 0.188442 0.0942210 0.995551i \(-0.469964\pi\)
0.0942210 + 0.995551i \(0.469964\pi\)
\(132\) 0 0
\(133\) 229.468 0.149604
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2434.93 −1.51847 −0.759233 0.650819i \(-0.774426\pi\)
−0.759233 + 0.650819i \(0.774426\pi\)
\(138\) 0 0
\(139\) −2250.93 −1.37353 −0.686767 0.726877i \(-0.740971\pi\)
−0.686767 + 0.726877i \(0.740971\pi\)
\(140\) 0 0
\(141\) −1936.36 −1.15653
\(142\) 0 0
\(143\) −662.487 −0.387412
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 735.614 0.412738
\(148\) 0 0
\(149\) −648.317 −0.356458 −0.178229 0.983989i \(-0.557037\pi\)
−0.178229 + 0.983989i \(0.557037\pi\)
\(150\) 0 0
\(151\) 2539.56 1.36865 0.684326 0.729176i \(-0.260097\pi\)
0.684326 + 0.729176i \(0.260097\pi\)
\(152\) 0 0
\(153\) −519.814 −0.274670
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −132.602 −0.0674066 −0.0337033 0.999432i \(-0.510730\pi\)
−0.0337033 + 0.999432i \(0.510730\pi\)
\(158\) 0 0
\(159\) −1430.88 −0.713685
\(160\) 0 0
\(161\) 515.570 0.252376
\(162\) 0 0
\(163\) −2271.38 −1.09146 −0.545731 0.837960i \(-0.683748\pi\)
−0.545731 + 0.837960i \(0.683748\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −280.518 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(168\) 0 0
\(169\) 888.554 0.404440
\(170\) 0 0
\(171\) −248.451 −0.111109
\(172\) 0 0
\(173\) 2716.18 1.19368 0.596841 0.802359i \(-0.296422\pi\)
0.596841 + 0.802359i \(0.296422\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −907.657 −0.385444
\(178\) 0 0
\(179\) −3512.90 −1.46685 −0.733426 0.679769i \(-0.762080\pi\)
−0.733426 + 0.679769i \(0.762080\pi\)
\(180\) 0 0
\(181\) −1681.05 −0.690340 −0.345170 0.938540i \(-0.612179\pi\)
−0.345170 + 0.938540i \(0.612179\pi\)
\(182\) 0 0
\(183\) 481.511 0.194505
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 474.101 0.185400
\(188\) 0 0
\(189\) 1806.06 0.695089
\(190\) 0 0
\(191\) −3346.47 −1.26776 −0.633880 0.773431i \(-0.718539\pi\)
−0.633880 + 0.773431i \(0.718539\pi\)
\(192\) 0 0
\(193\) −1057.68 −0.394474 −0.197237 0.980356i \(-0.563197\pi\)
−0.197237 + 0.980356i \(0.563197\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −339.367 −0.122736 −0.0613678 0.998115i \(-0.519546\pi\)
−0.0613678 + 0.998115i \(0.519546\pi\)
\(198\) 0 0
\(199\) −4295.06 −1.53000 −0.764998 0.644033i \(-0.777260\pi\)
−0.764998 + 0.644033i \(0.777260\pi\)
\(200\) 0 0
\(201\) 2330.54 0.817830
\(202\) 0 0
\(203\) 3384.06 1.17002
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −558.222 −0.187435
\(208\) 0 0
\(209\) 226.602 0.0749972
\(210\) 0 0
\(211\) 491.959 0.160511 0.0802556 0.996774i \(-0.474426\pi\)
0.0802556 + 0.996774i \(0.474426\pi\)
\(212\) 0 0
\(213\) 224.774 0.0723064
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3607.01 −1.12838
\(218\) 0 0
\(219\) 3196.66 0.986347
\(220\) 0 0
\(221\) −2208.14 −0.672107
\(222\) 0 0
\(223\) −2751.65 −0.826296 −0.413148 0.910664i \(-0.635571\pi\)
−0.413148 + 0.910664i \(0.635571\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2313.98 −0.676583 −0.338291 0.941041i \(-0.609849\pi\)
−0.338291 + 0.941041i \(0.609849\pi\)
\(228\) 0 0
\(229\) 3756.02 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(230\) 0 0
\(231\) −537.471 −0.153087
\(232\) 0 0
\(233\) −6113.21 −1.71884 −0.859420 0.511271i \(-0.829175\pi\)
−0.859420 + 0.511271i \(0.829175\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 598.304 0.163983
\(238\) 0 0
\(239\) −4138.87 −1.12017 −0.560086 0.828434i \(-0.689232\pi\)
−0.560086 + 0.828434i \(0.689232\pi\)
\(240\) 0 0
\(241\) −525.293 −0.140403 −0.0702015 0.997533i \(-0.522364\pi\)
−0.0702015 + 0.997533i \(0.522364\pi\)
\(242\) 0 0
\(243\) −3272.91 −0.864021
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1055.41 −0.271878
\(248\) 0 0
\(249\) −716.907 −0.182458
\(250\) 0 0
\(251\) −4652.73 −1.17003 −0.585015 0.811023i \(-0.698911\pi\)
−0.585015 + 0.811023i \(0.698911\pi\)
\(252\) 0 0
\(253\) 509.132 0.126517
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −733.325 −0.177990 −0.0889952 0.996032i \(-0.528366\pi\)
−0.0889952 + 0.996032i \(0.528366\pi\)
\(258\) 0 0
\(259\) −5369.16 −1.28812
\(260\) 0 0
\(261\) −3664.02 −0.868955
\(262\) 0 0
\(263\) −4221.63 −0.989799 −0.494899 0.868950i \(-0.664795\pi\)
−0.494899 + 0.868950i \(0.664795\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3874.63 −0.888103
\(268\) 0 0
\(269\) 130.149 0.0294993 0.0147496 0.999891i \(-0.495305\pi\)
0.0147496 + 0.999891i \(0.495305\pi\)
\(270\) 0 0
\(271\) −2120.68 −0.475359 −0.237680 0.971344i \(-0.576387\pi\)
−0.237680 + 0.971344i \(0.576387\pi\)
\(272\) 0 0
\(273\) 2503.29 0.554967
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6551.71 1.42113 0.710567 0.703630i \(-0.248439\pi\)
0.710567 + 0.703630i \(0.248439\pi\)
\(278\) 0 0
\(279\) 3905.41 0.838031
\(280\) 0 0
\(281\) −6787.79 −1.44102 −0.720508 0.693446i \(-0.756091\pi\)
−0.720508 + 0.693446i \(0.756091\pi\)
\(282\) 0 0
\(283\) −6066.00 −1.27416 −0.637078 0.770799i \(-0.719857\pi\)
−0.637078 + 0.770799i \(0.719857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −642.862 −0.132219
\(288\) 0 0
\(289\) −3332.77 −0.678357
\(290\) 0 0
\(291\) −6116.17 −1.23208
\(292\) 0 0
\(293\) 956.350 0.190684 0.0953422 0.995445i \(-0.469605\pi\)
0.0953422 + 0.995445i \(0.469605\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1783.51 0.348450
\(298\) 0 0
\(299\) −2371.30 −0.458647
\(300\) 0 0
\(301\) 2161.06 0.413825
\(302\) 0 0
\(303\) 7300.75 1.38421
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −7123.36 −1.32427 −0.662136 0.749384i \(-0.730350\pi\)
−0.662136 + 0.749384i \(0.730350\pi\)
\(308\) 0 0
\(309\) −1392.04 −0.256280
\(310\) 0 0
\(311\) 1335.62 0.243524 0.121762 0.992559i \(-0.461146\pi\)
0.121762 + 0.992559i \(0.461146\pi\)
\(312\) 0 0
\(313\) 6997.22 1.26360 0.631799 0.775132i \(-0.282317\pi\)
0.631799 + 0.775132i \(0.282317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1498.13 −0.265437 −0.132718 0.991154i \(-0.542371\pi\)
−0.132718 + 0.991154i \(0.542371\pi\)
\(318\) 0 0
\(319\) 3341.80 0.586536
\(320\) 0 0
\(321\) −7873.33 −1.36899
\(322\) 0 0
\(323\) 755.290 0.130110
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4371.50 0.739280
\(328\) 0 0
\(329\) 6267.27 1.05023
\(330\) 0 0
\(331\) −4427.94 −0.735292 −0.367646 0.929966i \(-0.619836\pi\)
−0.367646 + 0.929966i \(0.619836\pi\)
\(332\) 0 0
\(333\) 5813.34 0.956664
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2787.35 0.450553 0.225277 0.974295i \(-0.427671\pi\)
0.225277 + 0.974295i \(0.427671\pi\)
\(338\) 0 0
\(339\) −1862.98 −0.298475
\(340\) 0 0
\(341\) −3561.96 −0.565663
\(342\) 0 0
\(343\) −6523.41 −1.02691
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6454.76 0.998587 0.499293 0.866433i \(-0.333593\pi\)
0.499293 + 0.866433i \(0.333593\pi\)
\(348\) 0 0
\(349\) 9480.34 1.45407 0.727036 0.686600i \(-0.240898\pi\)
0.727036 + 0.686600i \(0.240898\pi\)
\(350\) 0 0
\(351\) −8306.75 −1.26319
\(352\) 0 0
\(353\) 4159.06 0.627095 0.313547 0.949573i \(-0.398483\pi\)
0.313547 + 0.949573i \(0.398483\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1791.45 −0.265584
\(358\) 0 0
\(359\) 925.090 0.136001 0.0680005 0.997685i \(-0.478338\pi\)
0.0680005 + 0.997685i \(0.478338\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 4435.78 0.641372
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7110.72 −1.01138 −0.505690 0.862715i \(-0.668762\pi\)
−0.505690 + 0.862715i \(0.668762\pi\)
\(368\) 0 0
\(369\) 696.045 0.0981969
\(370\) 0 0
\(371\) 4631.21 0.648087
\(372\) 0 0
\(373\) −941.543 −0.130700 −0.0653502 0.997862i \(-0.520816\pi\)
−0.0653502 + 0.997862i \(0.520816\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15564.6 −2.12630
\(378\) 0 0
\(379\) −2765.66 −0.374835 −0.187417 0.982280i \(-0.560012\pi\)
−0.187417 + 0.982280i \(0.560012\pi\)
\(380\) 0 0
\(381\) −9086.21 −1.22179
\(382\) 0 0
\(383\) −8948.71 −1.19388 −0.596942 0.802284i \(-0.703618\pi\)
−0.596942 + 0.802284i \(0.703618\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2339.84 −0.307341
\(388\) 0 0
\(389\) −1300.33 −0.169484 −0.0847420 0.996403i \(-0.527007\pi\)
−0.0847420 + 0.996403i \(0.527007\pi\)
\(390\) 0 0
\(391\) 1696.99 0.219490
\(392\) 0 0
\(393\) −1054.29 −0.135323
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1637.53 −0.207016 −0.103508 0.994629i \(-0.533007\pi\)
−0.103508 + 0.994629i \(0.533007\pi\)
\(398\) 0 0
\(399\) −856.245 −0.107433
\(400\) 0 0
\(401\) −9798.46 −1.22023 −0.610114 0.792313i \(-0.708877\pi\)
−0.610114 + 0.792313i \(0.708877\pi\)
\(402\) 0 0
\(403\) 16589.9 2.05063
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5302.11 −0.645739
\(408\) 0 0
\(409\) −11052.1 −1.33616 −0.668080 0.744090i \(-0.732884\pi\)
−0.668080 + 0.744090i \(0.732884\pi\)
\(410\) 0 0
\(411\) 9085.77 1.09043
\(412\) 0 0
\(413\) 2937.74 0.350017
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8399.20 0.986356
\(418\) 0 0
\(419\) −4192.79 −0.488857 −0.244428 0.969667i \(-0.578600\pi\)
−0.244428 + 0.969667i \(0.578600\pi\)
\(420\) 0 0
\(421\) −8223.34 −0.951974 −0.475987 0.879452i \(-0.657909\pi\)
−0.475987 + 0.879452i \(0.657909\pi\)
\(422\) 0 0
\(423\) −6785.75 −0.779987
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1558.47 −0.176627
\(428\) 0 0
\(429\) 2472.03 0.278207
\(430\) 0 0
\(431\) −10799.6 −1.20696 −0.603478 0.797380i \(-0.706219\pi\)
−0.603478 + 0.797380i \(0.706219\pi\)
\(432\) 0 0
\(433\) 3032.54 0.336570 0.168285 0.985738i \(-0.446177\pi\)
0.168285 + 0.985738i \(0.446177\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 811.097 0.0887873
\(438\) 0 0
\(439\) −6014.92 −0.653932 −0.326966 0.945036i \(-0.606026\pi\)
−0.326966 + 0.945036i \(0.606026\pi\)
\(440\) 0 0
\(441\) 2577.88 0.278358
\(442\) 0 0
\(443\) 999.949 0.107244 0.0536219 0.998561i \(-0.482923\pi\)
0.0536219 + 0.998561i \(0.482923\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2419.15 0.255978
\(448\) 0 0
\(449\) 5439.68 0.571747 0.285874 0.958267i \(-0.407716\pi\)
0.285874 + 0.958267i \(0.407716\pi\)
\(450\) 0 0
\(451\) −634.834 −0.0662820
\(452\) 0 0
\(453\) −9476.20 −0.982850
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13597.2 1.39179 0.695897 0.718141i \(-0.255007\pi\)
0.695897 + 0.718141i \(0.255007\pi\)
\(458\) 0 0
\(459\) 5944.63 0.604513
\(460\) 0 0
\(461\) 10712.0 1.08222 0.541112 0.840950i \(-0.318003\pi\)
0.541112 + 0.840950i \(0.318003\pi\)
\(462\) 0 0
\(463\) −18450.5 −1.85198 −0.925988 0.377552i \(-0.876766\pi\)
−0.925988 + 0.377552i \(0.876766\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7508.05 0.743964 0.371982 0.928240i \(-0.378678\pi\)
0.371982 + 0.928240i \(0.378678\pi\)
\(468\) 0 0
\(469\) −7543.10 −0.742661
\(470\) 0 0
\(471\) 494.798 0.0484057
\(472\) 0 0
\(473\) 2134.07 0.207452
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5014.34 −0.481323
\(478\) 0 0
\(479\) 5986.88 0.571081 0.285540 0.958367i \(-0.407827\pi\)
0.285540 + 0.958367i \(0.407827\pi\)
\(480\) 0 0
\(481\) 24694.7 2.34092
\(482\) 0 0
\(483\) −1923.82 −0.181235
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 17195.1 1.59997 0.799984 0.600021i \(-0.204841\pi\)
0.799984 + 0.600021i \(0.204841\pi\)
\(488\) 0 0
\(489\) 8475.52 0.783796
\(490\) 0 0
\(491\) −7217.97 −0.663426 −0.331713 0.943380i \(-0.607627\pi\)
−0.331713 + 0.943380i \(0.607627\pi\)
\(492\) 0 0
\(493\) 11138.6 1.01756
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −727.509 −0.0656604
\(498\) 0 0
\(499\) −15943.5 −1.43032 −0.715161 0.698960i \(-0.753647\pi\)
−0.715161 + 0.698960i \(0.753647\pi\)
\(500\) 0 0
\(501\) 1046.73 0.0933425
\(502\) 0 0
\(503\) −13780.1 −1.22152 −0.610760 0.791815i \(-0.709136\pi\)
−0.610760 + 0.791815i \(0.709136\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3315.58 −0.290434
\(508\) 0 0
\(509\) 18733.2 1.63131 0.815654 0.578540i \(-0.196377\pi\)
0.815654 + 0.578540i \(0.196377\pi\)
\(510\) 0 0
\(511\) −10346.4 −0.895688
\(512\) 0 0
\(513\) 2841.31 0.244536
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6189.01 0.526484
\(518\) 0 0
\(519\) −10135.2 −0.857201
\(520\) 0 0
\(521\) 15939.0 1.34031 0.670154 0.742222i \(-0.266228\pi\)
0.670154 + 0.742222i \(0.266228\pi\)
\(522\) 0 0
\(523\) 2414.07 0.201836 0.100918 0.994895i \(-0.467822\pi\)
0.100918 + 0.994895i \(0.467822\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11872.4 −0.981347
\(528\) 0 0
\(529\) −10344.6 −0.850220
\(530\) 0 0
\(531\) −3180.78 −0.259951
\(532\) 0 0
\(533\) 2956.76 0.240284
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 13108.2 1.05337
\(538\) 0 0
\(539\) −2351.18 −0.187889
\(540\) 0 0
\(541\) 17831.4 1.41706 0.708530 0.705680i \(-0.249359\pi\)
0.708530 + 0.705680i \(0.249359\pi\)
\(542\) 0 0
\(543\) 6272.73 0.495744
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5416.08 0.423354 0.211677 0.977340i \(-0.432107\pi\)
0.211677 + 0.977340i \(0.432107\pi\)
\(548\) 0 0
\(549\) 1687.40 0.131178
\(550\) 0 0
\(551\) 5323.82 0.411620
\(552\) 0 0
\(553\) −1936.49 −0.148911
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9994.53 0.760290 0.380145 0.924927i \(-0.375874\pi\)
0.380145 + 0.924927i \(0.375874\pi\)
\(558\) 0 0
\(559\) −9939.51 −0.752051
\(560\) 0 0
\(561\) −1769.08 −0.133138
\(562\) 0 0
\(563\) 9425.83 0.705597 0.352799 0.935699i \(-0.385230\pi\)
0.352799 + 0.935699i \(0.385230\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2475.18 −0.183329
\(568\) 0 0
\(569\) 899.764 0.0662919 0.0331459 0.999451i \(-0.489447\pi\)
0.0331459 + 0.999451i \(0.489447\pi\)
\(570\) 0 0
\(571\) 12647.0 0.926901 0.463451 0.886123i \(-0.346611\pi\)
0.463451 + 0.886123i \(0.346611\pi\)
\(572\) 0 0
\(573\) 12487.1 0.910397
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −9330.00 −0.673160 −0.336580 0.941655i \(-0.609270\pi\)
−0.336580 + 0.941655i \(0.609270\pi\)
\(578\) 0 0
\(579\) 3946.67 0.283278
\(580\) 0 0
\(581\) 2320.36 0.165688
\(582\) 0 0
\(583\) 4573.38 0.324888
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14668.1 1.03137 0.515687 0.856777i \(-0.327537\pi\)
0.515687 + 0.856777i \(0.327537\pi\)
\(588\) 0 0
\(589\) −5674.56 −0.396971
\(590\) 0 0
\(591\) 1266.33 0.0881383
\(592\) 0 0
\(593\) −21581.4 −1.49450 −0.747252 0.664540i \(-0.768627\pi\)
−0.747252 + 0.664540i \(0.768627\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16026.8 1.09871
\(598\) 0 0
\(599\) −12710.6 −0.867017 −0.433508 0.901150i \(-0.642725\pi\)
−0.433508 + 0.901150i \(0.642725\pi\)
\(600\) 0 0
\(601\) 7671.87 0.520702 0.260351 0.965514i \(-0.416162\pi\)
0.260351 + 0.965514i \(0.416162\pi\)
\(602\) 0 0
\(603\) 8167.13 0.551561
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −4570.51 −0.305620 −0.152810 0.988256i \(-0.548832\pi\)
−0.152810 + 0.988256i \(0.548832\pi\)
\(608\) 0 0
\(609\) −12627.4 −0.840211
\(610\) 0 0
\(611\) −28825.5 −1.90860
\(612\) 0 0
\(613\) −21692.6 −1.42929 −0.714647 0.699485i \(-0.753413\pi\)
−0.714647 + 0.699485i \(0.753413\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23216.9 −1.51487 −0.757437 0.652908i \(-0.773549\pi\)
−0.757437 + 0.652908i \(0.773549\pi\)
\(618\) 0 0
\(619\) −2105.96 −0.136746 −0.0683729 0.997660i \(-0.521781\pi\)
−0.0683729 + 0.997660i \(0.521781\pi\)
\(620\) 0 0
\(621\) 6383.87 0.412521
\(622\) 0 0
\(623\) 12540.7 0.806475
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −845.552 −0.0538566
\(628\) 0 0
\(629\) −17672.5 −1.12027
\(630\) 0 0
\(631\) −1392.01 −0.0878211 −0.0439105 0.999035i \(-0.513982\pi\)
−0.0439105 + 0.999035i \(0.513982\pi\)
\(632\) 0 0
\(633\) −1835.71 −0.115265
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10950.7 0.681133
\(638\) 0 0
\(639\) 787.695 0.0487648
\(640\) 0 0
\(641\) 12336.5 0.760158 0.380079 0.924954i \(-0.375897\pi\)
0.380079 + 0.924954i \(0.375897\pi\)
\(642\) 0 0
\(643\) 7028.47 0.431067 0.215533 0.976496i \(-0.430851\pi\)
0.215533 + 0.976496i \(0.430851\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 322.899 0.0196205 0.00981025 0.999952i \(-0.496877\pi\)
0.00981025 + 0.999952i \(0.496877\pi\)
\(648\) 0 0
\(649\) 2901.06 0.175465
\(650\) 0 0
\(651\) 13459.3 0.810310
\(652\) 0 0
\(653\) −5602.85 −0.335768 −0.167884 0.985807i \(-0.553693\pi\)
−0.167884 + 0.985807i \(0.553693\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 11202.3 0.665212
\(658\) 0 0
\(659\) 22171.0 1.31056 0.655281 0.755385i \(-0.272550\pi\)
0.655281 + 0.755385i \(0.272550\pi\)
\(660\) 0 0
\(661\) −183.870 −0.0108196 −0.00540978 0.999985i \(-0.501722\pi\)
−0.00540978 + 0.999985i \(0.501722\pi\)
\(662\) 0 0
\(663\) 8239.53 0.482650
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11961.6 0.694385
\(668\) 0 0
\(669\) 10267.6 0.593376
\(670\) 0 0
\(671\) −1539.01 −0.0885437
\(672\) 0 0
\(673\) 889.554 0.0509506 0.0254753 0.999675i \(-0.491890\pi\)
0.0254753 + 0.999675i \(0.491890\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14387.8 −0.816793 −0.408396 0.912805i \(-0.633912\pi\)
−0.408396 + 0.912805i \(0.633912\pi\)
\(678\) 0 0
\(679\) 19795.7 1.11884
\(680\) 0 0
\(681\) 8634.47 0.485864
\(682\) 0 0
\(683\) −18351.4 −1.02811 −0.514053 0.857758i \(-0.671857\pi\)
−0.514053 + 0.857758i \(0.671857\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −14015.3 −0.778338
\(688\) 0 0
\(689\) −21300.6 −1.17778
\(690\) 0 0
\(691\) 9153.77 0.503945 0.251972 0.967734i \(-0.418921\pi\)
0.251972 + 0.967734i \(0.418921\pi\)
\(692\) 0 0
\(693\) −1883.51 −0.103245
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2115.97 −0.114990
\(698\) 0 0
\(699\) 22811.0 1.23432
\(700\) 0 0
\(701\) −14795.6 −0.797181 −0.398590 0.917129i \(-0.630500\pi\)
−0.398590 + 0.917129i \(0.630500\pi\)
\(702\) 0 0
\(703\) −8446.79 −0.453167
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −23629.8 −1.25699
\(708\) 0 0
\(709\) 20247.5 1.07251 0.536256 0.844056i \(-0.319838\pi\)
0.536256 + 0.844056i \(0.319838\pi\)
\(710\) 0 0
\(711\) 2096.69 0.110594
\(712\) 0 0
\(713\) −12749.6 −0.669674
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15443.9 0.804412
\(718\) 0 0
\(719\) −8824.67 −0.457725 −0.228863 0.973459i \(-0.573501\pi\)
−0.228863 + 0.973459i \(0.573501\pi\)
\(720\) 0 0
\(721\) 4505.51 0.232724
\(722\) 0 0
\(723\) 1960.10 0.100825
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −22085.6 −1.12670 −0.563350 0.826218i \(-0.690488\pi\)
−0.563350 + 0.826218i \(0.690488\pi\)
\(728\) 0 0
\(729\) 17746.2 0.901598
\(730\) 0 0
\(731\) 7113.10 0.359901
\(732\) 0 0
\(733\) −5044.63 −0.254199 −0.127099 0.991890i \(-0.540567\pi\)
−0.127099 + 0.991890i \(0.540567\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7448.90 −0.372298
\(738\) 0 0
\(739\) −1581.66 −0.0787313 −0.0393657 0.999225i \(-0.512534\pi\)
−0.0393657 + 0.999225i \(0.512534\pi\)
\(740\) 0 0
\(741\) 3938.18 0.195240
\(742\) 0 0
\(743\) 19670.3 0.971243 0.485622 0.874169i \(-0.338593\pi\)
0.485622 + 0.874169i \(0.338593\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2512.32 −0.123053
\(748\) 0 0
\(749\) 25483.0 1.24316
\(750\) 0 0
\(751\) 24790.3 1.20454 0.602271 0.798292i \(-0.294263\pi\)
0.602271 + 0.798292i \(0.294263\pi\)
\(752\) 0 0
\(753\) 17361.3 0.840216
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2952.53 0.141759 0.0708794 0.997485i \(-0.477419\pi\)
0.0708794 + 0.997485i \(0.477419\pi\)
\(758\) 0 0
\(759\) −1899.79 −0.0908539
\(760\) 0 0
\(761\) 10719.9 0.510637 0.255318 0.966857i \(-0.417820\pi\)
0.255318 + 0.966857i \(0.417820\pi\)
\(762\) 0 0
\(763\) −14148.9 −0.671330
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13511.8 −0.636091
\(768\) 0 0
\(769\) −892.638 −0.0418587 −0.0209294 0.999781i \(-0.506663\pi\)
−0.0209294 + 0.999781i \(0.506663\pi\)
\(770\) 0 0
\(771\) 2736.35 0.127818
\(772\) 0 0
\(773\) 18992.0 0.883692 0.441846 0.897091i \(-0.354324\pi\)
0.441846 + 0.897091i \(0.354324\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 20034.7 0.925019
\(778\) 0 0
\(779\) −1011.35 −0.0465154
\(780\) 0 0
\(781\) −718.424 −0.0329158
\(782\) 0 0
\(783\) 41902.0 1.91246
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 31759.1 1.43849 0.719244 0.694758i \(-0.244488\pi\)
0.719244 + 0.694758i \(0.244488\pi\)
\(788\) 0 0
\(789\) 15752.7 0.710789
\(790\) 0 0
\(791\) 6029.76 0.271041
\(792\) 0 0
\(793\) 7167.98 0.320987
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14311.6 −0.636066 −0.318033 0.948080i \(-0.603022\pi\)
−0.318033 + 0.948080i \(0.603022\pi\)
\(798\) 0 0
\(799\) 20628.6 0.913377
\(800\) 0 0
\(801\) −13578.2 −0.598954
\(802\) 0 0
\(803\) −10217.2 −0.449012
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −485.641 −0.0211839
\(808\) 0 0
\(809\) −9987.11 −0.434027 −0.217014 0.976169i \(-0.569632\pi\)
−0.217014 + 0.976169i \(0.569632\pi\)
\(810\) 0 0
\(811\) −19713.1 −0.853538 −0.426769 0.904361i \(-0.640348\pi\)
−0.426769 + 0.904361i \(0.640348\pi\)
\(812\) 0 0
\(813\) 7913.20 0.341363
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3399.79 0.145586
\(818\) 0 0
\(819\) 8772.49 0.374280
\(820\) 0 0
\(821\) −27603.3 −1.17340 −0.586701 0.809804i \(-0.699574\pi\)
−0.586701 + 0.809804i \(0.699574\pi\)
\(822\) 0 0
\(823\) −42308.6 −1.79196 −0.895981 0.444092i \(-0.853526\pi\)
−0.895981 + 0.444092i \(0.853526\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2569.96 0.108061 0.0540305 0.998539i \(-0.482793\pi\)
0.0540305 + 0.998539i \(0.482793\pi\)
\(828\) 0 0
\(829\) −13102.3 −0.548929 −0.274464 0.961597i \(-0.588501\pi\)
−0.274464 + 0.961597i \(0.588501\pi\)
\(830\) 0 0
\(831\) −24447.3 −1.02054
\(832\) 0 0
\(833\) −7836.72 −0.325962
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −44662.5 −1.84440
\(838\) 0 0
\(839\) 32633.7 1.34284 0.671419 0.741078i \(-0.265685\pi\)
0.671419 + 0.741078i \(0.265685\pi\)
\(840\) 0 0
\(841\) 54123.7 2.21919
\(842\) 0 0
\(843\) 25328.2 1.03482
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −14357.0 −0.582422
\(848\) 0 0
\(849\) 22634.9 0.914991
\(850\) 0 0
\(851\) −18978.3 −0.764474
\(852\) 0 0
\(853\) 11689.0 0.469197 0.234599 0.972092i \(-0.424622\pi\)
0.234599 + 0.972092i \(0.424622\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27684.8 1.10350 0.551748 0.834011i \(-0.313961\pi\)
0.551748 + 0.834011i \(0.313961\pi\)
\(858\) 0 0
\(859\) 44308.5 1.75994 0.879970 0.475030i \(-0.157563\pi\)
0.879970 + 0.475030i \(0.157563\pi\)
\(860\) 0 0
\(861\) 2398.80 0.0949487
\(862\) 0 0
\(863\) −9691.73 −0.382283 −0.191141 0.981562i \(-0.561219\pi\)
−0.191141 + 0.981562i \(0.561219\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 12436.0 0.487139
\(868\) 0 0
\(869\) −1912.30 −0.0746496
\(870\) 0 0
\(871\) 34693.5 1.34965
\(872\) 0 0
\(873\) −21433.4 −0.830941
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −27750.6 −1.06850 −0.534248 0.845328i \(-0.679405\pi\)
−0.534248 + 0.845328i \(0.679405\pi\)
\(878\) 0 0
\(879\) −3568.56 −0.136933
\(880\) 0 0
\(881\) 8716.52 0.333334 0.166667 0.986013i \(-0.446700\pi\)
0.166667 + 0.986013i \(0.446700\pi\)
\(882\) 0 0
\(883\) 8880.61 0.338456 0.169228 0.985577i \(-0.445873\pi\)
0.169228 + 0.985577i \(0.445873\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42224.2 1.59837 0.799183 0.601088i \(-0.205266\pi\)
0.799183 + 0.601088i \(0.205266\pi\)
\(888\) 0 0
\(889\) 29408.7 1.10949
\(890\) 0 0
\(891\) −2444.27 −0.0919036
\(892\) 0 0
\(893\) 9859.70 0.369476
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8848.34 0.329362
\(898\) 0 0
\(899\) −83685.2 −3.10462
\(900\) 0 0
\(901\) 15243.6 0.563637
\(902\) 0 0
\(903\) −8063.86 −0.297174
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −38157.5 −1.39691 −0.698456 0.715653i \(-0.746129\pi\)
−0.698456 + 0.715653i \(0.746129\pi\)
\(908\) 0 0
\(909\) 25584.6 0.933541
\(910\) 0 0
\(911\) 35165.8 1.27892 0.639460 0.768824i \(-0.279158\pi\)
0.639460 + 0.768824i \(0.279158\pi\)
\(912\) 0 0
\(913\) 2291.38 0.0830599
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3412.34 0.122885
\(918\) 0 0
\(919\) −28297.8 −1.01573 −0.507866 0.861436i \(-0.669565\pi\)
−0.507866 + 0.861436i \(0.669565\pi\)
\(920\) 0 0
\(921\) 26580.3 0.950979
\(922\) 0 0
\(923\) 3346.08 0.119326
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −4878.25 −0.172840
\(928\) 0 0
\(929\) 35859.6 1.26643 0.633215 0.773976i \(-0.281735\pi\)
0.633215 + 0.773976i \(0.281735\pi\)
\(930\) 0 0
\(931\) −3745.66 −0.131857
\(932\) 0 0
\(933\) −4983.77 −0.174878
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −33337.3 −1.16231 −0.581154 0.813793i \(-0.697399\pi\)
−0.581154 + 0.813793i \(0.697399\pi\)
\(938\) 0 0
\(939\) −26109.7 −0.907409
\(940\) 0 0
\(941\) −1590.15 −0.0550874 −0.0275437 0.999621i \(-0.508769\pi\)
−0.0275437 + 0.999621i \(0.508769\pi\)
\(942\) 0 0
\(943\) −2272.32 −0.0784695
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48614.0 1.66815 0.834077 0.551648i \(-0.186001\pi\)
0.834077 + 0.551648i \(0.186001\pi\)
\(948\) 0 0
\(949\) 47586.8 1.62775
\(950\) 0 0
\(951\) 5590.18 0.190614
\(952\) 0 0
\(953\) 33010.3 1.12204 0.561022 0.827801i \(-0.310408\pi\)
0.561022 + 0.827801i \(0.310408\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −12469.7 −0.421201
\(958\) 0 0
\(959\) −29407.2 −0.990208
\(960\) 0 0
\(961\) 59407.4 1.99414
\(962\) 0 0
\(963\) −27591.2 −0.923276
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −59137.1 −1.96662 −0.983309 0.181944i \(-0.941761\pi\)
−0.983309 + 0.181944i \(0.941761\pi\)
\(968\) 0 0
\(969\) −2818.32 −0.0934338
\(970\) 0 0
\(971\) 24624.8 0.813849 0.406925 0.913462i \(-0.366601\pi\)
0.406925 + 0.913462i \(0.366601\pi\)
\(972\) 0 0
\(973\) −27185.1 −0.895697
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21010.2 0.688001 0.344000 0.938970i \(-0.388218\pi\)
0.344000 + 0.938970i \(0.388218\pi\)
\(978\) 0 0
\(979\) 12384.1 0.404289
\(980\) 0 0
\(981\) 15319.4 0.498585
\(982\) 0 0
\(983\) −11609.2 −0.376679 −0.188340 0.982104i \(-0.560311\pi\)
−0.188340 + 0.982104i \(0.560311\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −23385.9 −0.754186
\(988\) 0 0
\(989\) 7638.67 0.245597
\(990\) 0 0
\(991\) −30991.4 −0.993416 −0.496708 0.867918i \(-0.665458\pi\)
−0.496708 + 0.867918i \(0.665458\pi\)
\(992\) 0 0
\(993\) 16522.6 0.528024
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −22116.9 −0.702557 −0.351279 0.936271i \(-0.614253\pi\)
−0.351279 + 0.936271i \(0.614253\pi\)
\(998\) 0 0
\(999\) −66481.7 −2.10549
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.4.a.l.1.5 12
5.2 odd 4 380.4.c.a.229.8 yes 12
5.3 odd 4 380.4.c.a.229.5 12
5.4 even 2 inner 1900.4.a.l.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.4.c.a.229.5 12 5.3 odd 4
380.4.c.a.229.8 yes 12 5.2 odd 4
1900.4.a.l.1.5 12 1.1 even 1 trivial
1900.4.a.l.1.8 12 5.4 even 2 inner