Properties

Label 1900.2.l.d.493.3
Level $1900$
Weight $2$
Character 1900.493
Analytic conductor $15.172$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,2,Mod(493,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1715763840\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 493.3
Character \(\chi\) \(=\) 1900.493
Dual form 1900.2.l.d.1557.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05614 + 1.05614i) q^{3} +(-1.45445 + 1.45445i) q^{7} +0.769150i q^{9} +4.10096 q^{11} +(3.51885 - 3.51885i) q^{13} +(-1.45445 + 1.45445i) q^{17} +(0.485200 - 4.33181i) q^{19} -3.07220i q^{21} +(2.62617 + 2.62617i) q^{23} +(-3.98074 - 3.98074i) q^{27} +10.7212 q^{29} -8.61938i q^{31} +(-4.33118 + 4.33118i) q^{33} +(-3.98074 - 3.98074i) q^{37} +7.43277i q^{39} +10.2360i q^{41} +(1.22474 + 1.22474i) q^{43} +(-8.21426 + 8.21426i) q^{47} +2.76915i q^{49} -3.07220i q^{51} +(6.22537 - 6.22537i) q^{53} +(4.06255 + 5.08742i) q^{57} -5.17399 q^{59} +10.9954 q^{61} +(-1.11869 - 1.11869i) q^{63} +(5.16923 + 5.16923i) q^{67} -5.54718 q^{69} -3.93059i q^{71} +(8.64384 + 8.64384i) q^{73} +(-5.96464 + 5.96464i) q^{77} +3.55740 q^{79} +6.10096 q^{81} +(4.31032 + 4.31032i) q^{83} +(-11.3230 + 11.3230i) q^{87} -3.07220 q^{89} +10.2360i q^{91} +(9.10325 + 9.10325i) q^{93} +(1.40657 + 1.40657i) q^{97} +3.15425i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{11} + 24 q^{61} + 24 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.05614 + 1.05614i −0.609761 + 0.609761i −0.942884 0.333123i \(-0.891898\pi\)
0.333123 + 0.942884i \(0.391898\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.45445 + 1.45445i −0.549730 + 0.549730i −0.926363 0.376632i \(-0.877082\pi\)
0.376632 + 0.926363i \(0.377082\pi\)
\(8\) 0 0
\(9\) 0.769150i 0.256383i
\(10\) 0 0
\(11\) 4.10096 1.23649 0.618243 0.785987i \(-0.287845\pi\)
0.618243 + 0.785987i \(0.287845\pi\)
\(12\) 0 0
\(13\) 3.51885 3.51885i 0.975953 0.975953i −0.0237648 0.999718i \(-0.507565\pi\)
0.999718 + 0.0237648i \(0.00756528\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.45445 + 1.45445i −0.352756 + 0.352756i −0.861134 0.508378i \(-0.830245\pi\)
0.508378 + 0.861134i \(0.330245\pi\)
\(18\) 0 0
\(19\) 0.485200 4.33181i 0.111313 0.993785i
\(20\) 0 0
\(21\) 3.07220i 0.670408i
\(22\) 0 0
\(23\) 2.62617 + 2.62617i 0.547594 + 0.547594i 0.925744 0.378150i \(-0.123440\pi\)
−0.378150 + 0.925744i \(0.623440\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.98074 3.98074i −0.766093 0.766093i
\(28\) 0 0
\(29\) 10.7212 1.99087 0.995436 0.0954276i \(-0.0304218\pi\)
0.995436 + 0.0954276i \(0.0304218\pi\)
\(30\) 0 0
\(31\) 8.61938i 1.54809i −0.633133 0.774043i \(-0.718231\pi\)
0.633133 0.774043i \(-0.281769\pi\)
\(32\) 0 0
\(33\) −4.33118 + 4.33118i −0.753961 + 0.753961i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.98074 3.98074i −0.654429 0.654429i 0.299627 0.954056i \(-0.403138\pi\)
−0.954056 + 0.299627i \(0.903138\pi\)
\(38\) 0 0
\(39\) 7.43277i 1.19020i
\(40\) 0 0
\(41\) 10.2360i 1.59859i 0.600938 + 0.799296i \(0.294794\pi\)
−0.600938 + 0.799296i \(0.705206\pi\)
\(42\) 0 0
\(43\) 1.22474 + 1.22474i 0.186772 + 0.186772i 0.794299 0.607527i \(-0.207838\pi\)
−0.607527 + 0.794299i \(0.707838\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.21426 + 8.21426i −1.19817 + 1.19817i −0.223460 + 0.974713i \(0.571735\pi\)
−0.974713 + 0.223460i \(0.928265\pi\)
\(48\) 0 0
\(49\) 2.76915i 0.395593i
\(50\) 0 0
\(51\) 3.07220i 0.430194i
\(52\) 0 0
\(53\) 6.22537 6.22537i 0.855120 0.855120i −0.135638 0.990758i \(-0.543309\pi\)
0.990758 + 0.135638i \(0.0433085\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.06255 + 5.08742i 0.538097 + 0.673846i
\(58\) 0 0
\(59\) −5.17399 −0.673597 −0.336798 0.941577i \(-0.609344\pi\)
−0.336798 + 0.941577i \(0.609344\pi\)
\(60\) 0 0
\(61\) 10.9954 1.40782 0.703910 0.710289i \(-0.251436\pi\)
0.703910 + 0.710289i \(0.251436\pi\)
\(62\) 0 0
\(63\) −1.11869 1.11869i −0.140942 0.140942i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.16923 + 5.16923i 0.631522 + 0.631522i 0.948450 0.316928i \(-0.102651\pi\)
−0.316928 + 0.948450i \(0.602651\pi\)
\(68\) 0 0
\(69\) −5.54718 −0.667803
\(70\) 0 0
\(71\) 3.93059i 0.466475i −0.972420 0.233238i \(-0.925068\pi\)
0.972420 0.233238i \(-0.0749320\pi\)
\(72\) 0 0
\(73\) 8.64384 + 8.64384i 1.01168 + 1.01168i 0.999931 + 0.0117536i \(0.00374139\pi\)
0.0117536 + 0.999931i \(0.496259\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.96464 + 5.96464i −0.679734 + 0.679734i
\(78\) 0 0
\(79\) 3.55740 0.400238 0.200119 0.979772i \(-0.435867\pi\)
0.200119 + 0.979772i \(0.435867\pi\)
\(80\) 0 0
\(81\) 6.10096 0.677884
\(82\) 0 0
\(83\) 4.31032 + 4.31032i 0.473119 + 0.473119i 0.902923 0.429803i \(-0.141417\pi\)
−0.429803 + 0.902923i \(0.641417\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −11.3230 + 11.3230i −1.21396 + 1.21396i
\(88\) 0 0
\(89\) −3.07220 −0.325652 −0.162826 0.986655i \(-0.552061\pi\)
−0.162826 + 0.986655i \(0.552061\pi\)
\(90\) 0 0
\(91\) 10.2360i 1.07302i
\(92\) 0 0
\(93\) 9.10325 + 9.10325i 0.943963 + 0.943963i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.40657 + 1.40657i 0.142816 + 0.142816i 0.774900 0.632084i \(-0.217800\pi\)
−0.632084 + 0.774900i \(0.717800\pi\)
\(98\) 0 0
\(99\) 3.15425i 0.317014i
\(100\) 0 0
\(101\) 10.6880 1.06349 0.531747 0.846903i \(-0.321536\pi\)
0.531747 + 0.846903i \(0.321536\pi\)
\(102\) 0 0
\(103\) −12.3184 + 12.3184i −1.21377 + 1.21377i −0.243988 + 0.969778i \(0.578456\pi\)
−0.969778 + 0.243988i \(0.921544\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.76266 + 3.76266i 0.363750 + 0.363750i 0.865191 0.501442i \(-0.167197\pi\)
−0.501442 + 0.865191i \(0.667197\pi\)
\(108\) 0 0
\(109\) −6.03239 −0.577798 −0.288899 0.957360i \(-0.593289\pi\)
−0.288899 + 0.957360i \(0.593289\pi\)
\(110\) 0 0
\(111\) 8.40841 0.798091
\(112\) 0 0
\(113\) 5.51967 5.51967i 0.519247 0.519247i −0.398097 0.917343i \(-0.630329\pi\)
0.917343 + 0.398097i \(0.130329\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.70652 + 2.70652i 0.250218 + 0.250218i
\(118\) 0 0
\(119\) 4.23085i 0.387841i
\(120\) 0 0
\(121\) 5.81787 0.528897
\(122\) 0 0
\(123\) −10.8106 10.8106i −0.974758 0.974758i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −0.461890 0.461890i −0.0409861 0.0409861i 0.686317 0.727303i \(-0.259226\pi\)
−0.727303 + 0.686317i \(0.759226\pi\)
\(128\) 0 0
\(129\) −2.58700 −0.227772
\(130\) 0 0
\(131\) 1.23085 0.107540 0.0537699 0.998553i \(-0.482876\pi\)
0.0537699 + 0.998553i \(0.482876\pi\)
\(132\) 0 0
\(133\) 5.59470 + 7.00610i 0.485122 + 0.607506i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.76973 4.76973i 0.407506 0.407506i −0.473362 0.880868i \(-0.656960\pi\)
0.880868 + 0.473362i \(0.156960\pi\)
\(138\) 0 0
\(139\) 15.4526i 1.31067i 0.755339 + 0.655335i \(0.227472\pi\)
−0.755339 + 0.655335i \(0.772528\pi\)
\(140\) 0 0
\(141\) 17.3508i 1.46120i
\(142\) 0 0
\(143\) 14.4307 14.4307i 1.20675 1.20675i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.92460 2.92460i −0.241217 0.241217i
\(148\) 0 0
\(149\) 20.0964i 1.64636i −0.567780 0.823180i \(-0.692198\pi\)
0.567780 0.823180i \(-0.307802\pi\)
\(150\) 0 0
\(151\) 11.5796i 0.942332i 0.882045 + 0.471166i \(0.156167\pi\)
−0.882045 + 0.471166i \(0.843833\pi\)
\(152\) 0 0
\(153\) −1.11869 1.11869i −0.0904407 0.0904407i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.87850 + 7.87850i −0.628773 + 0.628773i −0.947759 0.318986i \(-0.896658\pi\)
0.318986 + 0.947759i \(0.396658\pi\)
\(158\) 0 0
\(159\) 13.1497i 1.04284i
\(160\) 0 0
\(161\) −7.63926 −0.602058
\(162\) 0 0
\(163\) −13.1132 13.1132i −1.02711 1.02711i −0.999622 0.0274862i \(-0.991250\pi\)
−0.0274862 0.999622i \(-0.508750\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.46271 + 2.46271i 0.190570 + 0.190570i 0.795943 0.605372i \(-0.206976\pi\)
−0.605372 + 0.795943i \(0.706976\pi\)
\(168\) 0 0
\(169\) 11.7646i 0.904968i
\(170\) 0 0
\(171\) 3.33181 + 0.373192i 0.254790 + 0.0285387i
\(172\) 0 0
\(173\) −13.2422 + 13.2422i −1.00678 + 1.00678i −0.00680600 + 0.999977i \(0.502166\pi\)
−0.999977 + 0.00680600i \(0.997834\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.46445 5.46445i 0.410733 0.410733i
\(178\) 0 0
\(179\) −13.3082 −0.994700 −0.497350 0.867550i \(-0.665693\pi\)
−0.497350 + 0.867550i \(0.665693\pi\)
\(180\) 0 0
\(181\) 23.6562i 1.75835i 0.476500 + 0.879174i \(0.341905\pi\)
−0.476500 + 0.879174i \(0.658095\pi\)
\(182\) 0 0
\(183\) −11.6127 + 11.6127i −0.858434 + 0.858434i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5.96464 + 5.96464i −0.436178 + 0.436178i
\(188\) 0 0
\(189\) 11.5796 0.842290
\(190\) 0 0
\(191\) 4.10096 0.296735 0.148368 0.988932i \(-0.452598\pi\)
0.148368 + 0.988932i \(0.452598\pi\)
\(192\) 0 0
\(193\) 13.0241 13.0241i 0.937494 0.937494i −0.0606644 0.998158i \(-0.519322\pi\)
0.998158 + 0.0606644i \(0.0193219\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.1839 13.1839i 0.939311 0.939311i −0.0589495 0.998261i \(-0.518775\pi\)
0.998261 + 0.0589495i \(0.0187751\pi\)
\(198\) 0 0
\(199\) 13.1776i 0.934132i 0.884222 + 0.467066i \(0.154689\pi\)
−0.884222 + 0.467066i \(0.845311\pi\)
\(200\) 0 0
\(201\) −10.9188 −0.770155
\(202\) 0 0
\(203\) −15.5934 + 15.5934i −1.09444 + 1.09444i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.01992 + 2.01992i −0.140394 + 0.140394i
\(208\) 0 0
\(209\) 1.98979 17.7646i 0.137636 1.22880i
\(210\) 0 0
\(211\) 18.4822i 1.27236i −0.771539 0.636182i \(-0.780513\pi\)
0.771539 0.636182i \(-0.219487\pi\)
\(212\) 0 0
\(213\) 4.15124 + 4.15124i 0.284438 + 0.284438i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.5365 + 12.5365i 0.851030 + 0.851030i
\(218\) 0 0
\(219\) −18.2582 −1.23377
\(220\) 0 0
\(221\) 10.2360i 0.688546i
\(222\) 0 0
\(223\) 17.2229 17.2229i 1.15333 1.15333i 0.167450 0.985881i \(-0.446447\pi\)
0.985881 0.167450i \(-0.0535533\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.4619 + 17.4619i 1.15899 + 1.15899i 0.984694 + 0.174292i \(0.0557636\pi\)
0.174292 + 0.984694i \(0.444236\pi\)
\(228\) 0 0
\(229\) 9.53373i 0.630007i 0.949091 + 0.315003i \(0.102006\pi\)
−0.949091 + 0.315003i \(0.897994\pi\)
\(230\) 0 0
\(231\) 12.5990i 0.828950i
\(232\) 0 0
\(233\) 11.9117 + 11.9117i 0.780361 + 0.780361i 0.979892 0.199531i \(-0.0639418\pi\)
−0.199531 + 0.979892i \(0.563942\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.75710 + 3.75710i −0.244050 + 0.244050i
\(238\) 0 0
\(239\) 10.7448i 0.695023i 0.937676 + 0.347511i \(0.112973\pi\)
−0.937676 + 0.347511i \(0.887027\pi\)
\(240\) 0 0
\(241\) 5.06198i 0.326071i −0.986620 0.163036i \(-0.947871\pi\)
0.986620 0.163036i \(-0.0521285\pi\)
\(242\) 0 0
\(243\) 5.49877 5.49877i 0.352746 0.352746i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −13.5356 16.9503i −0.861252 1.07852i
\(248\) 0 0
\(249\) −9.10458 −0.576979
\(250\) 0 0
\(251\) −13.5337 −0.854241 −0.427121 0.904195i \(-0.640472\pi\)
−0.427121 + 0.904195i \(0.640472\pi\)
\(252\) 0 0
\(253\) 10.7698 + 10.7698i 0.677092 + 0.677092i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.2077 14.2077i −0.886255 0.886255i 0.107906 0.994161i \(-0.465585\pi\)
−0.994161 + 0.107906i \(0.965585\pi\)
\(258\) 0 0
\(259\) 11.5796 0.719519
\(260\) 0 0
\(261\) 8.24619i 0.510426i
\(262\) 0 0
\(263\) 9.17947 + 9.17947i 0.566030 + 0.566030i 0.931014 0.364984i \(-0.118925\pi\)
−0.364984 + 0.931014i \(0.618925\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.24466 3.24466i 0.198570 0.198570i
\(268\) 0 0
\(269\) 7.92198 0.483012 0.241506 0.970399i \(-0.422359\pi\)
0.241506 + 0.970399i \(0.422359\pi\)
\(270\) 0 0
\(271\) −11.6880 −0.709994 −0.354997 0.934867i \(-0.615518\pi\)
−0.354997 + 0.934867i \(0.615518\pi\)
\(272\) 0 0
\(273\) −10.8106 10.8106i −0.654287 0.654287i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.03751 2.03751i 0.122422 0.122422i −0.643241 0.765663i \(-0.722411\pi\)
0.765663 + 0.643241i \(0.222411\pi\)
\(278\) 0 0
\(279\) 6.62959 0.396903
\(280\) 0 0
\(281\) 7.11479i 0.424433i 0.977223 + 0.212217i \(0.0680682\pi\)
−0.977223 + 0.212217i \(0.931932\pi\)
\(282\) 0 0
\(283\) −19.7140 19.7140i −1.17187 1.17187i −0.981763 0.190112i \(-0.939115\pi\)
−0.190112 0.981763i \(-0.560885\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.8877 14.8877i −0.878794 0.878794i
\(288\) 0 0
\(289\) 12.7691i 0.751126i
\(290\) 0 0
\(291\) −2.97107 −0.174167
\(292\) 0 0
\(293\) 2.35126 2.35126i 0.137362 0.137362i −0.635082 0.772444i \(-0.719034\pi\)
0.772444 + 0.635082i \(0.219034\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −16.3248 16.3248i −0.947264 0.947264i
\(298\) 0 0
\(299\) 18.4822 1.06885
\(300\) 0 0
\(301\) −3.56266 −0.205348
\(302\) 0 0
\(303\) −11.2880 + 11.2880i −0.648477 + 0.648477i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.65038 1.65038i −0.0941924 0.0941924i 0.658440 0.752633i \(-0.271216\pi\)
−0.752633 + 0.658440i \(0.771216\pi\)
\(308\) 0 0
\(309\) 26.0198i 1.48021i
\(310\) 0 0
\(311\) −3.66819 −0.208004 −0.104002 0.994577i \(-0.533165\pi\)
−0.104002 + 0.994577i \(0.533165\pi\)
\(312\) 0 0
\(313\) −15.8455 15.8455i −0.895639 0.895639i 0.0994081 0.995047i \(-0.468305\pi\)
−0.995047 + 0.0994081i \(0.968305\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.65120 3.65120i −0.205072 0.205072i 0.597097 0.802169i \(-0.296321\pi\)
−0.802169 + 0.597097i \(0.796321\pi\)
\(318\) 0 0
\(319\) 43.9671 2.46169
\(320\) 0 0
\(321\) −7.94776 −0.443601
\(322\) 0 0
\(323\) 5.59470 + 7.00610i 0.311298 + 0.389830i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 6.37102 6.37102i 0.352318 0.352318i
\(328\) 0 0
\(329\) 23.8945i 1.31734i
\(330\) 0 0
\(331\) 13.0960i 0.719820i −0.932987 0.359910i \(-0.882807\pi\)
0.932987 0.359910i \(-0.117193\pi\)
\(332\) 0 0
\(333\) 3.06178 3.06178i 0.167785 0.167785i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.66718 + 8.66718i 0.472131 + 0.472131i 0.902604 0.430473i \(-0.141653\pi\)
−0.430473 + 0.902604i \(0.641653\pi\)
\(338\) 0 0
\(339\) 11.6591i 0.633233i
\(340\) 0 0
\(341\) 35.3477i 1.91419i
\(342\) 0 0
\(343\) −14.2087 14.2087i −0.767200 0.767200i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.1640 17.1640i 0.921413 0.921413i −0.0757163 0.997129i \(-0.524124\pi\)
0.997129 + 0.0757163i \(0.0241244\pi\)
\(348\) 0 0
\(349\) 4.66819i 0.249882i 0.992164 + 0.124941i \(0.0398742\pi\)
−0.992164 + 0.124941i \(0.960126\pi\)
\(350\) 0 0
\(351\) −28.0152 −1.49534
\(352\) 0 0
\(353\) −0.00559594 0.00559594i −0.000297842 0.000297842i 0.706958 0.707256i \(-0.250067\pi\)
−0.707256 + 0.706958i \(0.750067\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.46836 + 4.46836i 0.236491 + 0.236491i
\(358\) 0 0
\(359\) 13.0442i 0.688444i −0.938888 0.344222i \(-0.888143\pi\)
0.938888 0.344222i \(-0.111857\pi\)
\(360\) 0 0
\(361\) −18.5292 4.20359i −0.975219 0.221242i
\(362\) 0 0
\(363\) −6.14447 + 6.14447i −0.322501 + 0.322501i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.7952 18.7952i 0.981099 0.981099i −0.0187258 0.999825i \(-0.505961\pi\)
0.999825 + 0.0187258i \(0.00596094\pi\)
\(368\) 0 0
\(369\) −7.87300 −0.409852
\(370\) 0 0
\(371\) 18.1090i 0.940171i
\(372\) 0 0
\(373\) 7.74340 7.74340i 0.400938 0.400938i −0.477626 0.878563i \(-0.658502\pi\)
0.878563 + 0.477626i \(0.158502\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 37.7262 37.7262i 1.94300 1.94300i
\(378\) 0 0
\(379\) −34.2653 −1.76009 −0.880046 0.474889i \(-0.842488\pi\)
−0.880046 + 0.474889i \(0.842488\pi\)
\(380\) 0 0
\(381\) 0.975639 0.0499835
\(382\) 0 0
\(383\) 7.04252 7.04252i 0.359856 0.359856i −0.503904 0.863760i \(-0.668103\pi\)
0.863760 + 0.503904i \(0.168103\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.942012 + 0.942012i −0.0478852 + 0.0478852i
\(388\) 0 0
\(389\) 21.6545i 1.09793i −0.835847 0.548963i \(-0.815023\pi\)
0.835847 0.548963i \(-0.184977\pi\)
\(390\) 0 0
\(391\) −7.63926 −0.386334
\(392\) 0 0
\(393\) −1.29995 + 1.29995i −0.0655736 + 0.0655736i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.252896 0.252896i 0.0126925 0.0126925i −0.700732 0.713425i \(-0.747143\pi\)
0.713425 + 0.700732i \(0.247143\pi\)
\(398\) 0 0
\(399\) −13.3082 1.49063i −0.666242 0.0746249i
\(400\) 0 0
\(401\) 21.3422i 1.06578i −0.846185 0.532888i \(-0.821107\pi\)
0.846185 0.532888i \(-0.178893\pi\)
\(402\) 0 0
\(403\) −30.3303 30.3303i −1.51086 1.51086i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.3248 16.3248i −0.809193 0.809193i
\(408\) 0 0
\(409\) 27.7477 1.37204 0.686019 0.727584i \(-0.259357\pi\)
0.686019 + 0.727584i \(0.259357\pi\)
\(410\) 0 0
\(411\) 10.0750i 0.496962i
\(412\) 0 0
\(413\) 7.52531 7.52531i 0.370297 0.370297i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.3200 16.3200i −0.799195 0.799195i
\(418\) 0 0
\(419\) 17.0720i 0.834023i −0.908901 0.417012i \(-0.863077\pi\)
0.908901 0.417012i \(-0.136923\pi\)
\(420\) 0 0
\(421\) 12.8230i 0.624954i 0.949925 + 0.312477i \(0.101159\pi\)
−0.949925 + 0.312477i \(0.898841\pi\)
\(422\) 0 0
\(423\) −6.31800 6.31800i −0.307192 0.307192i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −15.9923 + 15.9923i −0.773922 + 0.773922i
\(428\) 0 0
\(429\) 30.4815i 1.47166i
\(430\) 0 0
\(431\) 18.5824i 0.895081i 0.894264 + 0.447540i \(0.147700\pi\)
−0.894264 + 0.447540i \(0.852300\pi\)
\(432\) 0 0
\(433\) −15.7258 + 15.7258i −0.755733 + 0.755733i −0.975543 0.219810i \(-0.929456\pi\)
0.219810 + 0.975543i \(0.429456\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.6503 10.1018i 0.605145 0.483237i
\(438\) 0 0
\(439\) −8.03399 −0.383442 −0.191721 0.981450i \(-0.561407\pi\)
−0.191721 + 0.981450i \(0.561407\pi\)
\(440\) 0 0
\(441\) −2.12989 −0.101423
\(442\) 0 0
\(443\) 14.1547 + 14.1547i 0.672508 + 0.672508i 0.958294 0.285785i \(-0.0922544\pi\)
−0.285785 + 0.958294i \(0.592254\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 21.2245 + 21.2245i 1.00389 + 1.00389i
\(448\) 0 0
\(449\) −11.5306 −0.544162 −0.272081 0.962274i \(-0.587712\pi\)
−0.272081 + 0.962274i \(0.587712\pi\)
\(450\) 0 0
\(451\) 41.9773i 1.97664i
\(452\) 0 0
\(453\) −12.2296 12.2296i −0.574597 0.574597i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.5119 23.5119i 1.09984 1.09984i 0.105409 0.994429i \(-0.466385\pi\)
0.994429 0.105409i \(-0.0336153\pi\)
\(458\) 0 0
\(459\) 11.5796 0.540488
\(460\) 0 0
\(461\) 2.00457 0.0933621 0.0466810 0.998910i \(-0.485136\pi\)
0.0466810 + 0.998910i \(0.485136\pi\)
\(462\) 0 0
\(463\) −14.9035 14.9035i −0.692622 0.692622i 0.270186 0.962808i \(-0.412915\pi\)
−0.962808 + 0.270186i \(0.912915\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.72502 + 7.72502i −0.357471 + 0.357471i −0.862880 0.505409i \(-0.831342\pi\)
0.505409 + 0.862880i \(0.331342\pi\)
\(468\) 0 0
\(469\) −15.0368 −0.694334
\(470\) 0 0
\(471\) 16.6416i 0.766802i
\(472\) 0 0
\(473\) 5.02263 + 5.02263i 0.230941 + 0.230941i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.78824 + 4.78824i 0.219238 + 0.219238i
\(478\) 0 0
\(479\) 26.2019i 1.19720i 0.801049 + 0.598598i \(0.204275\pi\)
−0.801049 + 0.598598i \(0.795725\pi\)
\(480\) 0 0
\(481\) −28.0152 −1.27738
\(482\) 0 0
\(483\) 8.06810 8.06810i 0.367111 0.367111i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.09866 + 8.09866i 0.366985 + 0.366985i 0.866377 0.499391i \(-0.166443\pi\)
−0.499391 + 0.866377i \(0.666443\pi\)
\(488\) 0 0
\(489\) 27.6988 1.25258
\(490\) 0 0
\(491\) 8.35617 0.377109 0.188554 0.982063i \(-0.439620\pi\)
0.188554 + 0.982063i \(0.439620\pi\)
\(492\) 0 0
\(493\) −15.5934 + 15.5934i −0.702292 + 0.702292i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.71685 + 5.71685i 0.256436 + 0.256436i
\(498\) 0 0
\(499\) 8.23542i 0.368668i −0.982864 0.184334i \(-0.940987\pi\)
0.982864 0.184334i \(-0.0590128\pi\)
\(500\) 0 0
\(501\) −5.20192 −0.232405
\(502\) 0 0
\(503\) 2.72663 + 2.72663i 0.121574 + 0.121574i 0.765276 0.643702i \(-0.222602\pi\)
−0.643702 + 0.765276i \(0.722602\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.4250 + 12.4250i 0.551814 + 0.551814i
\(508\) 0 0
\(509\) −41.4803 −1.83858 −0.919291 0.393578i \(-0.871237\pi\)
−0.919291 + 0.393578i \(0.871237\pi\)
\(510\) 0 0
\(511\) −25.1441 −1.11231
\(512\) 0 0
\(513\) −19.1753 + 15.3123i −0.846608 + 0.676057i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −33.6864 + 33.6864i −1.48152 + 1.48152i
\(518\) 0 0
\(519\) 27.9711i 1.22779i
\(520\) 0 0
\(521\) 6.89078i 0.301890i 0.988542 + 0.150945i \(0.0482317\pi\)
−0.988542 + 0.150945i \(0.951768\pi\)
\(522\) 0 0
\(523\) −3.64638 + 3.64638i −0.159445 + 0.159445i −0.782321 0.622876i \(-0.785964\pi\)
0.622876 + 0.782321i \(0.285964\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.5365 + 12.5365i 0.546097 + 0.546097i
\(528\) 0 0
\(529\) 9.20649i 0.400282i
\(530\) 0 0
\(531\) 3.97957i 0.172699i
\(532\) 0 0
\(533\) 36.0188 + 36.0188i 1.56015 + 1.56015i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 14.0553 14.0553i 0.606529 0.606529i
\(538\) 0 0
\(539\) 11.3562i 0.489145i
\(540\) 0 0
\(541\) 28.2937 1.21644 0.608221 0.793767i \(-0.291883\pi\)
0.608221 + 0.793767i \(0.291883\pi\)
\(542\) 0 0
\(543\) −24.9841 24.9841i −1.07217 1.07217i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −18.8942 18.8942i −0.807857 0.807857i 0.176452 0.984309i \(-0.443538\pi\)
−0.984309 + 0.176452i \(0.943538\pi\)
\(548\) 0 0
\(549\) 8.45713i 0.360942i
\(550\) 0 0
\(551\) 5.20192 46.4421i 0.221609 1.97850i
\(552\) 0 0
\(553\) −5.17406 + 5.17406i −0.220023 + 0.220023i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.9692 21.9692i 0.930864 0.930864i −0.0668956 0.997760i \(-0.521309\pi\)
0.997760 + 0.0668956i \(0.0213094\pi\)
\(558\) 0 0
\(559\) 8.61938 0.364561
\(560\) 0 0
\(561\) 12.5990i 0.531928i
\(562\) 0 0
\(563\) 30.5069 30.5069i 1.28571 1.28571i 0.348345 0.937367i \(-0.386744\pi\)
0.937367 0.348345i \(-0.113256\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −8.87354 + 8.87354i −0.372654 + 0.372654i
\(568\) 0 0
\(569\) −7.86118 −0.329558 −0.164779 0.986331i \(-0.552691\pi\)
−0.164779 + 0.986331i \(0.552691\pi\)
\(570\) 0 0
\(571\) −2.72043 −0.113846 −0.0569232 0.998379i \(-0.518129\pi\)
−0.0569232 + 0.998379i \(0.518129\pi\)
\(572\) 0 0
\(573\) −4.33118 + 4.33118i −0.180937 + 0.180937i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.50083 + 1.50083i −0.0624805 + 0.0624805i −0.737657 0.675176i \(-0.764068\pi\)
0.675176 + 0.737657i \(0.264068\pi\)
\(578\) 0 0
\(579\) 27.5104i 1.14329i
\(580\) 0 0
\(581\) −12.5383 −0.520176
\(582\) 0 0
\(583\) 25.5300 25.5300i 1.05734 1.05734i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.18499 + 3.18499i −0.131459 + 0.131459i −0.769774 0.638316i \(-0.779631\pi\)
0.638316 + 0.769774i \(0.279631\pi\)
\(588\) 0 0
\(589\) −37.3375 4.18213i −1.53847 0.172322i
\(590\) 0 0
\(591\) 27.8479i 1.14551i
\(592\) 0 0
\(593\) −18.8714 18.8714i −0.774954 0.774954i 0.204014 0.978968i \(-0.434601\pi\)
−0.978968 + 0.204014i \(0.934601\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −13.9173 13.9173i −0.569597 0.569597i
\(598\) 0 0
\(599\) 35.3967 1.44627 0.723135 0.690706i \(-0.242700\pi\)
0.723135 + 0.690706i \(0.242700\pi\)
\(600\) 0 0
\(601\) 8.29518i 0.338367i −0.985585 0.169184i \(-0.945887\pi\)
0.985585 0.169184i \(-0.0541131\pi\)
\(602\) 0 0
\(603\) −3.97591 + 3.97591i −0.161912 + 0.161912i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18.3857 18.3857i −0.746251 0.746251i 0.227522 0.973773i \(-0.426938\pi\)
−0.973773 + 0.227522i \(0.926938\pi\)
\(608\) 0 0
\(609\) 32.9376i 1.33470i
\(610\) 0 0
\(611\) 57.8095i 2.33872i
\(612\) 0 0
\(613\) 22.0862 + 22.0862i 0.892053 + 0.892053i 0.994716 0.102663i \(-0.0327364\pi\)
−0.102663 + 0.994716i \(0.532736\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.3926 27.3926i 1.10278 1.10278i 0.108711 0.994073i \(-0.465328\pi\)
0.994073 0.108711i \(-0.0346724\pi\)
\(618\) 0 0
\(619\) 18.5672i 0.746280i 0.927775 + 0.373140i \(0.121719\pi\)
−0.927775 + 0.373140i \(0.878281\pi\)
\(620\) 0 0
\(621\) 20.9082i 0.839016i
\(622\) 0 0
\(623\) 4.46836 4.46836i 0.179021 0.179021i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 16.6603 + 20.8633i 0.665350 + 0.833201i
\(628\) 0 0
\(629\) 11.5796 0.461708
\(630\) 0 0
\(631\) −32.7600 −1.30416 −0.652078 0.758152i \(-0.726102\pi\)
−0.652078 + 0.758152i \(0.726102\pi\)
\(632\) 0 0
\(633\) 19.5197 + 19.5197i 0.775838 + 0.775838i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.74422 + 9.74422i 0.386080 + 0.386080i
\(638\) 0 0
\(639\) 3.02321 0.119596
\(640\) 0 0
\(641\) 34.0041i 1.34308i 0.740967 + 0.671542i \(0.234368\pi\)
−0.740967 + 0.671542i \(0.765632\pi\)
\(642\) 0 0
\(643\) 12.8129 + 12.8129i 0.505292 + 0.505292i 0.913078 0.407786i \(-0.133699\pi\)
−0.407786 + 0.913078i \(0.633699\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.2833 13.2833i 0.522219 0.522219i −0.396022 0.918241i \(-0.629610\pi\)
0.918241 + 0.396022i \(0.129610\pi\)
\(648\) 0 0
\(649\) −21.2183 −0.832893
\(650\) 0 0
\(651\) −26.4804 −1.03785
\(652\) 0 0
\(653\) 6.91330 + 6.91330i 0.270538 + 0.270538i 0.829317 0.558779i \(-0.188730\pi\)
−0.558779 + 0.829317i \(0.688730\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6.64840 + 6.64840i −0.259379 + 0.259379i
\(658\) 0 0
\(659\) −15.4612 −0.602282 −0.301141 0.953580i \(-0.597367\pi\)
−0.301141 + 0.953580i \(0.597367\pi\)
\(660\) 0 0
\(661\) 13.0960i 0.509374i 0.967023 + 0.254687i \(0.0819725\pi\)
−0.967023 + 0.254687i \(0.918027\pi\)
\(662\) 0 0
\(663\) −10.8106 10.8106i −0.419849 0.419849i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 28.1556 + 28.1556i 1.09019 + 1.09019i
\(668\) 0 0
\(669\) 36.3795i 1.40651i
\(670\) 0 0
\(671\) 45.0918 1.74075
\(672\) 0 0
\(673\) −33.5477 + 33.5477i −1.29317 + 1.29317i −0.360356 + 0.932815i \(0.617345\pi\)
−0.932815 + 0.360356i \(0.882655\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.3184 + 29.3184i 1.12680 + 1.12680i 0.990695 + 0.136102i \(0.0434574\pi\)
0.136102 + 0.990695i \(0.456543\pi\)
\(678\) 0 0
\(679\) −4.09158 −0.157021
\(680\) 0 0
\(681\) −36.8843 −1.41341
\(682\) 0 0
\(683\) −21.9045 + 21.9045i −0.838153 + 0.838153i −0.988616 0.150463i \(-0.951924\pi\)
0.150463 + 0.988616i \(0.451924\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.0689 10.0689i −0.384153 0.384153i
\(688\) 0 0
\(689\) 43.8122i 1.66911i
\(690\) 0 0
\(691\) 10.8168 0.411491 0.205746 0.978606i \(-0.434038\pi\)
0.205746 + 0.978606i \(0.434038\pi\)
\(692\) 0 0
\(693\) −4.58770 4.58770i −0.174272 0.174272i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −14.8877 14.8877i −0.563913 0.563913i
\(698\) 0 0
\(699\) −25.1607 −0.951667
\(700\) 0 0
\(701\) 25.2739 0.954584 0.477292 0.878745i \(-0.341618\pi\)
0.477292 + 0.878745i \(0.341618\pi\)
\(702\) 0 0
\(703\) −19.1753 + 15.3123i −0.723209 + 0.577516i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.5451 + 15.5451i −0.584635 + 0.584635i
\(708\) 0 0
\(709\) 31.8701i 1.19691i −0.801158 0.598454i \(-0.795782\pi\)
0.801158 0.598454i \(-0.204218\pi\)
\(710\) 0 0
\(711\) 2.73617i 0.102614i
\(712\) 0 0
\(713\) 22.6359 22.6359i 0.847723 0.847723i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −11.3480 11.3480i −0.423798 0.423798i
\(718\) 0 0
\(719\) 14.5916i 0.544175i −0.962273 0.272087i \(-0.912286\pi\)
0.962273 0.272087i \(-0.0877139\pi\)
\(720\) 0 0
\(721\) 35.8329i 1.33449i
\(722\) 0 0
\(723\) 5.34615 + 5.34615i 0.198825 + 0.198825i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.73782 2.73782i 0.101540 0.101540i −0.654512 0.756052i \(-0.727126\pi\)
0.756052 + 0.654512i \(0.227126\pi\)
\(728\) 0 0
\(729\) 29.9178i 1.10807i
\(730\) 0 0
\(731\) −3.56266 −0.131770
\(732\) 0 0
\(733\) −23.4578 23.4578i −0.866433 0.866433i 0.125643 0.992076i \(-0.459901\pi\)
−0.992076 + 0.125643i \(0.959901\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.1988 + 21.1988i 0.780868 + 0.780868i
\(738\) 0 0
\(739\) 34.3993i 1.26540i 0.774398 + 0.632699i \(0.218053\pi\)
−0.774398 + 0.632699i \(0.781947\pi\)
\(740\) 0 0
\(741\) 32.1974 + 3.60638i 1.18280 + 0.132484i
\(742\) 0 0
\(743\) −10.2709 + 10.2709i −0.376804 + 0.376804i −0.869948 0.493144i \(-0.835848\pi\)
0.493144 + 0.869948i \(0.335848\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3.31528 + 3.31528i −0.121300 + 0.121300i
\(748\) 0 0
\(749\) −10.9452 −0.399929
\(750\) 0 0
\(751\) 7.27579i 0.265497i 0.991150 + 0.132749i \(0.0423803\pi\)
−0.991150 + 0.132749i \(0.957620\pi\)
\(752\) 0 0
\(753\) 14.2935 14.2935i 0.520883 0.520883i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −20.7863 + 20.7863i −0.755490 + 0.755490i −0.975498 0.220008i \(-0.929392\pi\)
0.220008 + 0.975498i \(0.429392\pi\)
\(758\) 0 0
\(759\) −22.7488 −0.825728
\(760\) 0 0
\(761\) −11.6834 −0.423523 −0.211762 0.977321i \(-0.567920\pi\)
−0.211762 + 0.977321i \(0.567920\pi\)
\(762\) 0 0
\(763\) 8.77380 8.77380i 0.317633 0.317633i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18.2065 + 18.2065i −0.657398 + 0.657398i
\(768\) 0 0
\(769\) 30.2506i 1.09087i 0.838154 + 0.545433i \(0.183635\pi\)
−0.838154 + 0.545433i \(0.816365\pi\)
\(770\) 0 0
\(771\) 30.0107 1.08081
\(772\) 0 0
\(773\) −11.4594 + 11.4594i −0.412167 + 0.412167i −0.882493 0.470326i \(-0.844136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −12.2296 + 12.2296i −0.438735 + 0.438735i
\(778\) 0 0
\(779\) 44.3403 + 4.96650i 1.58866 + 0.177943i
\(780\) 0 0
\(781\) 16.1192i 0.576790i
\(782\) 0 0
\(783\) −42.6782 42.6782i −1.52519 1.52519i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16.1828 + 16.1828i 0.576856 + 0.576856i 0.934036 0.357180i \(-0.116262\pi\)
−0.357180 + 0.934036i \(0.616262\pi\)
\(788\) 0 0
\(789\) −19.3895 −0.690286
\(790\) 0 0
\(791\) 16.0562i 0.570892i
\(792\) 0 0
\(793\) 38.6912 38.6912i 1.37397 1.37397i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.02244 9.02244i −0.319591 0.319591i 0.529019 0.848610i \(-0.322560\pi\)
−0.848610 + 0.529019i \(0.822560\pi\)
\(798\) 0 0
\(799\) 23.8945i 0.845326i
\(800\) 0 0
\(801\) 2.36298i 0.0834918i
\(802\) 0 0
\(803\) 35.4480 + 35.4480i 1.25093 + 1.25093i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.36670 + 8.36670i −0.294522 + 0.294522i
\(808\) 0 0
\(809\) 14.7265i 0.517757i −0.965910 0.258878i \(-0.916647\pi\)
0.965910 0.258878i \(-0.0833529\pi\)
\(810\) 0 0
\(811\) 43.3699i 1.52292i −0.648210 0.761462i \(-0.724482\pi\)
0.648210 0.761462i \(-0.275518\pi\)
\(812\) 0 0
\(813\) 12.3441 12.3441i 0.432927 0.432927i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 5.89961 4.71112i 0.206401 0.164821i
\(818\) 0 0
\(819\) −7.87300 −0.275105
\(820\) 0 0
\(821\) 30.7600 1.07353 0.536766 0.843731i \(-0.319646\pi\)
0.536766 + 0.843731i \(0.319646\pi\)
\(822\) 0 0
\(823\) 40.0454 + 40.0454i 1.39589 + 1.39589i 0.811392 + 0.584503i \(0.198710\pi\)
0.584503 + 0.811392i \(0.301290\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.2558 24.2558i −0.843456 0.843456i 0.145851 0.989307i \(-0.453408\pi\)
−0.989307 + 0.145851i \(0.953408\pi\)
\(828\) 0 0
\(829\) 46.7663 1.62426 0.812131 0.583476i \(-0.198308\pi\)
0.812131 + 0.583476i \(0.198308\pi\)
\(830\) 0 0
\(831\) 4.30378i 0.149297i
\(832\) 0 0
\(833\) −4.02759 4.02759i −0.139548 0.139548i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −34.3115 + 34.3115i −1.18598 + 1.18598i
\(838\) 0 0
\(839\) 2.69901 0.0931800 0.0465900 0.998914i \(-0.485165\pi\)
0.0465900 + 0.998914i \(0.485165\pi\)
\(840\) 0 0
\(841\) 85.9437 2.96357
\(842\) 0 0
\(843\) −7.51420 7.51420i −0.258803 0.258803i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −8.46181 + 8.46181i −0.290751 + 0.290751i
\(848\) 0 0
\(849\) 41.6413 1.42913
\(850\) 0 0
\(851\) 20.9082i 0.716723i
\(852\) 0 0
\(853\) −4.66927 4.66927i −0.159873 0.159873i 0.622638 0.782510i \(-0.286061\pi\)
−0.782510 + 0.622638i \(0.786061\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.0442 28.0442i −0.957970 0.957970i 0.0411816 0.999152i \(-0.486888\pi\)
−0.999152 + 0.0411816i \(0.986888\pi\)
\(858\) 0 0
\(859\) 30.3074i 1.03408i 0.855962 + 0.517038i \(0.172966\pi\)
−0.855962 + 0.517038i \(0.827034\pi\)
\(860\) 0 0
\(861\) 31.4469 1.07171
\(862\) 0 0
\(863\) −10.1852 + 10.1852i −0.346708 + 0.346708i −0.858882 0.512174i \(-0.828840\pi\)
0.512174 + 0.858882i \(0.328840\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.4860 13.4860i −0.458008 0.458008i
\(868\) 0 0
\(869\) 14.5887 0.494889
\(870\) 0 0
\(871\) 36.3795 1.23267
\(872\) 0 0
\(873\) −1.08187 + 1.08187i −0.0366156 + 0.0366156i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.26635 + 4.26635i 0.144065 + 0.144065i 0.775461 0.631396i \(-0.217518\pi\)
−0.631396 + 0.775461i \(0.717518\pi\)
\(878\) 0 0
\(879\) 4.96650i 0.167516i
\(880\) 0 0
\(881\) −30.2704 −1.01984 −0.509918 0.860223i \(-0.670324\pi\)
−0.509918 + 0.860223i \(0.670324\pi\)
\(882\) 0 0
\(883\) 19.5085 + 19.5085i 0.656514 + 0.656514i 0.954553 0.298040i \(-0.0963328\pi\)
−0.298040 + 0.954553i \(0.596333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.39132 3.39132i −0.113869 0.113869i 0.647876 0.761746i \(-0.275657\pi\)
−0.761746 + 0.647876i \(0.775657\pi\)
\(888\) 0 0
\(889\) 1.34359 0.0450626
\(890\) 0 0
\(891\) 25.0198 0.838195
\(892\) 0 0
\(893\) 31.5971 + 39.5682i 1.05736 + 1.32410i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −19.5197 + 19.5197i −0.651744 + 0.651744i
\(898\) 0 0
\(899\) 92.4099i 3.08204i
\(900\) 0 0
\(901\) 18.1090i 0.603297i
\(902\) 0 0
\(903\) 3.76266 3.76266i 0.125213 0.125213i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −10.5356 10.5356i −0.349830 0.349830i 0.510216 0.860046i \(-0.329565\pi\)
−0.860046 + 0.510216i \(0.829565\pi\)
\(908\) 0 0
\(909\) 8.22066i 0.272662i
\(910\) 0 0
\(911\) 4.63981i 0.153724i −0.997042 0.0768618i \(-0.975510\pi\)
0.997042 0.0768618i \(-0.0244900\pi\)
\(912\) 0 0
\(913\) 17.6765 + 17.6765i 0.585005 + 0.585005i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.79021 + 1.79021i −0.0591180 + 0.0591180i
\(918\) 0 0
\(919\) 6.15777i 0.203126i 0.994829 + 0.101563i \(0.0323843\pi\)
−0.994829 + 0.101563i \(0.967616\pi\)
\(920\) 0 0
\(921\) 3.48606 0.114870
\(922\) 0 0
\(923\) −13.8311 13.8311i −0.455258 0.455258i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −9.47468 9.47468i −0.311189 0.311189i
\(928\) 0 0
\(929\) 40.1360i 1.31682i 0.752660 + 0.658409i \(0.228770\pi\)
−0.752660 + 0.658409i \(0.771230\pi\)
\(930\) 0 0
\(931\) 11.9954 + 1.34359i 0.393134 + 0.0440345i
\(932\) 0 0
\(933\) 3.87411 3.87411i 0.126833 0.126833i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.99880 + 3.99880i −0.130635 + 0.130635i −0.769401 0.638766i \(-0.779445\pi\)
0.638766 + 0.769401i \(0.279445\pi\)
\(938\) 0 0
\(939\) 33.4700 1.09225
\(940\) 0 0
\(941\) 21.9788i 0.716487i −0.933628 0.358244i \(-0.883376\pi\)
0.933628 0.358244i \(-0.116624\pi\)
\(942\) 0 0
\(943\) −26.8814 + 26.8814i −0.875379 + 0.875379i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.14525 + 3.14525i −0.102207 + 0.102207i −0.756361 0.654154i \(-0.773025\pi\)
0.654154 + 0.756361i \(0.273025\pi\)
\(948\) 0 0
\(949\) 60.8327 1.97471
\(950\) 0 0
\(951\) 7.71234 0.250090
\(952\) 0 0
\(953\) −6.19964 + 6.19964i −0.200826 + 0.200826i −0.800354 0.599528i \(-0.795355\pi\)
0.599528 + 0.800354i \(0.295355\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −46.4353 + 46.4353i −1.50104 + 1.50104i
\(958\) 0 0
\(959\) 13.8747i 0.448037i
\(960\) 0 0
\(961\) −43.2937 −1.39657
\(962\) 0 0
\(963\) −2.89405 + 2.89405i −0.0932593 + 0.0932593i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12.1358 12.1358i 0.390261 0.390261i −0.484520 0.874780i \(-0.661006\pi\)
0.874780 + 0.484520i \(0.161006\pi\)
\(968\) 0 0
\(969\) −13.3082 1.49063i −0.427520 0.0478860i
\(970\) 0 0
\(971\) 53.6571i 1.72194i −0.508657 0.860969i \(-0.669858\pi\)
0.508657 0.860969i \(-0.330142\pi\)
\(972\) 0 0
\(973\) −22.4750 22.4750i −0.720515 0.720515i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.928606 + 0.928606i 0.0297087 + 0.0297087i 0.721805 0.692096i \(-0.243313\pi\)
−0.692096 + 0.721805i \(0.743313\pi\)
\(978\) 0 0
\(979\) −12.5990 −0.402664
\(980\) 0 0
\(981\) 4.63981i 0.148138i
\(982\) 0 0
\(983\) 24.7900 24.7900i 0.790679 0.790679i −0.190926 0.981605i \(-0.561149\pi\)
0.981605 + 0.190926i \(0.0611489\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 25.2358 + 25.2358i 0.803265 + 0.803265i
\(988\) 0 0
\(989\) 6.43277i 0.204550i
\(990\) 0 0
\(991\) 36.3063i 1.15331i −0.816988 0.576654i \(-0.804358\pi\)
0.816988 0.576654i \(-0.195642\pi\)
\(992\) 0 0
\(993\) 13.8311 + 13.8311i 0.438918 + 0.438918i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −32.0552 + 32.0552i −1.01520 + 1.01520i −0.0153168 + 0.999883i \(0.504876\pi\)
−0.999883 + 0.0153168i \(0.995124\pi\)
\(998\) 0 0
\(999\) 31.6926i 1.00271i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.2.l.d.493.3 24
5.2 odd 4 inner 1900.2.l.d.1557.9 yes 24
5.3 odd 4 inner 1900.2.l.d.1557.4 yes 24
5.4 even 2 inner 1900.2.l.d.493.10 yes 24
19.18 odd 2 inner 1900.2.l.d.493.9 yes 24
95.18 even 4 inner 1900.2.l.d.1557.10 yes 24
95.37 even 4 inner 1900.2.l.d.1557.3 yes 24
95.94 odd 2 inner 1900.2.l.d.493.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1900.2.l.d.493.3 24 1.1 even 1 trivial
1900.2.l.d.493.4 yes 24 95.94 odd 2 inner
1900.2.l.d.493.9 yes 24 19.18 odd 2 inner
1900.2.l.d.493.10 yes 24 5.4 even 2 inner
1900.2.l.d.1557.3 yes 24 95.37 even 4 inner
1900.2.l.d.1557.4 yes 24 5.3 odd 4 inner
1900.2.l.d.1557.9 yes 24 5.2 odd 4 inner
1900.2.l.d.1557.10 yes 24 95.18 even 4 inner