Properties

Label 1900.2.l.d.493.10
Level $1900$
Weight $2$
Character 1900.493
Analytic conductor $15.172$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,2,Mod(493,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1715763840\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 493.10
Character \(\chi\) \(=\) 1900.493
Dual form 1900.2.l.d.1557.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05614 - 1.05614i) q^{3} +(1.45445 - 1.45445i) q^{7} +0.769150i q^{9} +4.10096 q^{11} +(-3.51885 + 3.51885i) q^{13} +(1.45445 - 1.45445i) q^{17} +(0.485200 - 4.33181i) q^{19} -3.07220i q^{21} +(-2.62617 - 2.62617i) q^{23} +(3.98074 + 3.98074i) q^{27} +10.7212 q^{29} -8.61938i q^{31} +(4.33118 - 4.33118i) q^{33} +(3.98074 + 3.98074i) q^{37} +7.43277i q^{39} +10.2360i q^{41} +(-1.22474 - 1.22474i) q^{43} +(8.21426 - 8.21426i) q^{47} +2.76915i q^{49} -3.07220i q^{51} +(-6.22537 + 6.22537i) q^{53} +(-4.06255 - 5.08742i) q^{57} -5.17399 q^{59} +10.9954 q^{61} +(1.11869 + 1.11869i) q^{63} +(-5.16923 - 5.16923i) q^{67} -5.54718 q^{69} -3.93059i q^{71} +(-8.64384 - 8.64384i) q^{73} +(5.96464 - 5.96464i) q^{77} +3.55740 q^{79} +6.10096 q^{81} +(-4.31032 - 4.31032i) q^{83} +(11.3230 - 11.3230i) q^{87} -3.07220 q^{89} +10.2360i q^{91} +(-9.10325 - 9.10325i) q^{93} +(-1.40657 - 1.40657i) q^{97} +3.15425i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{11} + 24 q^{61} + 24 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.05614 1.05614i 0.609761 0.609761i −0.333123 0.942884i \(-0.608102\pi\)
0.942884 + 0.333123i \(0.108102\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.45445 1.45445i 0.549730 0.549730i −0.376632 0.926363i \(-0.622918\pi\)
0.926363 + 0.376632i \(0.122918\pi\)
\(8\) 0 0
\(9\) 0.769150i 0.256383i
\(10\) 0 0
\(11\) 4.10096 1.23649 0.618243 0.785987i \(-0.287845\pi\)
0.618243 + 0.785987i \(0.287845\pi\)
\(12\) 0 0
\(13\) −3.51885 + 3.51885i −0.975953 + 0.975953i −0.999718 0.0237648i \(-0.992435\pi\)
0.0237648 + 0.999718i \(0.492435\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.45445 1.45445i 0.352756 0.352756i −0.508378 0.861134i \(-0.669755\pi\)
0.861134 + 0.508378i \(0.169755\pi\)
\(18\) 0 0
\(19\) 0.485200 4.33181i 0.111313 0.993785i
\(20\) 0 0
\(21\) 3.07220i 0.670408i
\(22\) 0 0
\(23\) −2.62617 2.62617i −0.547594 0.547594i 0.378150 0.925744i \(-0.376560\pi\)
−0.925744 + 0.378150i \(0.876560\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.98074 + 3.98074i 0.766093 + 0.766093i
\(28\) 0 0
\(29\) 10.7212 1.99087 0.995436 0.0954276i \(-0.0304218\pi\)
0.995436 + 0.0954276i \(0.0304218\pi\)
\(30\) 0 0
\(31\) 8.61938i 1.54809i −0.633133 0.774043i \(-0.718231\pi\)
0.633133 0.774043i \(-0.281769\pi\)
\(32\) 0 0
\(33\) 4.33118 4.33118i 0.753961 0.753961i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.98074 + 3.98074i 0.654429 + 0.654429i 0.954056 0.299627i \(-0.0968623\pi\)
−0.299627 + 0.954056i \(0.596862\pi\)
\(38\) 0 0
\(39\) 7.43277i 1.19020i
\(40\) 0 0
\(41\) 10.2360i 1.59859i 0.600938 + 0.799296i \(0.294794\pi\)
−0.600938 + 0.799296i \(0.705206\pi\)
\(42\) 0 0
\(43\) −1.22474 1.22474i −0.186772 0.186772i 0.607527 0.794299i \(-0.292162\pi\)
−0.794299 + 0.607527i \(0.792162\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.21426 8.21426i 1.19817 1.19817i 0.223460 0.974713i \(-0.428265\pi\)
0.974713 0.223460i \(-0.0717353\pi\)
\(48\) 0 0
\(49\) 2.76915i 0.395593i
\(50\) 0 0
\(51\) 3.07220i 0.430194i
\(52\) 0 0
\(53\) −6.22537 + 6.22537i −0.855120 + 0.855120i −0.990758 0.135638i \(-0.956691\pi\)
0.135638 + 0.990758i \(0.456691\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.06255 5.08742i −0.538097 0.673846i
\(58\) 0 0
\(59\) −5.17399 −0.673597 −0.336798 0.941577i \(-0.609344\pi\)
−0.336798 + 0.941577i \(0.609344\pi\)
\(60\) 0 0
\(61\) 10.9954 1.40782 0.703910 0.710289i \(-0.251436\pi\)
0.703910 + 0.710289i \(0.251436\pi\)
\(62\) 0 0
\(63\) 1.11869 + 1.11869i 0.140942 + 0.140942i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.16923 5.16923i −0.631522 0.631522i 0.316928 0.948450i \(-0.397349\pi\)
−0.948450 + 0.316928i \(0.897349\pi\)
\(68\) 0 0
\(69\) −5.54718 −0.667803
\(70\) 0 0
\(71\) 3.93059i 0.466475i −0.972420 0.233238i \(-0.925068\pi\)
0.972420 0.233238i \(-0.0749320\pi\)
\(72\) 0 0
\(73\) −8.64384 8.64384i −1.01168 1.01168i −0.999931 0.0117536i \(-0.996259\pi\)
−0.0117536 0.999931i \(-0.503741\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.96464 5.96464i 0.679734 0.679734i
\(78\) 0 0
\(79\) 3.55740 0.400238 0.200119 0.979772i \(-0.435867\pi\)
0.200119 + 0.979772i \(0.435867\pi\)
\(80\) 0 0
\(81\) 6.10096 0.677884
\(82\) 0 0
\(83\) −4.31032 4.31032i −0.473119 0.473119i 0.429803 0.902923i \(-0.358583\pi\)
−0.902923 + 0.429803i \(0.858583\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 11.3230 11.3230i 1.21396 1.21396i
\(88\) 0 0
\(89\) −3.07220 −0.325652 −0.162826 0.986655i \(-0.552061\pi\)
−0.162826 + 0.986655i \(0.552061\pi\)
\(90\) 0 0
\(91\) 10.2360i 1.07302i
\(92\) 0 0
\(93\) −9.10325 9.10325i −0.943963 0.943963i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.40657 1.40657i −0.142816 0.142816i 0.632084 0.774900i \(-0.282200\pi\)
−0.774900 + 0.632084i \(0.782200\pi\)
\(98\) 0 0
\(99\) 3.15425i 0.317014i
\(100\) 0 0
\(101\) 10.6880 1.06349 0.531747 0.846903i \(-0.321536\pi\)
0.531747 + 0.846903i \(0.321536\pi\)
\(102\) 0 0
\(103\) 12.3184 12.3184i 1.21377 1.21377i 0.243988 0.969778i \(-0.421544\pi\)
0.969778 0.243988i \(-0.0784557\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.76266 3.76266i −0.363750 0.363750i 0.501442 0.865191i \(-0.332803\pi\)
−0.865191 + 0.501442i \(0.832803\pi\)
\(108\) 0 0
\(109\) −6.03239 −0.577798 −0.288899 0.957360i \(-0.593289\pi\)
−0.288899 + 0.957360i \(0.593289\pi\)
\(110\) 0 0
\(111\) 8.40841 0.798091
\(112\) 0 0
\(113\) −5.51967 + 5.51967i −0.519247 + 0.519247i −0.917343 0.398097i \(-0.869671\pi\)
0.398097 + 0.917343i \(0.369671\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.70652 2.70652i −0.250218 0.250218i
\(118\) 0 0
\(119\) 4.23085i 0.387841i
\(120\) 0 0
\(121\) 5.81787 0.528897
\(122\) 0 0
\(123\) 10.8106 + 10.8106i 0.974758 + 0.974758i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.461890 + 0.461890i 0.0409861 + 0.0409861i 0.727303 0.686317i \(-0.240774\pi\)
−0.686317 + 0.727303i \(0.740774\pi\)
\(128\) 0 0
\(129\) −2.58700 −0.227772
\(130\) 0 0
\(131\) 1.23085 0.107540 0.0537699 0.998553i \(-0.482876\pi\)
0.0537699 + 0.998553i \(0.482876\pi\)
\(132\) 0 0
\(133\) −5.59470 7.00610i −0.485122 0.607506i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.76973 + 4.76973i −0.407506 + 0.407506i −0.880868 0.473362i \(-0.843040\pi\)
0.473362 + 0.880868i \(0.343040\pi\)
\(138\) 0 0
\(139\) 15.4526i 1.31067i 0.755339 + 0.655335i \(0.227472\pi\)
−0.755339 + 0.655335i \(0.772528\pi\)
\(140\) 0 0
\(141\) 17.3508i 1.46120i
\(142\) 0 0
\(143\) −14.4307 + 14.4307i −1.20675 + 1.20675i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.92460 + 2.92460i 0.241217 + 0.241217i
\(148\) 0 0
\(149\) 20.0964i 1.64636i −0.567780 0.823180i \(-0.692198\pi\)
0.567780 0.823180i \(-0.307802\pi\)
\(150\) 0 0
\(151\) 11.5796i 0.942332i 0.882045 + 0.471166i \(0.156167\pi\)
−0.882045 + 0.471166i \(0.843833\pi\)
\(152\) 0 0
\(153\) 1.11869 + 1.11869i 0.0904407 + 0.0904407i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.87850 7.87850i 0.628773 0.628773i −0.318986 0.947759i \(-0.603342\pi\)
0.947759 + 0.318986i \(0.103342\pi\)
\(158\) 0 0
\(159\) 13.1497i 1.04284i
\(160\) 0 0
\(161\) −7.63926 −0.602058
\(162\) 0 0
\(163\) 13.1132 + 13.1132i 1.02711 + 1.02711i 0.999622 + 0.0274862i \(0.00875024\pi\)
0.0274862 + 0.999622i \(0.491250\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.46271 2.46271i −0.190570 0.190570i 0.605372 0.795943i \(-0.293024\pi\)
−0.795943 + 0.605372i \(0.793024\pi\)
\(168\) 0 0
\(169\) 11.7646i 0.904968i
\(170\) 0 0
\(171\) 3.33181 + 0.373192i 0.254790 + 0.0285387i
\(172\) 0 0
\(173\) 13.2422 13.2422i 1.00678 1.00678i 0.00680600 0.999977i \(-0.497834\pi\)
0.999977 0.00680600i \(-0.00216643\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.46445 + 5.46445i −0.410733 + 0.410733i
\(178\) 0 0
\(179\) −13.3082 −0.994700 −0.497350 0.867550i \(-0.665693\pi\)
−0.497350 + 0.867550i \(0.665693\pi\)
\(180\) 0 0
\(181\) 23.6562i 1.75835i 0.476500 + 0.879174i \(0.341905\pi\)
−0.476500 + 0.879174i \(0.658095\pi\)
\(182\) 0 0
\(183\) 11.6127 11.6127i 0.858434 0.858434i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.96464 5.96464i 0.436178 0.436178i
\(188\) 0 0
\(189\) 11.5796 0.842290
\(190\) 0 0
\(191\) 4.10096 0.296735 0.148368 0.988932i \(-0.452598\pi\)
0.148368 + 0.988932i \(0.452598\pi\)
\(192\) 0 0
\(193\) −13.0241 + 13.0241i −0.937494 + 0.937494i −0.998158 0.0606644i \(-0.980678\pi\)
0.0606644 + 0.998158i \(0.480678\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.1839 + 13.1839i −0.939311 + 0.939311i −0.998261 0.0589495i \(-0.981225\pi\)
0.0589495 + 0.998261i \(0.481225\pi\)
\(198\) 0 0
\(199\) 13.1776i 0.934132i 0.884222 + 0.467066i \(0.154689\pi\)
−0.884222 + 0.467066i \(0.845311\pi\)
\(200\) 0 0
\(201\) −10.9188 −0.770155
\(202\) 0 0
\(203\) 15.5934 15.5934i 1.09444 1.09444i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.01992 2.01992i 0.140394 0.140394i
\(208\) 0 0
\(209\) 1.98979 17.7646i 0.137636 1.22880i
\(210\) 0 0
\(211\) 18.4822i 1.27236i −0.771539 0.636182i \(-0.780513\pi\)
0.771539 0.636182i \(-0.219487\pi\)
\(212\) 0 0
\(213\) −4.15124 4.15124i −0.284438 0.284438i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12.5365 12.5365i −0.851030 0.851030i
\(218\) 0 0
\(219\) −18.2582 −1.23377
\(220\) 0 0
\(221\) 10.2360i 0.688546i
\(222\) 0 0
\(223\) −17.2229 + 17.2229i −1.15333 + 1.15333i −0.167450 + 0.985881i \(0.553553\pi\)
−0.985881 + 0.167450i \(0.946447\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.4619 17.4619i −1.15899 1.15899i −0.984694 0.174292i \(-0.944236\pi\)
−0.174292 0.984694i \(-0.555764\pi\)
\(228\) 0 0
\(229\) 9.53373i 0.630007i 0.949091 + 0.315003i \(0.102006\pi\)
−0.949091 + 0.315003i \(0.897994\pi\)
\(230\) 0 0
\(231\) 12.5990i 0.828950i
\(232\) 0 0
\(233\) −11.9117 11.9117i −0.780361 0.780361i 0.199531 0.979892i \(-0.436058\pi\)
−0.979892 + 0.199531i \(0.936058\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3.75710 3.75710i 0.244050 0.244050i
\(238\) 0 0
\(239\) 10.7448i 0.695023i 0.937676 + 0.347511i \(0.112973\pi\)
−0.937676 + 0.347511i \(0.887027\pi\)
\(240\) 0 0
\(241\) 5.06198i 0.326071i −0.986620 0.163036i \(-0.947871\pi\)
0.986620 0.163036i \(-0.0521285\pi\)
\(242\) 0 0
\(243\) −5.49877 + 5.49877i −0.352746 + 0.352746i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 13.5356 + 16.9503i 0.861252 + 1.07852i
\(248\) 0 0
\(249\) −9.10458 −0.576979
\(250\) 0 0
\(251\) −13.5337 −0.854241 −0.427121 0.904195i \(-0.640472\pi\)
−0.427121 + 0.904195i \(0.640472\pi\)
\(252\) 0 0
\(253\) −10.7698 10.7698i −0.677092 0.677092i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.2077 + 14.2077i 0.886255 + 0.886255i 0.994161 0.107906i \(-0.0344146\pi\)
−0.107906 + 0.994161i \(0.534415\pi\)
\(258\) 0 0
\(259\) 11.5796 0.719519
\(260\) 0 0
\(261\) 8.24619i 0.510426i
\(262\) 0 0
\(263\) −9.17947 9.17947i −0.566030 0.566030i 0.364984 0.931014i \(-0.381075\pi\)
−0.931014 + 0.364984i \(0.881075\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.24466 + 3.24466i −0.198570 + 0.198570i
\(268\) 0 0
\(269\) 7.92198 0.483012 0.241506 0.970399i \(-0.422359\pi\)
0.241506 + 0.970399i \(0.422359\pi\)
\(270\) 0 0
\(271\) −11.6880 −0.709994 −0.354997 0.934867i \(-0.615518\pi\)
−0.354997 + 0.934867i \(0.615518\pi\)
\(272\) 0 0
\(273\) 10.8106 + 10.8106i 0.654287 + 0.654287i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.03751 + 2.03751i −0.122422 + 0.122422i −0.765663 0.643241i \(-0.777589\pi\)
0.643241 + 0.765663i \(0.277589\pi\)
\(278\) 0 0
\(279\) 6.62959 0.396903
\(280\) 0 0
\(281\) 7.11479i 0.424433i 0.977223 + 0.212217i \(0.0680682\pi\)
−0.977223 + 0.212217i \(0.931932\pi\)
\(282\) 0 0
\(283\) 19.7140 + 19.7140i 1.17187 + 1.17187i 0.981763 + 0.190112i \(0.0608850\pi\)
0.190112 + 0.981763i \(0.439115\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.8877 + 14.8877i 0.878794 + 0.878794i
\(288\) 0 0
\(289\) 12.7691i 0.751126i
\(290\) 0 0
\(291\) −2.97107 −0.174167
\(292\) 0 0
\(293\) −2.35126 + 2.35126i −0.137362 + 0.137362i −0.772444 0.635082i \(-0.780966\pi\)
0.635082 + 0.772444i \(0.280966\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 16.3248 + 16.3248i 0.947264 + 0.947264i
\(298\) 0 0
\(299\) 18.4822 1.06885
\(300\) 0 0
\(301\) −3.56266 −0.205348
\(302\) 0 0
\(303\) 11.2880 11.2880i 0.648477 0.648477i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.65038 + 1.65038i 0.0941924 + 0.0941924i 0.752633 0.658440i \(-0.228784\pi\)
−0.658440 + 0.752633i \(0.728784\pi\)
\(308\) 0 0
\(309\) 26.0198i 1.48021i
\(310\) 0 0
\(311\) −3.66819 −0.208004 −0.104002 0.994577i \(-0.533165\pi\)
−0.104002 + 0.994577i \(0.533165\pi\)
\(312\) 0 0
\(313\) 15.8455 + 15.8455i 0.895639 + 0.895639i 0.995047 0.0994081i \(-0.0316949\pi\)
−0.0994081 + 0.995047i \(0.531695\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.65120 + 3.65120i 0.205072 + 0.205072i 0.802169 0.597097i \(-0.203679\pi\)
−0.597097 + 0.802169i \(0.703679\pi\)
\(318\) 0 0
\(319\) 43.9671 2.46169
\(320\) 0 0
\(321\) −7.94776 −0.443601
\(322\) 0 0
\(323\) −5.59470 7.00610i −0.311298 0.389830i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.37102 + 6.37102i −0.352318 + 0.352318i
\(328\) 0 0
\(329\) 23.8945i 1.31734i
\(330\) 0 0
\(331\) 13.0960i 0.719820i −0.932987 0.359910i \(-0.882807\pi\)
0.932987 0.359910i \(-0.117193\pi\)
\(332\) 0 0
\(333\) −3.06178 + 3.06178i −0.167785 + 0.167785i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −8.66718 8.66718i −0.472131 0.472131i 0.430473 0.902604i \(-0.358347\pi\)
−0.902604 + 0.430473i \(0.858347\pi\)
\(338\) 0 0
\(339\) 11.6591i 0.633233i
\(340\) 0 0
\(341\) 35.3477i 1.91419i
\(342\) 0 0
\(343\) 14.2087 + 14.2087i 0.767200 + 0.767200i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.1640 + 17.1640i −0.921413 + 0.921413i −0.997129 0.0757163i \(-0.975876\pi\)
0.0757163 + 0.997129i \(0.475876\pi\)
\(348\) 0 0
\(349\) 4.66819i 0.249882i 0.992164 + 0.124941i \(0.0398742\pi\)
−0.992164 + 0.124941i \(0.960126\pi\)
\(350\) 0 0
\(351\) −28.0152 −1.49534
\(352\) 0 0
\(353\) 0.00559594 + 0.00559594i 0.000297842 + 0.000297842i 0.707256 0.706958i \(-0.249933\pi\)
−0.706958 + 0.707256i \(0.749933\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.46836 4.46836i −0.236491 0.236491i
\(358\) 0 0
\(359\) 13.0442i 0.688444i −0.938888 0.344222i \(-0.888143\pi\)
0.938888 0.344222i \(-0.111857\pi\)
\(360\) 0 0
\(361\) −18.5292 4.20359i −0.975219 0.221242i
\(362\) 0 0
\(363\) 6.14447 6.14447i 0.322501 0.322501i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −18.7952 + 18.7952i −0.981099 + 0.981099i −0.999825 0.0187258i \(-0.994039\pi\)
0.0187258 + 0.999825i \(0.494039\pi\)
\(368\) 0 0
\(369\) −7.87300 −0.409852
\(370\) 0 0
\(371\) 18.1090i 0.940171i
\(372\) 0 0
\(373\) −7.74340 + 7.74340i −0.400938 + 0.400938i −0.878563 0.477626i \(-0.841498\pi\)
0.477626 + 0.878563i \(0.341498\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −37.7262 + 37.7262i −1.94300 + 1.94300i
\(378\) 0 0
\(379\) −34.2653 −1.76009 −0.880046 0.474889i \(-0.842488\pi\)
−0.880046 + 0.474889i \(0.842488\pi\)
\(380\) 0 0
\(381\) 0.975639 0.0499835
\(382\) 0 0
\(383\) −7.04252 + 7.04252i −0.359856 + 0.359856i −0.863760 0.503904i \(-0.831897\pi\)
0.503904 + 0.863760i \(0.331897\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.942012 0.942012i 0.0478852 0.0478852i
\(388\) 0 0
\(389\) 21.6545i 1.09793i −0.835847 0.548963i \(-0.815023\pi\)
0.835847 0.548963i \(-0.184977\pi\)
\(390\) 0 0
\(391\) −7.63926 −0.386334
\(392\) 0 0
\(393\) 1.29995 1.29995i 0.0655736 0.0655736i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.252896 + 0.252896i −0.0126925 + 0.0126925i −0.713425 0.700732i \(-0.752857\pi\)
0.700732 + 0.713425i \(0.252857\pi\)
\(398\) 0 0
\(399\) −13.3082 1.49063i −0.666242 0.0746249i
\(400\) 0 0
\(401\) 21.3422i 1.06578i −0.846185 0.532888i \(-0.821107\pi\)
0.846185 0.532888i \(-0.178893\pi\)
\(402\) 0 0
\(403\) 30.3303 + 30.3303i 1.51086 + 1.51086i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.3248 + 16.3248i 0.809193 + 0.809193i
\(408\) 0 0
\(409\) 27.7477 1.37204 0.686019 0.727584i \(-0.259357\pi\)
0.686019 + 0.727584i \(0.259357\pi\)
\(410\) 0 0
\(411\) 10.0750i 0.496962i
\(412\) 0 0
\(413\) −7.52531 + 7.52531i −0.370297 + 0.370297i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16.3200 + 16.3200i 0.799195 + 0.799195i
\(418\) 0 0
\(419\) 17.0720i 0.834023i −0.908901 0.417012i \(-0.863077\pi\)
0.908901 0.417012i \(-0.136923\pi\)
\(420\) 0 0
\(421\) 12.8230i 0.624954i 0.949925 + 0.312477i \(0.101159\pi\)
−0.949925 + 0.312477i \(0.898841\pi\)
\(422\) 0 0
\(423\) 6.31800 + 6.31800i 0.307192 + 0.307192i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 15.9923 15.9923i 0.773922 0.773922i
\(428\) 0 0
\(429\) 30.4815i 1.47166i
\(430\) 0 0
\(431\) 18.5824i 0.895081i 0.894264 + 0.447540i \(0.147700\pi\)
−0.894264 + 0.447540i \(0.852300\pi\)
\(432\) 0 0
\(433\) 15.7258 15.7258i 0.755733 0.755733i −0.219810 0.975543i \(-0.570544\pi\)
0.975543 + 0.219810i \(0.0705438\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.6503 + 10.1018i −0.605145 + 0.483237i
\(438\) 0 0
\(439\) −8.03399 −0.383442 −0.191721 0.981450i \(-0.561407\pi\)
−0.191721 + 0.981450i \(0.561407\pi\)
\(440\) 0 0
\(441\) −2.12989 −0.101423
\(442\) 0 0
\(443\) −14.1547 14.1547i −0.672508 0.672508i 0.285785 0.958294i \(-0.407746\pi\)
−0.958294 + 0.285785i \(0.907746\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −21.2245 21.2245i −1.00389 1.00389i
\(448\) 0 0
\(449\) −11.5306 −0.544162 −0.272081 0.962274i \(-0.587712\pi\)
−0.272081 + 0.962274i \(0.587712\pi\)
\(450\) 0 0
\(451\) 41.9773i 1.97664i
\(452\) 0 0
\(453\) 12.2296 + 12.2296i 0.574597 + 0.574597i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −23.5119 + 23.5119i −1.09984 + 1.09984i −0.105409 + 0.994429i \(0.533615\pi\)
−0.994429 + 0.105409i \(0.966385\pi\)
\(458\) 0 0
\(459\) 11.5796 0.540488
\(460\) 0 0
\(461\) 2.00457 0.0933621 0.0466810 0.998910i \(-0.485136\pi\)
0.0466810 + 0.998910i \(0.485136\pi\)
\(462\) 0 0
\(463\) 14.9035 + 14.9035i 0.692622 + 0.692622i 0.962808 0.270186i \(-0.0870852\pi\)
−0.270186 + 0.962808i \(0.587085\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.72502 7.72502i 0.357471 0.357471i −0.505409 0.862880i \(-0.668658\pi\)
0.862880 + 0.505409i \(0.168658\pi\)
\(468\) 0 0
\(469\) −15.0368 −0.694334
\(470\) 0 0
\(471\) 16.6416i 0.766802i
\(472\) 0 0
\(473\) −5.02263 5.02263i −0.230941 0.230941i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.78824 4.78824i −0.219238 0.219238i
\(478\) 0 0
\(479\) 26.2019i 1.19720i 0.801049 + 0.598598i \(0.204275\pi\)
−0.801049 + 0.598598i \(0.795725\pi\)
\(480\) 0 0
\(481\) −28.0152 −1.27738
\(482\) 0 0
\(483\) −8.06810 + 8.06810i −0.367111 + 0.367111i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.09866 8.09866i −0.366985 0.366985i 0.499391 0.866377i \(-0.333557\pi\)
−0.866377 + 0.499391i \(0.833557\pi\)
\(488\) 0 0
\(489\) 27.6988 1.25258
\(490\) 0 0
\(491\) 8.35617 0.377109 0.188554 0.982063i \(-0.439620\pi\)
0.188554 + 0.982063i \(0.439620\pi\)
\(492\) 0 0
\(493\) 15.5934 15.5934i 0.702292 0.702292i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.71685 5.71685i −0.256436 0.256436i
\(498\) 0 0
\(499\) 8.23542i 0.368668i −0.982864 0.184334i \(-0.940987\pi\)
0.982864 0.184334i \(-0.0590128\pi\)
\(500\) 0 0
\(501\) −5.20192 −0.232405
\(502\) 0 0
\(503\) −2.72663 2.72663i −0.121574 0.121574i 0.643702 0.765276i \(-0.277398\pi\)
−0.765276 + 0.643702i \(0.777398\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −12.4250 12.4250i −0.551814 0.551814i
\(508\) 0 0
\(509\) −41.4803 −1.83858 −0.919291 0.393578i \(-0.871237\pi\)
−0.919291 + 0.393578i \(0.871237\pi\)
\(510\) 0 0
\(511\) −25.1441 −1.11231
\(512\) 0 0
\(513\) 19.1753 15.3123i 0.846608 0.676057i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 33.6864 33.6864i 1.48152 1.48152i
\(518\) 0 0
\(519\) 27.9711i 1.22779i
\(520\) 0 0
\(521\) 6.89078i 0.301890i 0.988542 + 0.150945i \(0.0482317\pi\)
−0.988542 + 0.150945i \(0.951768\pi\)
\(522\) 0 0
\(523\) 3.64638 3.64638i 0.159445 0.159445i −0.622876 0.782321i \(-0.714036\pi\)
0.782321 + 0.622876i \(0.214036\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.5365 12.5365i −0.546097 0.546097i
\(528\) 0 0
\(529\) 9.20649i 0.400282i
\(530\) 0 0
\(531\) 3.97957i 0.172699i
\(532\) 0 0
\(533\) −36.0188 36.0188i −1.56015 1.56015i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −14.0553 + 14.0553i −0.606529 + 0.606529i
\(538\) 0 0
\(539\) 11.3562i 0.489145i
\(540\) 0 0
\(541\) 28.2937 1.21644 0.608221 0.793767i \(-0.291883\pi\)
0.608221 + 0.793767i \(0.291883\pi\)
\(542\) 0 0
\(543\) 24.9841 + 24.9841i 1.07217 + 1.07217i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 18.8942 + 18.8942i 0.807857 + 0.807857i 0.984309 0.176452i \(-0.0564621\pi\)
−0.176452 + 0.984309i \(0.556462\pi\)
\(548\) 0 0
\(549\) 8.45713i 0.360942i
\(550\) 0 0
\(551\) 5.20192 46.4421i 0.221609 1.97850i
\(552\) 0 0
\(553\) 5.17406 5.17406i 0.220023 0.220023i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.9692 + 21.9692i −0.930864 + 0.930864i −0.997760 0.0668956i \(-0.978691\pi\)
0.0668956 + 0.997760i \(0.478691\pi\)
\(558\) 0 0
\(559\) 8.61938 0.364561
\(560\) 0 0
\(561\) 12.5990i 0.531928i
\(562\) 0 0
\(563\) −30.5069 + 30.5069i −1.28571 + 1.28571i −0.348345 + 0.937367i \(0.613256\pi\)
−0.937367 + 0.348345i \(0.886744\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 8.87354 8.87354i 0.372654 0.372654i
\(568\) 0 0
\(569\) −7.86118 −0.329558 −0.164779 0.986331i \(-0.552691\pi\)
−0.164779 + 0.986331i \(0.552691\pi\)
\(570\) 0 0
\(571\) −2.72043 −0.113846 −0.0569232 0.998379i \(-0.518129\pi\)
−0.0569232 + 0.998379i \(0.518129\pi\)
\(572\) 0 0
\(573\) 4.33118 4.33118i 0.180937 0.180937i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.50083 1.50083i 0.0624805 0.0624805i −0.675176 0.737657i \(-0.735932\pi\)
0.737657 + 0.675176i \(0.235932\pi\)
\(578\) 0 0
\(579\) 27.5104i 1.14329i
\(580\) 0 0
\(581\) −12.5383 −0.520176
\(582\) 0 0
\(583\) −25.5300 + 25.5300i −1.05734 + 1.05734i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.18499 3.18499i 0.131459 0.131459i −0.638316 0.769774i \(-0.720369\pi\)
0.769774 + 0.638316i \(0.220369\pi\)
\(588\) 0 0
\(589\) −37.3375 4.18213i −1.53847 0.172322i
\(590\) 0 0
\(591\) 27.8479i 1.14551i
\(592\) 0 0
\(593\) 18.8714 + 18.8714i 0.774954 + 0.774954i 0.978968 0.204014i \(-0.0653987\pi\)
−0.204014 + 0.978968i \(0.565399\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.9173 + 13.9173i 0.569597 + 0.569597i
\(598\) 0 0
\(599\) 35.3967 1.44627 0.723135 0.690706i \(-0.242700\pi\)
0.723135 + 0.690706i \(0.242700\pi\)
\(600\) 0 0
\(601\) 8.29518i 0.338367i −0.985585 0.169184i \(-0.945887\pi\)
0.985585 0.169184i \(-0.0541131\pi\)
\(602\) 0 0
\(603\) 3.97591 3.97591i 0.161912 0.161912i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18.3857 + 18.3857i 0.746251 + 0.746251i 0.973773 0.227522i \(-0.0730623\pi\)
−0.227522 + 0.973773i \(0.573062\pi\)
\(608\) 0 0
\(609\) 32.9376i 1.33470i
\(610\) 0 0
\(611\) 57.8095i 2.33872i
\(612\) 0 0
\(613\) −22.0862 22.0862i −0.892053 0.892053i 0.102663 0.994716i \(-0.467264\pi\)
−0.994716 + 0.102663i \(0.967264\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.3926 + 27.3926i −1.10278 + 1.10278i −0.108711 + 0.994073i \(0.534672\pi\)
−0.994073 + 0.108711i \(0.965328\pi\)
\(618\) 0 0
\(619\) 18.5672i 0.746280i 0.927775 + 0.373140i \(0.121719\pi\)
−0.927775 + 0.373140i \(0.878281\pi\)
\(620\) 0 0
\(621\) 20.9082i 0.839016i
\(622\) 0 0
\(623\) −4.46836 + 4.46836i −0.179021 + 0.179021i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −16.6603 20.8633i −0.665350 0.833201i
\(628\) 0 0
\(629\) 11.5796 0.461708
\(630\) 0 0
\(631\) −32.7600 −1.30416 −0.652078 0.758152i \(-0.726102\pi\)
−0.652078 + 0.758152i \(0.726102\pi\)
\(632\) 0 0
\(633\) −19.5197 19.5197i −0.775838 0.775838i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −9.74422 9.74422i −0.386080 0.386080i
\(638\) 0 0
\(639\) 3.02321 0.119596
\(640\) 0 0
\(641\) 34.0041i 1.34308i 0.740967 + 0.671542i \(0.234368\pi\)
−0.740967 + 0.671542i \(0.765632\pi\)
\(642\) 0 0
\(643\) −12.8129 12.8129i −0.505292 0.505292i 0.407786 0.913078i \(-0.366301\pi\)
−0.913078 + 0.407786i \(0.866301\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.2833 + 13.2833i −0.522219 + 0.522219i −0.918241 0.396022i \(-0.870390\pi\)
0.396022 + 0.918241i \(0.370390\pi\)
\(648\) 0 0
\(649\) −21.2183 −0.832893
\(650\) 0 0
\(651\) −26.4804 −1.03785
\(652\) 0 0
\(653\) −6.91330 6.91330i −0.270538 0.270538i 0.558779 0.829317i \(-0.311270\pi\)
−0.829317 + 0.558779i \(0.811270\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.64840 6.64840i 0.259379 0.259379i
\(658\) 0 0
\(659\) −15.4612 −0.602282 −0.301141 0.953580i \(-0.597367\pi\)
−0.301141 + 0.953580i \(0.597367\pi\)
\(660\) 0 0
\(661\) 13.0960i 0.509374i 0.967023 + 0.254687i \(0.0819725\pi\)
−0.967023 + 0.254687i \(0.918027\pi\)
\(662\) 0 0
\(663\) 10.8106 + 10.8106i 0.419849 + 0.419849i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −28.1556 28.1556i −1.09019 1.09019i
\(668\) 0 0
\(669\) 36.3795i 1.40651i
\(670\) 0 0
\(671\) 45.0918 1.74075
\(672\) 0 0
\(673\) 33.5477 33.5477i 1.29317 1.29317i 0.360356 0.932815i \(-0.382655\pi\)
0.932815 0.360356i \(-0.117345\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −29.3184 29.3184i −1.12680 1.12680i −0.990695 0.136102i \(-0.956543\pi\)
−0.136102 0.990695i \(-0.543457\pi\)
\(678\) 0 0
\(679\) −4.09158 −0.157021
\(680\) 0 0
\(681\) −36.8843 −1.41341
\(682\) 0 0
\(683\) 21.9045 21.9045i 0.838153 0.838153i −0.150463 0.988616i \(-0.548076\pi\)
0.988616 + 0.150463i \(0.0480764\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.0689 + 10.0689i 0.384153 + 0.384153i
\(688\) 0 0
\(689\) 43.8122i 1.66911i
\(690\) 0 0
\(691\) 10.8168 0.411491 0.205746 0.978606i \(-0.434038\pi\)
0.205746 + 0.978606i \(0.434038\pi\)
\(692\) 0 0
\(693\) 4.58770 + 4.58770i 0.174272 + 0.174272i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.8877 + 14.8877i 0.563913 + 0.563913i
\(698\) 0 0
\(699\) −25.1607 −0.951667
\(700\) 0 0
\(701\) 25.2739 0.954584 0.477292 0.878745i \(-0.341618\pi\)
0.477292 + 0.878745i \(0.341618\pi\)
\(702\) 0 0
\(703\) 19.1753 15.3123i 0.723209 0.577516i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.5451 15.5451i 0.584635 0.584635i
\(708\) 0 0
\(709\) 31.8701i 1.19691i −0.801158 0.598454i \(-0.795782\pi\)
0.801158 0.598454i \(-0.204218\pi\)
\(710\) 0 0
\(711\) 2.73617i 0.102614i
\(712\) 0 0
\(713\) −22.6359 + 22.6359i −0.847723 + 0.847723i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.3480 + 11.3480i 0.423798 + 0.423798i
\(718\) 0 0
\(719\) 14.5916i 0.544175i −0.962273 0.272087i \(-0.912286\pi\)
0.962273 0.272087i \(-0.0877139\pi\)
\(720\) 0 0
\(721\) 35.8329i 1.33449i
\(722\) 0 0
\(723\) −5.34615 5.34615i −0.198825 0.198825i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −2.73782 + 2.73782i −0.101540 + 0.101540i −0.756052 0.654512i \(-0.772874\pi\)
0.654512 + 0.756052i \(0.272874\pi\)
\(728\) 0 0
\(729\) 29.9178i 1.10807i
\(730\) 0 0
\(731\) −3.56266 −0.131770
\(732\) 0 0
\(733\) 23.4578 + 23.4578i 0.866433 + 0.866433i 0.992076 0.125643i \(-0.0400993\pi\)
−0.125643 + 0.992076i \(0.540099\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.1988 21.1988i −0.780868 0.780868i
\(738\) 0 0
\(739\) 34.3993i 1.26540i 0.774398 + 0.632699i \(0.218053\pi\)
−0.774398 + 0.632699i \(0.781947\pi\)
\(740\) 0 0
\(741\) 32.1974 + 3.60638i 1.18280 + 0.132484i
\(742\) 0 0
\(743\) 10.2709 10.2709i 0.376804 0.376804i −0.493144 0.869948i \(-0.664152\pi\)
0.869948 + 0.493144i \(0.164152\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.31528 3.31528i 0.121300 0.121300i
\(748\) 0 0
\(749\) −10.9452 −0.399929
\(750\) 0 0
\(751\) 7.27579i 0.265497i 0.991150 + 0.132749i \(0.0423803\pi\)
−0.991150 + 0.132749i \(0.957620\pi\)
\(752\) 0 0
\(753\) −14.2935 + 14.2935i −0.520883 + 0.520883i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.7863 20.7863i 0.755490 0.755490i −0.220008 0.975498i \(-0.570608\pi\)
0.975498 + 0.220008i \(0.0706083\pi\)
\(758\) 0 0
\(759\) −22.7488 −0.825728
\(760\) 0 0
\(761\) −11.6834 −0.423523 −0.211762 0.977321i \(-0.567920\pi\)
−0.211762 + 0.977321i \(0.567920\pi\)
\(762\) 0 0
\(763\) −8.77380 + 8.77380i −0.317633 + 0.317633i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.2065 18.2065i 0.657398 0.657398i
\(768\) 0 0
\(769\) 30.2506i 1.09087i 0.838154 + 0.545433i \(0.183635\pi\)
−0.838154 + 0.545433i \(0.816365\pi\)
\(770\) 0 0
\(771\) 30.0107 1.08081
\(772\) 0 0
\(773\) 11.4594 11.4594i 0.412167 0.412167i −0.470326 0.882493i \(-0.655864\pi\)
0.882493 + 0.470326i \(0.155864\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12.2296 12.2296i 0.438735 0.438735i
\(778\) 0 0
\(779\) 44.3403 + 4.96650i 1.58866 + 0.177943i
\(780\) 0 0
\(781\) 16.1192i 0.576790i
\(782\) 0 0
\(783\) 42.6782 + 42.6782i 1.52519 + 1.52519i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −16.1828 16.1828i −0.576856 0.576856i 0.357180 0.934036i \(-0.383738\pi\)
−0.934036 + 0.357180i \(0.883738\pi\)
\(788\) 0 0
\(789\) −19.3895 −0.690286
\(790\) 0 0
\(791\) 16.0562i 0.570892i
\(792\) 0 0
\(793\) −38.6912 + 38.6912i −1.37397 + 1.37397i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.02244 + 9.02244i 0.319591 + 0.319591i 0.848610 0.529019i \(-0.177440\pi\)
−0.529019 + 0.848610i \(0.677440\pi\)
\(798\) 0 0
\(799\) 23.8945i 0.845326i
\(800\) 0 0
\(801\) 2.36298i 0.0834918i
\(802\) 0 0
\(803\) −35.4480 35.4480i −1.25093 1.25093i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.36670 8.36670i 0.294522 0.294522i
\(808\) 0 0
\(809\) 14.7265i 0.517757i −0.965910 0.258878i \(-0.916647\pi\)
0.965910 0.258878i \(-0.0833529\pi\)
\(810\) 0 0
\(811\) 43.3699i 1.52292i −0.648210 0.761462i \(-0.724482\pi\)
0.648210 0.761462i \(-0.275518\pi\)
\(812\) 0 0
\(813\) −12.3441 + 12.3441i −0.432927 + 0.432927i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5.89961 + 4.71112i −0.206401 + 0.164821i
\(818\) 0 0
\(819\) −7.87300 −0.275105
\(820\) 0 0
\(821\) 30.7600 1.07353 0.536766 0.843731i \(-0.319646\pi\)
0.536766 + 0.843731i \(0.319646\pi\)
\(822\) 0 0
\(823\) −40.0454 40.0454i −1.39589 1.39589i −0.811392 0.584503i \(-0.801290\pi\)
−0.584503 0.811392i \(-0.698710\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.2558 + 24.2558i 0.843456 + 0.843456i 0.989307 0.145851i \(-0.0465920\pi\)
−0.145851 + 0.989307i \(0.546592\pi\)
\(828\) 0 0
\(829\) 46.7663 1.62426 0.812131 0.583476i \(-0.198308\pi\)
0.812131 + 0.583476i \(0.198308\pi\)
\(830\) 0 0
\(831\) 4.30378i 0.149297i
\(832\) 0 0
\(833\) 4.02759 + 4.02759i 0.139548 + 0.139548i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 34.3115 34.3115i 1.18598 1.18598i
\(838\) 0 0
\(839\) 2.69901 0.0931800 0.0465900 0.998914i \(-0.485165\pi\)
0.0465900 + 0.998914i \(0.485165\pi\)
\(840\) 0 0
\(841\) 85.9437 2.96357
\(842\) 0 0
\(843\) 7.51420 + 7.51420i 0.258803 + 0.258803i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.46181 8.46181i 0.290751 0.290751i
\(848\) 0 0
\(849\) 41.6413 1.42913
\(850\) 0 0
\(851\) 20.9082i 0.716723i
\(852\) 0 0
\(853\) 4.66927 + 4.66927i 0.159873 + 0.159873i 0.782510 0.622638i \(-0.213939\pi\)
−0.622638 + 0.782510i \(0.713939\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.0442 + 28.0442i 0.957970 + 0.957970i 0.999152 0.0411816i \(-0.0131122\pi\)
−0.0411816 + 0.999152i \(0.513112\pi\)
\(858\) 0 0
\(859\) 30.3074i 1.03408i 0.855962 + 0.517038i \(0.172966\pi\)
−0.855962 + 0.517038i \(0.827034\pi\)
\(860\) 0 0
\(861\) 31.4469 1.07171
\(862\) 0 0
\(863\) 10.1852 10.1852i 0.346708 0.346708i −0.512174 0.858882i \(-0.671160\pi\)
0.858882 + 0.512174i \(0.171160\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 13.4860 + 13.4860i 0.458008 + 0.458008i
\(868\) 0 0
\(869\) 14.5887 0.494889
\(870\) 0 0
\(871\) 36.3795 1.23267
\(872\) 0 0
\(873\) 1.08187 1.08187i 0.0366156 0.0366156i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.26635 4.26635i −0.144065 0.144065i 0.631396 0.775461i \(-0.282482\pi\)
−0.775461 + 0.631396i \(0.782482\pi\)
\(878\) 0 0
\(879\) 4.96650i 0.167516i
\(880\) 0 0
\(881\) −30.2704 −1.01984 −0.509918 0.860223i \(-0.670324\pi\)
−0.509918 + 0.860223i \(0.670324\pi\)
\(882\) 0 0
\(883\) −19.5085 19.5085i −0.656514 0.656514i 0.298040 0.954553i \(-0.403667\pi\)
−0.954553 + 0.298040i \(0.903667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.39132 + 3.39132i 0.113869 + 0.113869i 0.761746 0.647876i \(-0.224343\pi\)
−0.647876 + 0.761746i \(0.724343\pi\)
\(888\) 0 0
\(889\) 1.34359 0.0450626
\(890\) 0 0
\(891\) 25.0198 0.838195
\(892\) 0 0
\(893\) −31.5971 39.5682i −1.05736 1.32410i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 19.5197 19.5197i 0.651744 0.651744i
\(898\) 0 0
\(899\) 92.4099i 3.08204i
\(900\) 0 0
\(901\) 18.1090i 0.603297i
\(902\) 0 0
\(903\) −3.76266 + 3.76266i −0.125213 + 0.125213i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 10.5356 + 10.5356i 0.349830 + 0.349830i 0.860046 0.510216i \(-0.170435\pi\)
−0.510216 + 0.860046i \(0.670435\pi\)
\(908\) 0 0
\(909\) 8.22066i 0.272662i
\(910\) 0 0
\(911\) 4.63981i 0.153724i −0.997042 0.0768618i \(-0.975510\pi\)
0.997042 0.0768618i \(-0.0244900\pi\)
\(912\) 0 0
\(913\) −17.6765 17.6765i −0.585005 0.585005i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.79021 1.79021i 0.0591180 0.0591180i
\(918\) 0 0
\(919\) 6.15777i 0.203126i 0.994829 + 0.101563i \(0.0323843\pi\)
−0.994829 + 0.101563i \(0.967616\pi\)
\(920\) 0 0
\(921\) 3.48606 0.114870
\(922\) 0 0
\(923\) 13.8311 + 13.8311i 0.455258 + 0.455258i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 9.47468 + 9.47468i 0.311189 + 0.311189i
\(928\) 0 0
\(929\) 40.1360i 1.31682i 0.752660 + 0.658409i \(0.228770\pi\)
−0.752660 + 0.658409i \(0.771230\pi\)
\(930\) 0 0
\(931\) 11.9954 + 1.34359i 0.393134 + 0.0440345i
\(932\) 0 0
\(933\) −3.87411 + 3.87411i −0.126833 + 0.126833i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.99880 3.99880i 0.130635 0.130635i −0.638766 0.769401i \(-0.720555\pi\)
0.769401 + 0.638766i \(0.220555\pi\)
\(938\) 0 0
\(939\) 33.4700 1.09225
\(940\) 0 0
\(941\) 21.9788i 0.716487i −0.933628 0.358244i \(-0.883376\pi\)
0.933628 0.358244i \(-0.116624\pi\)
\(942\) 0 0
\(943\) 26.8814 26.8814i 0.875379 0.875379i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.14525 3.14525i 0.102207 0.102207i −0.654154 0.756361i \(-0.726975\pi\)
0.756361 + 0.654154i \(0.226975\pi\)
\(948\) 0 0
\(949\) 60.8327 1.97471
\(950\) 0 0
\(951\) 7.71234 0.250090
\(952\) 0 0
\(953\) 6.19964 6.19964i 0.200826 0.200826i −0.599528 0.800354i \(-0.704645\pi\)
0.800354 + 0.599528i \(0.204645\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 46.4353 46.4353i 1.50104 1.50104i
\(958\) 0 0
\(959\) 13.8747i 0.448037i
\(960\) 0 0
\(961\) −43.2937 −1.39657
\(962\) 0 0
\(963\) 2.89405 2.89405i 0.0932593 0.0932593i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12.1358 + 12.1358i −0.390261 + 0.390261i −0.874780 0.484520i \(-0.838994\pi\)
0.484520 + 0.874780i \(0.338994\pi\)
\(968\) 0 0
\(969\) −13.3082 1.49063i −0.427520 0.0478860i
\(970\) 0 0
\(971\) 53.6571i 1.72194i −0.508657 0.860969i \(-0.669858\pi\)
0.508657 0.860969i \(-0.330142\pi\)
\(972\) 0 0
\(973\) 22.4750 + 22.4750i 0.720515 + 0.720515i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.928606 0.928606i −0.0297087 0.0297087i 0.692096 0.721805i \(-0.256687\pi\)
−0.721805 + 0.692096i \(0.756687\pi\)
\(978\) 0 0
\(979\) −12.5990 −0.402664
\(980\) 0 0
\(981\) 4.63981i 0.148138i
\(982\) 0 0
\(983\) −24.7900 + 24.7900i −0.790679 + 0.790679i −0.981605 0.190926i \(-0.938851\pi\)
0.190926 + 0.981605i \(0.438851\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −25.2358 25.2358i −0.803265 0.803265i
\(988\) 0 0
\(989\) 6.43277i 0.204550i
\(990\) 0 0
\(991\) 36.3063i 1.15331i −0.816988 0.576654i \(-0.804358\pi\)
0.816988 0.576654i \(-0.195642\pi\)
\(992\) 0 0
\(993\) −13.8311 13.8311i −0.438918 0.438918i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.0552 32.0552i 1.01520 1.01520i 0.0153168 0.999883i \(-0.495124\pi\)
0.999883 0.0153168i \(-0.00487567\pi\)
\(998\) 0 0
\(999\) 31.6926i 1.00271i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.2.l.d.493.10 yes 24
5.2 odd 4 inner 1900.2.l.d.1557.4 yes 24
5.3 odd 4 inner 1900.2.l.d.1557.9 yes 24
5.4 even 2 inner 1900.2.l.d.493.3 24
19.18 odd 2 inner 1900.2.l.d.493.4 yes 24
95.18 even 4 inner 1900.2.l.d.1557.3 yes 24
95.37 even 4 inner 1900.2.l.d.1557.10 yes 24
95.94 odd 2 inner 1900.2.l.d.493.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1900.2.l.d.493.3 24 5.4 even 2 inner
1900.2.l.d.493.4 yes 24 19.18 odd 2 inner
1900.2.l.d.493.9 yes 24 95.94 odd 2 inner
1900.2.l.d.493.10 yes 24 1.1 even 1 trivial
1900.2.l.d.1557.3 yes 24 95.18 even 4 inner
1900.2.l.d.1557.4 yes 24 5.2 odd 4 inner
1900.2.l.d.1557.9 yes 24 5.3 odd 4 inner
1900.2.l.d.1557.10 yes 24 95.37 even 4 inner