Properties

Label 1900.2.l.d.493.4
Level $1900$
Weight $2$
Character 1900.493
Analytic conductor $15.172$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,2,Mod(493,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1715763840\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 493.4
Character \(\chi\) \(=\) 1900.493
Dual form 1900.2.l.d.1557.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05614 + 1.05614i) q^{3} +(1.45445 - 1.45445i) q^{7} +0.769150i q^{9} +4.10096 q^{11} +(3.51885 - 3.51885i) q^{13} +(1.45445 - 1.45445i) q^{17} +(-0.485200 - 4.33181i) q^{19} +3.07220i q^{21} +(-2.62617 - 2.62617i) q^{23} +(-3.98074 - 3.98074i) q^{27} -10.7212 q^{29} +8.61938i q^{31} +(-4.33118 + 4.33118i) q^{33} +(-3.98074 - 3.98074i) q^{37} +7.43277i q^{39} -10.2360i q^{41} +(-1.22474 - 1.22474i) q^{43} +(8.21426 - 8.21426i) q^{47} +2.76915i q^{49} +3.07220i q^{51} +(6.22537 - 6.22537i) q^{53} +(5.08742 + 4.06255i) q^{57} +5.17399 q^{59} +10.9954 q^{61} +(1.11869 + 1.11869i) q^{63} +(5.16923 + 5.16923i) q^{67} +5.54718 q^{69} +3.93059i q^{71} +(-8.64384 - 8.64384i) q^{73} +(5.96464 - 5.96464i) q^{77} -3.55740 q^{79} +6.10096 q^{81} +(-4.31032 - 4.31032i) q^{83} +(11.3230 - 11.3230i) q^{87} +3.07220 q^{89} -10.2360i q^{91} +(-9.10325 - 9.10325i) q^{93} +(1.40657 + 1.40657i) q^{97} +3.15425i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{11} + 24 q^{61} + 24 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.05614 + 1.05614i −0.609761 + 0.609761i −0.942884 0.333123i \(-0.891898\pi\)
0.333123 + 0.942884i \(0.391898\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.45445 1.45445i 0.549730 0.549730i −0.376632 0.926363i \(-0.622918\pi\)
0.926363 + 0.376632i \(0.122918\pi\)
\(8\) 0 0
\(9\) 0.769150i 0.256383i
\(10\) 0 0
\(11\) 4.10096 1.23649 0.618243 0.785987i \(-0.287845\pi\)
0.618243 + 0.785987i \(0.287845\pi\)
\(12\) 0 0
\(13\) 3.51885 3.51885i 0.975953 0.975953i −0.0237648 0.999718i \(-0.507565\pi\)
0.999718 + 0.0237648i \(0.00756528\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.45445 1.45445i 0.352756 0.352756i −0.508378 0.861134i \(-0.669755\pi\)
0.861134 + 0.508378i \(0.169755\pi\)
\(18\) 0 0
\(19\) −0.485200 4.33181i −0.111313 0.993785i
\(20\) 0 0
\(21\) 3.07220i 0.670408i
\(22\) 0 0
\(23\) −2.62617 2.62617i −0.547594 0.547594i 0.378150 0.925744i \(-0.376560\pi\)
−0.925744 + 0.378150i \(0.876560\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.98074 3.98074i −0.766093 0.766093i
\(28\) 0 0
\(29\) −10.7212 −1.99087 −0.995436 0.0954276i \(-0.969578\pi\)
−0.995436 + 0.0954276i \(0.969578\pi\)
\(30\) 0 0
\(31\) 8.61938i 1.54809i 0.633133 + 0.774043i \(0.281769\pi\)
−0.633133 + 0.774043i \(0.718231\pi\)
\(32\) 0 0
\(33\) −4.33118 + 4.33118i −0.753961 + 0.753961i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.98074 3.98074i −0.654429 0.654429i 0.299627 0.954056i \(-0.403138\pi\)
−0.954056 + 0.299627i \(0.903138\pi\)
\(38\) 0 0
\(39\) 7.43277i 1.19020i
\(40\) 0 0
\(41\) 10.2360i 1.59859i −0.600938 0.799296i \(-0.705206\pi\)
0.600938 0.799296i \(-0.294794\pi\)
\(42\) 0 0
\(43\) −1.22474 1.22474i −0.186772 0.186772i 0.607527 0.794299i \(-0.292162\pi\)
−0.794299 + 0.607527i \(0.792162\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.21426 8.21426i 1.19817 1.19817i 0.223460 0.974713i \(-0.428265\pi\)
0.974713 0.223460i \(-0.0717353\pi\)
\(48\) 0 0
\(49\) 2.76915i 0.395593i
\(50\) 0 0
\(51\) 3.07220i 0.430194i
\(52\) 0 0
\(53\) 6.22537 6.22537i 0.855120 0.855120i −0.135638 0.990758i \(-0.543309\pi\)
0.990758 + 0.135638i \(0.0433085\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.08742 + 4.06255i 0.673846 + 0.538097i
\(58\) 0 0
\(59\) 5.17399 0.673597 0.336798 0.941577i \(-0.390656\pi\)
0.336798 + 0.941577i \(0.390656\pi\)
\(60\) 0 0
\(61\) 10.9954 1.40782 0.703910 0.710289i \(-0.251436\pi\)
0.703910 + 0.710289i \(0.251436\pi\)
\(62\) 0 0
\(63\) 1.11869 + 1.11869i 0.140942 + 0.140942i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.16923 + 5.16923i 0.631522 + 0.631522i 0.948450 0.316928i \(-0.102651\pi\)
−0.316928 + 0.948450i \(0.602651\pi\)
\(68\) 0 0
\(69\) 5.54718 0.667803
\(70\) 0 0
\(71\) 3.93059i 0.466475i 0.972420 + 0.233238i \(0.0749320\pi\)
−0.972420 + 0.233238i \(0.925068\pi\)
\(72\) 0 0
\(73\) −8.64384 8.64384i −1.01168 1.01168i −0.999931 0.0117536i \(-0.996259\pi\)
−0.0117536 0.999931i \(-0.503741\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.96464 5.96464i 0.679734 0.679734i
\(78\) 0 0
\(79\) −3.55740 −0.400238 −0.200119 0.979772i \(-0.564133\pi\)
−0.200119 + 0.979772i \(0.564133\pi\)
\(80\) 0 0
\(81\) 6.10096 0.677884
\(82\) 0 0
\(83\) −4.31032 4.31032i −0.473119 0.473119i 0.429803 0.902923i \(-0.358583\pi\)
−0.902923 + 0.429803i \(0.858583\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 11.3230 11.3230i 1.21396 1.21396i
\(88\) 0 0
\(89\) 3.07220 0.325652 0.162826 0.986655i \(-0.447939\pi\)
0.162826 + 0.986655i \(0.447939\pi\)
\(90\) 0 0
\(91\) 10.2360i 1.07302i
\(92\) 0 0
\(93\) −9.10325 9.10325i −0.943963 0.943963i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.40657 + 1.40657i 0.142816 + 0.142816i 0.774900 0.632084i \(-0.217800\pi\)
−0.632084 + 0.774900i \(0.717800\pi\)
\(98\) 0 0
\(99\) 3.15425i 0.317014i
\(100\) 0 0
\(101\) 10.6880 1.06349 0.531747 0.846903i \(-0.321536\pi\)
0.531747 + 0.846903i \(0.321536\pi\)
\(102\) 0 0
\(103\) −12.3184 + 12.3184i −1.21377 + 1.21377i −0.243988 + 0.969778i \(0.578456\pi\)
−0.969778 + 0.243988i \(0.921544\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.76266 + 3.76266i 0.363750 + 0.363750i 0.865191 0.501442i \(-0.167197\pi\)
−0.501442 + 0.865191i \(0.667197\pi\)
\(108\) 0 0
\(109\) 6.03239 0.577798 0.288899 0.957360i \(-0.406711\pi\)
0.288899 + 0.957360i \(0.406711\pi\)
\(110\) 0 0
\(111\) 8.40841 0.798091
\(112\) 0 0
\(113\) 5.51967 5.51967i 0.519247 0.519247i −0.398097 0.917343i \(-0.630329\pi\)
0.917343 + 0.398097i \(0.130329\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.70652 + 2.70652i 0.250218 + 0.250218i
\(118\) 0 0
\(119\) 4.23085i 0.387841i
\(120\) 0 0
\(121\) 5.81787 0.528897
\(122\) 0 0
\(123\) 10.8106 + 10.8106i 0.974758 + 0.974758i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −0.461890 0.461890i −0.0409861 0.0409861i 0.686317 0.727303i \(-0.259226\pi\)
−0.727303 + 0.686317i \(0.759226\pi\)
\(128\) 0 0
\(129\) 2.58700 0.227772
\(130\) 0 0
\(131\) 1.23085 0.107540 0.0537699 0.998553i \(-0.482876\pi\)
0.0537699 + 0.998553i \(0.482876\pi\)
\(132\) 0 0
\(133\) −7.00610 5.59470i −0.607506 0.485122i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.76973 + 4.76973i −0.407506 + 0.407506i −0.880868 0.473362i \(-0.843040\pi\)
0.473362 + 0.880868i \(0.343040\pi\)
\(138\) 0 0
\(139\) 15.4526i 1.31067i 0.755339 + 0.655335i \(0.227472\pi\)
−0.755339 + 0.655335i \(0.772528\pi\)
\(140\) 0 0
\(141\) 17.3508i 1.46120i
\(142\) 0 0
\(143\) 14.4307 14.4307i 1.20675 1.20675i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.92460 2.92460i −0.241217 0.241217i
\(148\) 0 0
\(149\) 20.0964i 1.64636i −0.567780 0.823180i \(-0.692198\pi\)
0.567780 0.823180i \(-0.307802\pi\)
\(150\) 0 0
\(151\) 11.5796i 0.942332i −0.882045 0.471166i \(-0.843833\pi\)
0.882045 0.471166i \(-0.156167\pi\)
\(152\) 0 0
\(153\) 1.11869 + 1.11869i 0.0904407 + 0.0904407i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.87850 7.87850i 0.628773 0.628773i −0.318986 0.947759i \(-0.603342\pi\)
0.947759 + 0.318986i \(0.103342\pi\)
\(158\) 0 0
\(159\) 13.1497i 1.04284i
\(160\) 0 0
\(161\) −7.63926 −0.602058
\(162\) 0 0
\(163\) 13.1132 + 13.1132i 1.02711 + 1.02711i 0.999622 + 0.0274862i \(0.00875024\pi\)
0.0274862 + 0.999622i \(0.491250\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.46271 + 2.46271i 0.190570 + 0.190570i 0.795943 0.605372i \(-0.206976\pi\)
−0.605372 + 0.795943i \(0.706976\pi\)
\(168\) 0 0
\(169\) 11.7646i 0.904968i
\(170\) 0 0
\(171\) 3.33181 0.373192i 0.254790 0.0285387i
\(172\) 0 0
\(173\) −13.2422 + 13.2422i −1.00678 + 1.00678i −0.00680600 + 0.999977i \(0.502166\pi\)
−0.999977 + 0.00680600i \(0.997834\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.46445 + 5.46445i −0.410733 + 0.410733i
\(178\) 0 0
\(179\) 13.3082 0.994700 0.497350 0.867550i \(-0.334307\pi\)
0.497350 + 0.867550i \(0.334307\pi\)
\(180\) 0 0
\(181\) 23.6562i 1.75835i −0.476500 0.879174i \(-0.658095\pi\)
0.476500 0.879174i \(-0.341905\pi\)
\(182\) 0 0
\(183\) −11.6127 + 11.6127i −0.858434 + 0.858434i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.96464 5.96464i 0.436178 0.436178i
\(188\) 0 0
\(189\) −11.5796 −0.842290
\(190\) 0 0
\(191\) 4.10096 0.296735 0.148368 0.988932i \(-0.452598\pi\)
0.148368 + 0.988932i \(0.452598\pi\)
\(192\) 0 0
\(193\) 13.0241 13.0241i 0.937494 0.937494i −0.0606644 0.998158i \(-0.519322\pi\)
0.998158 + 0.0606644i \(0.0193219\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.1839 + 13.1839i −0.939311 + 0.939311i −0.998261 0.0589495i \(-0.981225\pi\)
0.0589495 + 0.998261i \(0.481225\pi\)
\(198\) 0 0
\(199\) 13.1776i 0.934132i 0.884222 + 0.467066i \(0.154689\pi\)
−0.884222 + 0.467066i \(0.845311\pi\)
\(200\) 0 0
\(201\) −10.9188 −0.770155
\(202\) 0 0
\(203\) −15.5934 + 15.5934i −1.09444 + 1.09444i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.01992 2.01992i 0.140394 0.140394i
\(208\) 0 0
\(209\) −1.98979 17.7646i −0.137636 1.22880i
\(210\) 0 0
\(211\) 18.4822i 1.27236i 0.771539 + 0.636182i \(0.219487\pi\)
−0.771539 + 0.636182i \(0.780513\pi\)
\(212\) 0 0
\(213\) −4.15124 4.15124i −0.284438 0.284438i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.5365 + 12.5365i 0.851030 + 0.851030i
\(218\) 0 0
\(219\) 18.2582 1.23377
\(220\) 0 0
\(221\) 10.2360i 0.688546i
\(222\) 0 0
\(223\) 17.2229 17.2229i 1.15333 1.15333i 0.167450 0.985881i \(-0.446447\pi\)
0.985881 0.167450i \(-0.0535533\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.4619 + 17.4619i 1.15899 + 1.15899i 0.984694 + 0.174292i \(0.0557636\pi\)
0.174292 + 0.984694i \(0.444236\pi\)
\(228\) 0 0
\(229\) 9.53373i 0.630007i 0.949091 + 0.315003i \(0.102006\pi\)
−0.949091 + 0.315003i \(0.897994\pi\)
\(230\) 0 0
\(231\) 12.5990i 0.828950i
\(232\) 0 0
\(233\) −11.9117 11.9117i −0.780361 0.780361i 0.199531 0.979892i \(-0.436058\pi\)
−0.979892 + 0.199531i \(0.936058\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3.75710 3.75710i 0.244050 0.244050i
\(238\) 0 0
\(239\) 10.7448i 0.695023i 0.937676 + 0.347511i \(0.112973\pi\)
−0.937676 + 0.347511i \(0.887027\pi\)
\(240\) 0 0
\(241\) 5.06198i 0.326071i 0.986620 + 0.163036i \(0.0521285\pi\)
−0.986620 + 0.163036i \(0.947871\pi\)
\(242\) 0 0
\(243\) 5.49877 5.49877i 0.352746 0.352746i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −16.9503 13.5356i −1.07852 0.861252i
\(248\) 0 0
\(249\) 9.10458 0.576979
\(250\) 0 0
\(251\) −13.5337 −0.854241 −0.427121 0.904195i \(-0.640472\pi\)
−0.427121 + 0.904195i \(0.640472\pi\)
\(252\) 0 0
\(253\) −10.7698 10.7698i −0.677092 0.677092i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.2077 14.2077i −0.886255 0.886255i 0.107906 0.994161i \(-0.465585\pi\)
−0.994161 + 0.107906i \(0.965585\pi\)
\(258\) 0 0
\(259\) −11.5796 −0.719519
\(260\) 0 0
\(261\) 8.24619i 0.510426i
\(262\) 0 0
\(263\) −9.17947 9.17947i −0.566030 0.566030i 0.364984 0.931014i \(-0.381075\pi\)
−0.931014 + 0.364984i \(0.881075\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.24466 + 3.24466i −0.198570 + 0.198570i
\(268\) 0 0
\(269\) −7.92198 −0.483012 −0.241506 0.970399i \(-0.577641\pi\)
−0.241506 + 0.970399i \(0.577641\pi\)
\(270\) 0 0
\(271\) −11.6880 −0.709994 −0.354997 0.934867i \(-0.615518\pi\)
−0.354997 + 0.934867i \(0.615518\pi\)
\(272\) 0 0
\(273\) 10.8106 + 10.8106i 0.654287 + 0.654287i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.03751 + 2.03751i −0.122422 + 0.122422i −0.765663 0.643241i \(-0.777589\pi\)
0.643241 + 0.765663i \(0.277589\pi\)
\(278\) 0 0
\(279\) −6.62959 −0.396903
\(280\) 0 0
\(281\) 7.11479i 0.424433i −0.977223 0.212217i \(-0.931932\pi\)
0.977223 0.212217i \(-0.0680682\pi\)
\(282\) 0 0
\(283\) 19.7140 + 19.7140i 1.17187 + 1.17187i 0.981763 + 0.190112i \(0.0608850\pi\)
0.190112 + 0.981763i \(0.439115\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.8877 14.8877i −0.878794 0.878794i
\(288\) 0 0
\(289\) 12.7691i 0.751126i
\(290\) 0 0
\(291\) −2.97107 −0.174167
\(292\) 0 0
\(293\) 2.35126 2.35126i 0.137362 0.137362i −0.635082 0.772444i \(-0.719034\pi\)
0.772444 + 0.635082i \(0.219034\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −16.3248 16.3248i −0.947264 0.947264i
\(298\) 0 0
\(299\) −18.4822 −1.06885
\(300\) 0 0
\(301\) −3.56266 −0.205348
\(302\) 0 0
\(303\) −11.2880 + 11.2880i −0.648477 + 0.648477i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.65038 1.65038i −0.0941924 0.0941924i 0.658440 0.752633i \(-0.271216\pi\)
−0.752633 + 0.658440i \(0.771216\pi\)
\(308\) 0 0
\(309\) 26.0198i 1.48021i
\(310\) 0 0
\(311\) −3.66819 −0.208004 −0.104002 0.994577i \(-0.533165\pi\)
−0.104002 + 0.994577i \(0.533165\pi\)
\(312\) 0 0
\(313\) 15.8455 + 15.8455i 0.895639 + 0.895639i 0.995047 0.0994081i \(-0.0316949\pi\)
−0.0994081 + 0.995047i \(0.531695\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.65120 3.65120i −0.205072 0.205072i 0.597097 0.802169i \(-0.296321\pi\)
−0.802169 + 0.597097i \(0.796321\pi\)
\(318\) 0 0
\(319\) −43.9671 −2.46169
\(320\) 0 0
\(321\) −7.94776 −0.443601
\(322\) 0 0
\(323\) −7.00610 5.59470i −0.389830 0.311298i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.37102 + 6.37102i −0.352318 + 0.352318i
\(328\) 0 0
\(329\) 23.8945i 1.31734i
\(330\) 0 0
\(331\) 13.0960i 0.719820i 0.932987 + 0.359910i \(0.117193\pi\)
−0.932987 + 0.359910i \(0.882807\pi\)
\(332\) 0 0
\(333\) 3.06178 3.06178i 0.167785 0.167785i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.66718 + 8.66718i 0.472131 + 0.472131i 0.902604 0.430473i \(-0.141653\pi\)
−0.430473 + 0.902604i \(0.641653\pi\)
\(338\) 0 0
\(339\) 11.6591i 0.633233i
\(340\) 0 0
\(341\) 35.3477i 1.91419i
\(342\) 0 0
\(343\) 14.2087 + 14.2087i 0.767200 + 0.767200i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.1640 + 17.1640i −0.921413 + 0.921413i −0.997129 0.0757163i \(-0.975876\pi\)
0.0757163 + 0.997129i \(0.475876\pi\)
\(348\) 0 0
\(349\) 4.66819i 0.249882i 0.992164 + 0.124941i \(0.0398742\pi\)
−0.992164 + 0.124941i \(0.960126\pi\)
\(350\) 0 0
\(351\) −28.0152 −1.49534
\(352\) 0 0
\(353\) 0.00559594 + 0.00559594i 0.000297842 + 0.000297842i 0.707256 0.706958i \(-0.249933\pi\)
−0.706958 + 0.707256i \(0.749933\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.46836 + 4.46836i 0.236491 + 0.236491i
\(358\) 0 0
\(359\) 13.0442i 0.688444i −0.938888 0.344222i \(-0.888143\pi\)
0.938888 0.344222i \(-0.111857\pi\)
\(360\) 0 0
\(361\) −18.5292 + 4.20359i −0.975219 + 0.221242i
\(362\) 0 0
\(363\) −6.14447 + 6.14447i −0.322501 + 0.322501i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −18.7952 + 18.7952i −0.981099 + 0.981099i −0.999825 0.0187258i \(-0.994039\pi\)
0.0187258 + 0.999825i \(0.494039\pi\)
\(368\) 0 0
\(369\) 7.87300 0.409852
\(370\) 0 0
\(371\) 18.1090i 0.940171i
\(372\) 0 0
\(373\) 7.74340 7.74340i 0.400938 0.400938i −0.477626 0.878563i \(-0.658502\pi\)
0.878563 + 0.477626i \(0.158502\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −37.7262 + 37.7262i −1.94300 + 1.94300i
\(378\) 0 0
\(379\) 34.2653 1.76009 0.880046 0.474889i \(-0.157512\pi\)
0.880046 + 0.474889i \(0.157512\pi\)
\(380\) 0 0
\(381\) 0.975639 0.0499835
\(382\) 0 0
\(383\) 7.04252 7.04252i 0.359856 0.359856i −0.503904 0.863760i \(-0.668103\pi\)
0.863760 + 0.503904i \(0.168103\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.942012 0.942012i 0.0478852 0.0478852i
\(388\) 0 0
\(389\) 21.6545i 1.09793i −0.835847 0.548963i \(-0.815023\pi\)
0.835847 0.548963i \(-0.184977\pi\)
\(390\) 0 0
\(391\) −7.63926 −0.386334
\(392\) 0 0
\(393\) −1.29995 + 1.29995i −0.0655736 + 0.0655736i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.252896 + 0.252896i −0.0126925 + 0.0126925i −0.713425 0.700732i \(-0.752857\pi\)
0.700732 + 0.713425i \(0.252857\pi\)
\(398\) 0 0
\(399\) 13.3082 1.49063i 0.666242 0.0746249i
\(400\) 0 0
\(401\) 21.3422i 1.06578i 0.846185 + 0.532888i \(0.178893\pi\)
−0.846185 + 0.532888i \(0.821107\pi\)
\(402\) 0 0
\(403\) 30.3303 + 30.3303i 1.51086 + 1.51086i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.3248 16.3248i −0.809193 0.809193i
\(408\) 0 0
\(409\) −27.7477 −1.37204 −0.686019 0.727584i \(-0.740643\pi\)
−0.686019 + 0.727584i \(0.740643\pi\)
\(410\) 0 0
\(411\) 10.0750i 0.496962i
\(412\) 0 0
\(413\) 7.52531 7.52531i 0.370297 0.370297i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.3200 16.3200i −0.799195 0.799195i
\(418\) 0 0
\(419\) 17.0720i 0.834023i −0.908901 0.417012i \(-0.863077\pi\)
0.908901 0.417012i \(-0.136923\pi\)
\(420\) 0 0
\(421\) 12.8230i 0.624954i −0.949925 0.312477i \(-0.898841\pi\)
0.949925 0.312477i \(-0.101159\pi\)
\(422\) 0 0
\(423\) 6.31800 + 6.31800i 0.307192 + 0.307192i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 15.9923 15.9923i 0.773922 0.773922i
\(428\) 0 0
\(429\) 30.4815i 1.47166i
\(430\) 0 0
\(431\) 18.5824i 0.895081i −0.894264 0.447540i \(-0.852300\pi\)
0.894264 0.447540i \(-0.147700\pi\)
\(432\) 0 0
\(433\) −15.7258 + 15.7258i −0.755733 + 0.755733i −0.975543 0.219810i \(-0.929456\pi\)
0.219810 + 0.975543i \(0.429456\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.1018 + 12.6503i −0.483237 + 0.605145i
\(438\) 0 0
\(439\) 8.03399 0.383442 0.191721 0.981450i \(-0.438593\pi\)
0.191721 + 0.981450i \(0.438593\pi\)
\(440\) 0 0
\(441\) −2.12989 −0.101423
\(442\) 0 0
\(443\) −14.1547 14.1547i −0.672508 0.672508i 0.285785 0.958294i \(-0.407746\pi\)
−0.958294 + 0.285785i \(0.907746\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 21.2245 + 21.2245i 1.00389 + 1.00389i
\(448\) 0 0
\(449\) 11.5306 0.544162 0.272081 0.962274i \(-0.412288\pi\)
0.272081 + 0.962274i \(0.412288\pi\)
\(450\) 0 0
\(451\) 41.9773i 1.97664i
\(452\) 0 0
\(453\) 12.2296 + 12.2296i 0.574597 + 0.574597i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −23.5119 + 23.5119i −1.09984 + 1.09984i −0.105409 + 0.994429i \(0.533615\pi\)
−0.994429 + 0.105409i \(0.966385\pi\)
\(458\) 0 0
\(459\) −11.5796 −0.540488
\(460\) 0 0
\(461\) 2.00457 0.0933621 0.0466810 0.998910i \(-0.485136\pi\)
0.0466810 + 0.998910i \(0.485136\pi\)
\(462\) 0 0
\(463\) 14.9035 + 14.9035i 0.692622 + 0.692622i 0.962808 0.270186i \(-0.0870852\pi\)
−0.270186 + 0.962808i \(0.587085\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.72502 7.72502i 0.357471 0.357471i −0.505409 0.862880i \(-0.668658\pi\)
0.862880 + 0.505409i \(0.168658\pi\)
\(468\) 0 0
\(469\) 15.0368 0.694334
\(470\) 0 0
\(471\) 16.6416i 0.766802i
\(472\) 0 0
\(473\) −5.02263 5.02263i −0.230941 0.230941i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.78824 + 4.78824i 0.219238 + 0.219238i
\(478\) 0 0
\(479\) 26.2019i 1.19720i 0.801049 + 0.598598i \(0.204275\pi\)
−0.801049 + 0.598598i \(0.795725\pi\)
\(480\) 0 0
\(481\) −28.0152 −1.27738
\(482\) 0 0
\(483\) 8.06810 8.06810i 0.367111 0.367111i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.09866 + 8.09866i 0.366985 + 0.366985i 0.866377 0.499391i \(-0.166443\pi\)
−0.499391 + 0.866377i \(0.666443\pi\)
\(488\) 0 0
\(489\) −27.6988 −1.25258
\(490\) 0 0
\(491\) 8.35617 0.377109 0.188554 0.982063i \(-0.439620\pi\)
0.188554 + 0.982063i \(0.439620\pi\)
\(492\) 0 0
\(493\) −15.5934 + 15.5934i −0.702292 + 0.702292i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.71685 + 5.71685i 0.256436 + 0.256436i
\(498\) 0 0
\(499\) 8.23542i 0.368668i −0.982864 0.184334i \(-0.940987\pi\)
0.982864 0.184334i \(-0.0590128\pi\)
\(500\) 0 0
\(501\) −5.20192 −0.232405
\(502\) 0 0
\(503\) −2.72663 2.72663i −0.121574 0.121574i 0.643702 0.765276i \(-0.277398\pi\)
−0.765276 + 0.643702i \(0.777398\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.4250 + 12.4250i 0.551814 + 0.551814i
\(508\) 0 0
\(509\) 41.4803 1.83858 0.919291 0.393578i \(-0.128763\pi\)
0.919291 + 0.393578i \(0.128763\pi\)
\(510\) 0 0
\(511\) −25.1441 −1.11231
\(512\) 0 0
\(513\) −15.3123 + 19.1753i −0.676057 + 0.846608i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 33.6864 33.6864i 1.48152 1.48152i
\(518\) 0 0
\(519\) 27.9711i 1.22779i
\(520\) 0 0
\(521\) 6.89078i 0.301890i −0.988542 0.150945i \(-0.951768\pi\)
0.988542 0.150945i \(-0.0482317\pi\)
\(522\) 0 0
\(523\) −3.64638 + 3.64638i −0.159445 + 0.159445i −0.782321 0.622876i \(-0.785964\pi\)
0.622876 + 0.782321i \(0.285964\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.5365 + 12.5365i 0.546097 + 0.546097i
\(528\) 0 0
\(529\) 9.20649i 0.400282i
\(530\) 0 0
\(531\) 3.97957i 0.172699i
\(532\) 0 0
\(533\) −36.0188 36.0188i −1.56015 1.56015i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −14.0553 + 14.0553i −0.606529 + 0.606529i
\(538\) 0 0
\(539\) 11.3562i 0.489145i
\(540\) 0 0
\(541\) 28.2937 1.21644 0.608221 0.793767i \(-0.291883\pi\)
0.608221 + 0.793767i \(0.291883\pi\)
\(542\) 0 0
\(543\) 24.9841 + 24.9841i 1.07217 + 1.07217i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −18.8942 18.8942i −0.807857 0.807857i 0.176452 0.984309i \(-0.443538\pi\)
−0.984309 + 0.176452i \(0.943538\pi\)
\(548\) 0 0
\(549\) 8.45713i 0.360942i
\(550\) 0 0
\(551\) 5.20192 + 46.4421i 0.221609 + 1.97850i
\(552\) 0 0
\(553\) −5.17406 + 5.17406i −0.220023 + 0.220023i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.9692 + 21.9692i −0.930864 + 0.930864i −0.997760 0.0668956i \(-0.978691\pi\)
0.0668956 + 0.997760i \(0.478691\pi\)
\(558\) 0 0
\(559\) −8.61938 −0.364561
\(560\) 0 0
\(561\) 12.5990i 0.531928i
\(562\) 0 0
\(563\) 30.5069 30.5069i 1.28571 1.28571i 0.348345 0.937367i \(-0.386744\pi\)
0.937367 0.348345i \(-0.113256\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 8.87354 8.87354i 0.372654 0.372654i
\(568\) 0 0
\(569\) 7.86118 0.329558 0.164779 0.986331i \(-0.447309\pi\)
0.164779 + 0.986331i \(0.447309\pi\)
\(570\) 0 0
\(571\) −2.72043 −0.113846 −0.0569232 0.998379i \(-0.518129\pi\)
−0.0569232 + 0.998379i \(0.518129\pi\)
\(572\) 0 0
\(573\) −4.33118 + 4.33118i −0.180937 + 0.180937i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.50083 1.50083i 0.0624805 0.0624805i −0.675176 0.737657i \(-0.735932\pi\)
0.737657 + 0.675176i \(0.235932\pi\)
\(578\) 0 0
\(579\) 27.5104i 1.14329i
\(580\) 0 0
\(581\) −12.5383 −0.520176
\(582\) 0 0
\(583\) 25.5300 25.5300i 1.05734 1.05734i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.18499 3.18499i 0.131459 0.131459i −0.638316 0.769774i \(-0.720369\pi\)
0.769774 + 0.638316i \(0.220369\pi\)
\(588\) 0 0
\(589\) 37.3375 4.18213i 1.53847 0.172322i
\(590\) 0 0
\(591\) 27.8479i 1.14551i
\(592\) 0 0
\(593\) 18.8714 + 18.8714i 0.774954 + 0.774954i 0.978968 0.204014i \(-0.0653987\pi\)
−0.204014 + 0.978968i \(0.565399\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −13.9173 13.9173i −0.569597 0.569597i
\(598\) 0 0
\(599\) −35.3967 −1.44627 −0.723135 0.690706i \(-0.757300\pi\)
−0.723135 + 0.690706i \(0.757300\pi\)
\(600\) 0 0
\(601\) 8.29518i 0.338367i 0.985585 + 0.169184i \(0.0541131\pi\)
−0.985585 + 0.169184i \(0.945887\pi\)
\(602\) 0 0
\(603\) −3.97591 + 3.97591i −0.161912 + 0.161912i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18.3857 18.3857i −0.746251 0.746251i 0.227522 0.973773i \(-0.426938\pi\)
−0.973773 + 0.227522i \(0.926938\pi\)
\(608\) 0 0
\(609\) 32.9376i 1.33470i
\(610\) 0 0
\(611\) 57.8095i 2.33872i
\(612\) 0 0
\(613\) −22.0862 22.0862i −0.892053 0.892053i 0.102663 0.994716i \(-0.467264\pi\)
−0.994716 + 0.102663i \(0.967264\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.3926 + 27.3926i −1.10278 + 1.10278i −0.108711 + 0.994073i \(0.534672\pi\)
−0.994073 + 0.108711i \(0.965328\pi\)
\(618\) 0 0
\(619\) 18.5672i 0.746280i 0.927775 + 0.373140i \(0.121719\pi\)
−0.927775 + 0.373140i \(0.878281\pi\)
\(620\) 0 0
\(621\) 20.9082i 0.839016i
\(622\) 0 0
\(623\) 4.46836 4.46836i 0.179021 0.179021i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 20.8633 + 16.6603i 0.833201 + 0.665350i
\(628\) 0 0
\(629\) −11.5796 −0.461708
\(630\) 0 0
\(631\) −32.7600 −1.30416 −0.652078 0.758152i \(-0.726102\pi\)
−0.652078 + 0.758152i \(0.726102\pi\)
\(632\) 0 0
\(633\) −19.5197 19.5197i −0.775838 0.775838i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.74422 + 9.74422i 0.386080 + 0.386080i
\(638\) 0 0
\(639\) −3.02321 −0.119596
\(640\) 0 0
\(641\) 34.0041i 1.34308i −0.740967 0.671542i \(-0.765632\pi\)
0.740967 0.671542i \(-0.234368\pi\)
\(642\) 0 0
\(643\) −12.8129 12.8129i −0.505292 0.505292i 0.407786 0.913078i \(-0.366301\pi\)
−0.913078 + 0.407786i \(0.866301\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.2833 + 13.2833i −0.522219 + 0.522219i −0.918241 0.396022i \(-0.870390\pi\)
0.396022 + 0.918241i \(0.370390\pi\)
\(648\) 0 0
\(649\) 21.2183 0.832893
\(650\) 0 0
\(651\) −26.4804 −1.03785
\(652\) 0 0
\(653\) −6.91330 6.91330i −0.270538 0.270538i 0.558779 0.829317i \(-0.311270\pi\)
−0.829317 + 0.558779i \(0.811270\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.64840 6.64840i 0.259379 0.259379i
\(658\) 0 0
\(659\) 15.4612 0.602282 0.301141 0.953580i \(-0.402633\pi\)
0.301141 + 0.953580i \(0.402633\pi\)
\(660\) 0 0
\(661\) 13.0960i 0.509374i −0.967023 0.254687i \(-0.918027\pi\)
0.967023 0.254687i \(-0.0819725\pi\)
\(662\) 0 0
\(663\) 10.8106 + 10.8106i 0.419849 + 0.419849i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 28.1556 + 28.1556i 1.09019 + 1.09019i
\(668\) 0 0
\(669\) 36.3795i 1.40651i
\(670\) 0 0
\(671\) 45.0918 1.74075
\(672\) 0 0
\(673\) −33.5477 + 33.5477i −1.29317 + 1.29317i −0.360356 + 0.932815i \(0.617345\pi\)
−0.932815 + 0.360356i \(0.882655\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.3184 + 29.3184i 1.12680 + 1.12680i 0.990695 + 0.136102i \(0.0434574\pi\)
0.136102 + 0.990695i \(0.456543\pi\)
\(678\) 0 0
\(679\) 4.09158 0.157021
\(680\) 0 0
\(681\) −36.8843 −1.41341
\(682\) 0 0
\(683\) −21.9045 + 21.9045i −0.838153 + 0.838153i −0.988616 0.150463i \(-0.951924\pi\)
0.150463 + 0.988616i \(0.451924\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.0689 10.0689i −0.384153 0.384153i
\(688\) 0 0
\(689\) 43.8122i 1.66911i
\(690\) 0 0
\(691\) 10.8168 0.411491 0.205746 0.978606i \(-0.434038\pi\)
0.205746 + 0.978606i \(0.434038\pi\)
\(692\) 0 0
\(693\) 4.58770 + 4.58770i 0.174272 + 0.174272i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −14.8877 14.8877i −0.563913 0.563913i
\(698\) 0 0
\(699\) 25.1607 0.951667
\(700\) 0 0
\(701\) 25.2739 0.954584 0.477292 0.878745i \(-0.341618\pi\)
0.477292 + 0.878745i \(0.341618\pi\)
\(702\) 0 0
\(703\) −15.3123 + 19.1753i −0.577516 + 0.723209i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.5451 15.5451i 0.584635 0.584635i
\(708\) 0 0
\(709\) 31.8701i 1.19691i −0.801158 0.598454i \(-0.795782\pi\)
0.801158 0.598454i \(-0.204218\pi\)
\(710\) 0 0
\(711\) 2.73617i 0.102614i
\(712\) 0 0
\(713\) 22.6359 22.6359i 0.847723 0.847723i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −11.3480 11.3480i −0.423798 0.423798i
\(718\) 0 0
\(719\) 14.5916i 0.544175i −0.962273 0.272087i \(-0.912286\pi\)
0.962273 0.272087i \(-0.0877139\pi\)
\(720\) 0 0
\(721\) 35.8329i 1.33449i
\(722\) 0 0
\(723\) −5.34615 5.34615i −0.198825 0.198825i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −2.73782 + 2.73782i −0.101540 + 0.101540i −0.756052 0.654512i \(-0.772874\pi\)
0.654512 + 0.756052i \(0.272874\pi\)
\(728\) 0 0
\(729\) 29.9178i 1.10807i
\(730\) 0 0
\(731\) −3.56266 −0.131770
\(732\) 0 0
\(733\) 23.4578 + 23.4578i 0.866433 + 0.866433i 0.992076 0.125643i \(-0.0400993\pi\)
−0.125643 + 0.992076i \(0.540099\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.1988 + 21.1988i 0.780868 + 0.780868i
\(738\) 0 0
\(739\) 34.3993i 1.26540i 0.774398 + 0.632699i \(0.218053\pi\)
−0.774398 + 0.632699i \(0.781947\pi\)
\(740\) 0 0
\(741\) 32.1974 3.60638i 1.18280 0.132484i
\(742\) 0 0
\(743\) −10.2709 + 10.2709i −0.376804 + 0.376804i −0.869948 0.493144i \(-0.835848\pi\)
0.493144 + 0.869948i \(0.335848\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.31528 3.31528i 0.121300 0.121300i
\(748\) 0 0
\(749\) 10.9452 0.399929
\(750\) 0 0
\(751\) 7.27579i 0.265497i −0.991150 0.132749i \(-0.957620\pi\)
0.991150 0.132749i \(-0.0423803\pi\)
\(752\) 0 0
\(753\) 14.2935 14.2935i 0.520883 0.520883i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.7863 20.7863i 0.755490 0.755490i −0.220008 0.975498i \(-0.570608\pi\)
0.975498 + 0.220008i \(0.0706083\pi\)
\(758\) 0 0
\(759\) 22.7488 0.825728
\(760\) 0 0
\(761\) −11.6834 −0.423523 −0.211762 0.977321i \(-0.567920\pi\)
−0.211762 + 0.977321i \(0.567920\pi\)
\(762\) 0 0
\(763\) 8.77380 8.77380i 0.317633 0.317633i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.2065 18.2065i 0.657398 0.657398i
\(768\) 0 0
\(769\) 30.2506i 1.09087i 0.838154 + 0.545433i \(0.183635\pi\)
−0.838154 + 0.545433i \(0.816365\pi\)
\(770\) 0 0
\(771\) 30.0107 1.08081
\(772\) 0 0
\(773\) −11.4594 + 11.4594i −0.412167 + 0.412167i −0.882493 0.470326i \(-0.844136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12.2296 12.2296i 0.438735 0.438735i
\(778\) 0 0
\(779\) −44.3403 + 4.96650i −1.58866 + 0.177943i
\(780\) 0 0
\(781\) 16.1192i 0.576790i
\(782\) 0 0
\(783\) 42.6782 + 42.6782i 1.52519 + 1.52519i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16.1828 + 16.1828i 0.576856 + 0.576856i 0.934036 0.357180i \(-0.116262\pi\)
−0.357180 + 0.934036i \(0.616262\pi\)
\(788\) 0 0
\(789\) 19.3895 0.690286
\(790\) 0 0
\(791\) 16.0562i 0.570892i
\(792\) 0 0
\(793\) 38.6912 38.6912i 1.37397 1.37397i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.02244 9.02244i −0.319591 0.319591i 0.529019 0.848610i \(-0.322560\pi\)
−0.848610 + 0.529019i \(0.822560\pi\)
\(798\) 0 0
\(799\) 23.8945i 0.845326i
\(800\) 0 0
\(801\) 2.36298i 0.0834918i
\(802\) 0 0
\(803\) −35.4480 35.4480i −1.25093 1.25093i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.36670 8.36670i 0.294522 0.294522i
\(808\) 0 0
\(809\) 14.7265i 0.517757i −0.965910 0.258878i \(-0.916647\pi\)
0.965910 0.258878i \(-0.0833529\pi\)
\(810\) 0 0
\(811\) 43.3699i 1.52292i 0.648210 + 0.761462i \(0.275518\pi\)
−0.648210 + 0.761462i \(0.724482\pi\)
\(812\) 0 0
\(813\) 12.3441 12.3441i 0.432927 0.432927i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.71112 + 5.89961i −0.164821 + 0.206401i
\(818\) 0 0
\(819\) 7.87300 0.275105
\(820\) 0 0
\(821\) 30.7600 1.07353 0.536766 0.843731i \(-0.319646\pi\)
0.536766 + 0.843731i \(0.319646\pi\)
\(822\) 0 0
\(823\) −40.0454 40.0454i −1.39589 1.39589i −0.811392 0.584503i \(-0.801290\pi\)
−0.584503 0.811392i \(-0.698710\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.2558 24.2558i −0.843456 0.843456i 0.145851 0.989307i \(-0.453408\pi\)
−0.989307 + 0.145851i \(0.953408\pi\)
\(828\) 0 0
\(829\) −46.7663 −1.62426 −0.812131 0.583476i \(-0.801692\pi\)
−0.812131 + 0.583476i \(0.801692\pi\)
\(830\) 0 0
\(831\) 4.30378i 0.149297i
\(832\) 0 0
\(833\) 4.02759 + 4.02759i 0.139548 + 0.139548i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 34.3115 34.3115i 1.18598 1.18598i
\(838\) 0 0
\(839\) −2.69901 −0.0931800 −0.0465900 0.998914i \(-0.514835\pi\)
−0.0465900 + 0.998914i \(0.514835\pi\)
\(840\) 0 0
\(841\) 85.9437 2.96357
\(842\) 0 0
\(843\) 7.51420 + 7.51420i 0.258803 + 0.258803i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.46181 8.46181i 0.290751 0.290751i
\(848\) 0 0
\(849\) −41.6413 −1.42913
\(850\) 0 0
\(851\) 20.9082i 0.716723i
\(852\) 0 0
\(853\) 4.66927 + 4.66927i 0.159873 + 0.159873i 0.782510 0.622638i \(-0.213939\pi\)
−0.622638 + 0.782510i \(0.713939\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.0442 28.0442i −0.957970 0.957970i 0.0411816 0.999152i \(-0.486888\pi\)
−0.999152 + 0.0411816i \(0.986888\pi\)
\(858\) 0 0
\(859\) 30.3074i 1.03408i 0.855962 + 0.517038i \(0.172966\pi\)
−0.855962 + 0.517038i \(0.827034\pi\)
\(860\) 0 0
\(861\) 31.4469 1.07171
\(862\) 0 0
\(863\) −10.1852 + 10.1852i −0.346708 + 0.346708i −0.858882 0.512174i \(-0.828840\pi\)
0.512174 + 0.858882i \(0.328840\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.4860 13.4860i −0.458008 0.458008i
\(868\) 0 0
\(869\) −14.5887 −0.494889
\(870\) 0 0
\(871\) 36.3795 1.23267
\(872\) 0 0
\(873\) −1.08187 + 1.08187i −0.0366156 + 0.0366156i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.26635 + 4.26635i 0.144065 + 0.144065i 0.775461 0.631396i \(-0.217518\pi\)
−0.631396 + 0.775461i \(0.717518\pi\)
\(878\) 0 0
\(879\) 4.96650i 0.167516i
\(880\) 0 0
\(881\) −30.2704 −1.01984 −0.509918 0.860223i \(-0.670324\pi\)
−0.509918 + 0.860223i \(0.670324\pi\)
\(882\) 0 0
\(883\) −19.5085 19.5085i −0.656514 0.656514i 0.298040 0.954553i \(-0.403667\pi\)
−0.954553 + 0.298040i \(0.903667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.39132 3.39132i −0.113869 0.113869i 0.647876 0.761746i \(-0.275657\pi\)
−0.761746 + 0.647876i \(0.775657\pi\)
\(888\) 0 0
\(889\) −1.34359 −0.0450626
\(890\) 0 0
\(891\) 25.0198 0.838195
\(892\) 0 0
\(893\) −39.5682 31.5971i −1.32410 1.05736i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 19.5197 19.5197i 0.651744 0.651744i
\(898\) 0 0
\(899\) 92.4099i 3.08204i
\(900\) 0 0
\(901\) 18.1090i 0.603297i
\(902\) 0 0
\(903\) 3.76266 3.76266i 0.125213 0.125213i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −10.5356 10.5356i −0.349830 0.349830i 0.510216 0.860046i \(-0.329565\pi\)
−0.860046 + 0.510216i \(0.829565\pi\)
\(908\) 0 0
\(909\) 8.22066i 0.272662i
\(910\) 0 0
\(911\) 4.63981i 0.153724i 0.997042 + 0.0768618i \(0.0244900\pi\)
−0.997042 + 0.0768618i \(0.975510\pi\)
\(912\) 0 0
\(913\) −17.6765 17.6765i −0.585005 0.585005i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.79021 1.79021i 0.0591180 0.0591180i
\(918\) 0 0
\(919\) 6.15777i 0.203126i 0.994829 + 0.101563i \(0.0323843\pi\)
−0.994829 + 0.101563i \(0.967616\pi\)
\(920\) 0 0
\(921\) 3.48606 0.114870
\(922\) 0 0
\(923\) 13.8311 + 13.8311i 0.455258 + 0.455258i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −9.47468 9.47468i −0.311189 0.311189i
\(928\) 0 0
\(929\) 40.1360i 1.31682i 0.752660 + 0.658409i \(0.228770\pi\)
−0.752660 + 0.658409i \(0.771230\pi\)
\(930\) 0 0
\(931\) 11.9954 1.34359i 0.393134 0.0440345i
\(932\) 0 0
\(933\) 3.87411 3.87411i 0.126833 0.126833i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.99880 3.99880i 0.130635 0.130635i −0.638766 0.769401i \(-0.720555\pi\)
0.769401 + 0.638766i \(0.220555\pi\)
\(938\) 0 0
\(939\) −33.4700 −1.09225
\(940\) 0 0
\(941\) 21.9788i 0.716487i 0.933628 + 0.358244i \(0.116624\pi\)
−0.933628 + 0.358244i \(0.883376\pi\)
\(942\) 0 0
\(943\) −26.8814 + 26.8814i −0.875379 + 0.875379i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.14525 3.14525i 0.102207 0.102207i −0.654154 0.756361i \(-0.726975\pi\)
0.756361 + 0.654154i \(0.226975\pi\)
\(948\) 0 0
\(949\) −60.8327 −1.97471
\(950\) 0 0
\(951\) 7.71234 0.250090
\(952\) 0 0
\(953\) −6.19964 + 6.19964i −0.200826 + 0.200826i −0.800354 0.599528i \(-0.795355\pi\)
0.599528 + 0.800354i \(0.295355\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 46.4353 46.4353i 1.50104 1.50104i
\(958\) 0 0
\(959\) 13.8747i 0.448037i
\(960\) 0 0
\(961\) −43.2937 −1.39657
\(962\) 0 0
\(963\) −2.89405 + 2.89405i −0.0932593 + 0.0932593i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12.1358 + 12.1358i −0.390261 + 0.390261i −0.874780 0.484520i \(-0.838994\pi\)
0.484520 + 0.874780i \(0.338994\pi\)
\(968\) 0 0
\(969\) 13.3082 1.49063i 0.427520 0.0478860i
\(970\) 0 0
\(971\) 53.6571i 1.72194i 0.508657 + 0.860969i \(0.330142\pi\)
−0.508657 + 0.860969i \(0.669858\pi\)
\(972\) 0 0
\(973\) 22.4750 + 22.4750i 0.720515 + 0.720515i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.928606 + 0.928606i 0.0297087 + 0.0297087i 0.721805 0.692096i \(-0.243313\pi\)
−0.692096 + 0.721805i \(0.743313\pi\)
\(978\) 0 0
\(979\) 12.5990 0.402664
\(980\) 0 0
\(981\) 4.63981i 0.148138i
\(982\) 0 0
\(983\) 24.7900 24.7900i 0.790679 0.790679i −0.190926 0.981605i \(-0.561149\pi\)
0.981605 + 0.190926i \(0.0611489\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 25.2358 + 25.2358i 0.803265 + 0.803265i
\(988\) 0 0
\(989\) 6.43277i 0.204550i
\(990\) 0 0
\(991\) 36.3063i 1.15331i 0.816988 + 0.576654i \(0.195642\pi\)
−0.816988 + 0.576654i \(0.804358\pi\)
\(992\) 0 0
\(993\) −13.8311 13.8311i −0.438918 0.438918i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.0552 32.0552i 1.01520 1.01520i 0.0153168 0.999883i \(-0.495124\pi\)
0.999883 0.0153168i \(-0.00487567\pi\)
\(998\) 0 0
\(999\) 31.6926i 1.00271i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.2.l.d.493.4 yes 24
5.2 odd 4 inner 1900.2.l.d.1557.10 yes 24
5.3 odd 4 inner 1900.2.l.d.1557.3 yes 24
5.4 even 2 inner 1900.2.l.d.493.9 yes 24
19.18 odd 2 inner 1900.2.l.d.493.10 yes 24
95.18 even 4 inner 1900.2.l.d.1557.9 yes 24
95.37 even 4 inner 1900.2.l.d.1557.4 yes 24
95.94 odd 2 inner 1900.2.l.d.493.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1900.2.l.d.493.3 24 95.94 odd 2 inner
1900.2.l.d.493.4 yes 24 1.1 even 1 trivial
1900.2.l.d.493.9 yes 24 5.4 even 2 inner
1900.2.l.d.493.10 yes 24 19.18 odd 2 inner
1900.2.l.d.1557.3 yes 24 5.3 odd 4 inner
1900.2.l.d.1557.4 yes 24 95.37 even 4 inner
1900.2.l.d.1557.9 yes 24 95.18 even 4 inner
1900.2.l.d.1557.10 yes 24 5.2 odd 4 inner