gp: [N,k,chi] = [19,4,Mod(1,19)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("19.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 + 3 T_{2} + 3 T 2 + 3
T2 + 3
acting on S 4 n e w ( Γ 0 ( 19 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(19)) S 4 n e w ( Γ 0 ( 1 9 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 3 T + 3 T + 3
T + 3
3 3 3
T + 5 T + 5 T + 5
T + 5
5 5 5
T + 12 T + 12 T + 1 2
T + 12
7 7 7
T − 11 T - 11 T − 1 1
T - 11
11 11 1 1
T + 54 T + 54 T + 5 4
T + 54
13 13 1 3
T − 11 T - 11 T − 1 1
T - 11
17 17 1 7
T + 93 T + 93 T + 9 3
T + 93
19 19 1 9
T − 19 T - 19 T − 1 9
T - 19
23 23 2 3
T − 183 T - 183 T − 1 8 3
T - 183
29 29 2 9
T + 249 T + 249 T + 2 4 9
T + 249
31 31 3 1
T − 56 T - 56 T − 5 6
T - 56
37 37 3 7
T + 250 T + 250 T + 2 5 0
T + 250
41 41 4 1
T − 240 T - 240 T − 2 4 0
T - 240
43 43 4 3
T + 196 T + 196 T + 1 9 6
T + 196
47 47 4 7
T + 168 T + 168 T + 1 6 8
T + 168
53 53 5 3
T − 435 T - 435 T − 4 3 5
T - 435
59 59 5 9
T − 195 T - 195 T − 1 9 5
T - 195
61 61 6 1
T + 358 T + 358 T + 3 5 8
T + 358
67 67 6 7
T + 961 T + 961 T + 9 6 1
T + 961
71 71 7 1
T + 246 T + 246 T + 2 4 6
T + 246
73 73 7 3
T − 353 T - 353 T − 3 5 3
T - 353
79 79 7 9
T + 34 T + 34 T + 3 4
T + 34
83 83 8 3
T − 234 T - 234 T − 2 3 4
T - 234
89 89 8 9
T + 168 T + 168 T + 1 6 8
T + 168
97 97 9 7
T − 758 T - 758 T − 7 5 8
T - 758
show more
show less