Properties

Label 19.4.a.a
Level 1919
Weight 44
Character orbit 19.a
Self dual yes
Analytic conductor 1.1211.121
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,4,Mod(1,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 19 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 19.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.121036290111.12103629011
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q3q25q3+q412q5+15q6+11q7+21q82q9+36q1054q115q12+11q1333q14+60q1571q1693q17+6q18+19q19++108q99+O(q100) q - 3 q^{2} - 5 q^{3} + q^{4} - 12 q^{5} + 15 q^{6} + 11 q^{7} + 21 q^{8} - 2 q^{9} + 36 q^{10} - 54 q^{11} - 5 q^{12} + 11 q^{13} - 33 q^{14} + 60 q^{15} - 71 q^{16} - 93 q^{17} + 6 q^{18} + 19 q^{19}+ \cdots + 108 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−3.00000 −5.00000 1.00000 −12.0000 15.0000 11.0000 21.0000 −2.00000 36.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 19.4.a.a 1
3.b odd 2 1 171.4.a.d 1
4.b odd 2 1 304.4.a.b 1
5.b even 2 1 475.4.a.e 1
5.c odd 4 2 475.4.b.c 2
7.b odd 2 1 931.4.a.a 1
8.b even 2 1 1216.4.a.f 1
8.d odd 2 1 1216.4.a.a 1
11.b odd 2 1 2299.4.a.b 1
19.b odd 2 1 361.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.4.a.a 1 1.a even 1 1 trivial
171.4.a.d 1 3.b odd 2 1
304.4.a.b 1 4.b odd 2 1
361.4.a.b 1 19.b odd 2 1
475.4.a.e 1 5.b even 2 1
475.4.b.c 2 5.c odd 4 2
931.4.a.a 1 7.b odd 2 1
1216.4.a.a 1 8.d odd 2 1
1216.4.a.f 1 8.b even 2 1
2299.4.a.b 1 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+3 T_{2} + 3 acting on S4new(Γ0(19))S_{4}^{\mathrm{new}}(\Gamma_0(19)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+3 T + 3 Copy content Toggle raw display
33 T+5 T + 5 Copy content Toggle raw display
55 T+12 T + 12 Copy content Toggle raw display
77 T11 T - 11 Copy content Toggle raw display
1111 T+54 T + 54 Copy content Toggle raw display
1313 T11 T - 11 Copy content Toggle raw display
1717 T+93 T + 93 Copy content Toggle raw display
1919 T19 T - 19 Copy content Toggle raw display
2323 T183 T - 183 Copy content Toggle raw display
2929 T+249 T + 249 Copy content Toggle raw display
3131 T56 T - 56 Copy content Toggle raw display
3737 T+250 T + 250 Copy content Toggle raw display
4141 T240 T - 240 Copy content Toggle raw display
4343 T+196 T + 196 Copy content Toggle raw display
4747 T+168 T + 168 Copy content Toggle raw display
5353 T435 T - 435 Copy content Toggle raw display
5959 T195 T - 195 Copy content Toggle raw display
6161 T+358 T + 358 Copy content Toggle raw display
6767 T+961 T + 961 Copy content Toggle raw display
7171 T+246 T + 246 Copy content Toggle raw display
7373 T353 T - 353 Copy content Toggle raw display
7979 T+34 T + 34 Copy content Toggle raw display
8383 T234 T - 234 Copy content Toggle raw display
8989 T+168 T + 168 Copy content Toggle raw display
9797 T758 T - 758 Copy content Toggle raw display
show more
show less