Properties

Label 19.4.a
Level $19$
Weight $4$
Character orbit 19.a
Rep. character $\chi_{19}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $6$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 19.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(6\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(19))\).

Total New Old
Modular forms 6 4 2
Cusp forms 4 4 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(19\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(4\)\(3\)\(1\)\(3\)\(3\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(2\)\(1\)\(1\)\(1\)\(1\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 4 q - 4 q^{3} + 22 q^{4} + 2 q^{5} - 50 q^{6} - 24 q^{7} + 48 q^{8} + 46 q^{9} - 52 q^{10} - 38 q^{11} - 120 q^{12} + 76 q^{13} + 4 q^{14} + 200 q^{15} - 38 q^{16} - 64 q^{17} + 144 q^{18} - 38 q^{19} + 88 q^{20}+ \cdots + 358 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(19))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 19
19.4.a.a 19.a 1.a $1$ $1.121$ \(\Q\) None 19.4.a.a \(-3\) \(-5\) \(-12\) \(11\) $-$ $\mathrm{SU}(2)$ \(q-3q^{2}-5q^{3}+q^{4}-12q^{5}+15q^{6}+\cdots\)
19.4.a.b 19.a 1.a $3$ $1.121$ 3.3.3144.1 None 19.4.a.b \(3\) \(1\) \(14\) \(-35\) $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1}-\beta _{2})q^{2}+(-\beta _{1}+2\beta _{2})q^{3}+\cdots\)