Defining parameters
| Level: | \( N \) | \(=\) | \( 19 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 19.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(6\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(19))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6 | 4 | 2 |
| Cusp forms | 4 | 4 | 0 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(19\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(4\) | \(3\) | \(1\) | \(3\) | \(3\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(2\) | \(1\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(19))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 19 | |||||||
| 19.4.a.a | $1$ | $1.121$ | \(\Q\) | None | \(-3\) | \(-5\) | \(-12\) | \(11\) | $-$ | \(q-3q^{2}-5q^{3}+q^{4}-12q^{5}+15q^{6}+\cdots\) | |
| 19.4.a.b | $3$ | $1.121$ | 3.3.3144.1 | None | \(3\) | \(1\) | \(14\) | \(-35\) | $+$ | \(q+(1+\beta _{1}-\beta _{2})q^{2}+(-\beta _{1}+2\beta _{2})q^{3}+\cdots\) | |