Properties

Label 19.10.a.b.1.7
Level $19$
Weight $10$
Character 19.1
Self dual yes
Analytic conductor $9.786$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,10,Mod(1,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 19.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78568088711\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 3356 x^{6} - 1330 x^{5} + 3186388 x^{4} - 1801192 x^{3} - 758043152 x^{2} + \cdots - 16080668672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-28.7538\) of defining polynomial
Character \(\chi\) \(=\) 19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+30.7538 q^{2} +175.481 q^{3} +433.799 q^{4} +18.5839 q^{5} +5396.70 q^{6} +6967.83 q^{7} -2404.99 q^{8} +11110.5 q^{9} +571.527 q^{10} -18915.9 q^{11} +76123.3 q^{12} -9825.75 q^{13} +214288. q^{14} +3261.12 q^{15} -296068. q^{16} +36634.0 q^{17} +341689. q^{18} +130321. q^{19} +8061.68 q^{20} +1.22272e6 q^{21} -581737. q^{22} +1.08339e6 q^{23} -422030. q^{24} -1.95278e6 q^{25} -302179. q^{26} -1.50432e6 q^{27} +3.02264e6 q^{28} -3.36211e6 q^{29} +100292. q^{30} -4.13449e6 q^{31} -7.87386e6 q^{32} -3.31938e6 q^{33} +1.12664e6 q^{34} +129490. q^{35} +4.81970e6 q^{36} -1.42504e7 q^{37} +4.00787e6 q^{38} -1.72423e6 q^{39} -44694.2 q^{40} +2.20985e7 q^{41} +3.76033e7 q^{42} +3.72717e7 q^{43} -8.20569e6 q^{44} +206476. q^{45} +3.33184e7 q^{46} +3.22254e7 q^{47} -5.19541e7 q^{48} +8.19708e6 q^{49} -6.00555e7 q^{50} +6.42855e6 q^{51} -4.26240e6 q^{52} -7.25462e7 q^{53} -4.62635e7 q^{54} -351532. q^{55} -1.67576e7 q^{56} +2.28688e7 q^{57} -1.03398e8 q^{58} +9.76827e7 q^{59} +1.41467e6 q^{60} +1.68853e8 q^{61} -1.27151e8 q^{62} +7.74158e7 q^{63} -9.05648e7 q^{64} -182601. q^{65} -1.02084e8 q^{66} +1.35888e8 q^{67} +1.58918e7 q^{68} +1.90114e8 q^{69} +3.98231e6 q^{70} -7.63489e7 q^{71} -2.67206e7 q^{72} -1.04296e7 q^{73} -4.38254e8 q^{74} -3.42675e8 q^{75} +5.65331e7 q^{76} -1.31803e8 q^{77} -5.30267e7 q^{78} +4.35016e8 q^{79} -5.50210e6 q^{80} -4.82665e8 q^{81} +6.79612e8 q^{82} +5.43977e8 q^{83} +5.30414e8 q^{84} +680803. q^{85} +1.14625e9 q^{86} -5.89986e8 q^{87} +4.54926e7 q^{88} -3.73265e8 q^{89} +6.34993e6 q^{90} -6.84642e7 q^{91} +4.69974e8 q^{92} -7.25522e8 q^{93} +9.91054e8 q^{94} +2.42188e6 q^{95} -1.38171e9 q^{96} -9.35566e8 q^{97} +2.52092e8 q^{98} -2.10164e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 15 q^{2} + 7 q^{3} + 2645 q^{4} + 3894 q^{5} - 9723 q^{6} - 7133 q^{7} + 10911 q^{8} + 102715 q^{9} + 113172 q^{10} + 172818 q^{11} + 349117 q^{12} + 109291 q^{13} + 250959 q^{14} + 457332 q^{15}+ \cdots - 1682553420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 30.7538 1.35914 0.679570 0.733610i \(-0.262166\pi\)
0.679570 + 0.733610i \(0.262166\pi\)
\(3\) 175.481 1.25079 0.625394 0.780309i \(-0.284938\pi\)
0.625394 + 0.780309i \(0.284938\pi\)
\(4\) 433.799 0.847263
\(5\) 18.5839 0.0132976 0.00664879 0.999978i \(-0.497884\pi\)
0.00664879 + 0.999978i \(0.497884\pi\)
\(6\) 5396.70 1.70000
\(7\) 6967.83 1.09687 0.548437 0.836192i \(-0.315223\pi\)
0.548437 + 0.836192i \(0.315223\pi\)
\(8\) −2404.99 −0.207591
\(9\) 11110.5 0.564470
\(10\) 571.527 0.0180733
\(11\) −18915.9 −0.389547 −0.194774 0.980848i \(-0.562397\pi\)
−0.194774 + 0.980848i \(0.562397\pi\)
\(12\) 76123.3 1.05975
\(13\) −9825.75 −0.0954159 −0.0477079 0.998861i \(-0.515192\pi\)
−0.0477079 + 0.998861i \(0.515192\pi\)
\(14\) 214288. 1.49081
\(15\) 3261.12 0.0166324
\(16\) −296068. −1.12941
\(17\) 36634.0 0.106381 0.0531905 0.998584i \(-0.483061\pi\)
0.0531905 + 0.998584i \(0.483061\pi\)
\(18\) 341689. 0.767194
\(19\) 130321. 0.229416
\(20\) 8061.68 0.0112665
\(21\) 1.22272e6 1.37196
\(22\) −581737. −0.529449
\(23\) 1.08339e6 0.807254 0.403627 0.914924i \(-0.367749\pi\)
0.403627 + 0.914924i \(0.367749\pi\)
\(24\) −422030. −0.259652
\(25\) −1.95278e6 −0.999823
\(26\) −302179. −0.129684
\(27\) −1.50432e6 −0.544756
\(28\) 3.02264e6 0.929340
\(29\) −3.36211e6 −0.882717 −0.441359 0.897331i \(-0.645503\pi\)
−0.441359 + 0.897331i \(0.645503\pi\)
\(30\) 100292. 0.0226058
\(31\) −4.13449e6 −0.804070 −0.402035 0.915624i \(-0.631697\pi\)
−0.402035 + 0.915624i \(0.631697\pi\)
\(32\) −7.87386e6 −1.32743
\(33\) −3.31938e6 −0.487241
\(34\) 1.12664e6 0.144587
\(35\) 129490. 0.0145858
\(36\) 4.81970e6 0.478254
\(37\) −1.42504e7 −1.25002 −0.625012 0.780615i \(-0.714906\pi\)
−0.625012 + 0.780615i \(0.714906\pi\)
\(38\) 4.00787e6 0.311808
\(39\) −1.72423e6 −0.119345
\(40\) −44694.2 −0.00276046
\(41\) 2.20985e7 1.22133 0.610667 0.791887i \(-0.290901\pi\)
0.610667 + 0.791887i \(0.290901\pi\)
\(42\) 3.76033e7 1.86468
\(43\) 3.72717e7 1.66254 0.831269 0.555871i \(-0.187615\pi\)
0.831269 + 0.555871i \(0.187615\pi\)
\(44\) −8.20569e6 −0.330049
\(45\) 206476. 0.00750608
\(46\) 3.33184e7 1.09717
\(47\) 3.22254e7 0.963291 0.481646 0.876366i \(-0.340039\pi\)
0.481646 + 0.876366i \(0.340039\pi\)
\(48\) −5.19541e7 −1.41265
\(49\) 8.19708e6 0.203131
\(50\) −6.00555e7 −1.35890
\(51\) 6.42855e6 0.133060
\(52\) −4.26240e6 −0.0808423
\(53\) −7.25462e7 −1.26291 −0.631456 0.775412i \(-0.717542\pi\)
−0.631456 + 0.775412i \(0.717542\pi\)
\(54\) −4.62635e7 −0.740400
\(55\) −351532. −0.00518003
\(56\) −1.67576e7 −0.227701
\(57\) 2.28688e7 0.286950
\(58\) −1.03398e8 −1.19974
\(59\) 9.76827e7 1.04950 0.524751 0.851256i \(-0.324158\pi\)
0.524751 + 0.851256i \(0.324158\pi\)
\(60\) 1.41467e6 0.0140921
\(61\) 1.68853e8 1.56143 0.780717 0.624885i \(-0.214854\pi\)
0.780717 + 0.624885i \(0.214854\pi\)
\(62\) −1.27151e8 −1.09284
\(63\) 7.74158e7 0.619152
\(64\) −9.05648e7 −0.674760
\(65\) −182601. −0.00126880
\(66\) −1.02084e8 −0.662229
\(67\) 1.35888e8 0.823840 0.411920 0.911220i \(-0.364858\pi\)
0.411920 + 0.911220i \(0.364858\pi\)
\(68\) 1.58918e7 0.0901326
\(69\) 1.90114e8 1.00970
\(70\) 3.98231e6 0.0198241
\(71\) −7.63489e7 −0.356566 −0.178283 0.983979i \(-0.557054\pi\)
−0.178283 + 0.983979i \(0.557054\pi\)
\(72\) −2.67206e7 −0.117179
\(73\) −1.04296e7 −0.0429849 −0.0214925 0.999769i \(-0.506842\pi\)
−0.0214925 + 0.999769i \(0.506842\pi\)
\(74\) −4.38254e8 −1.69896
\(75\) −3.42675e8 −1.25057
\(76\) 5.65331e7 0.194375
\(77\) −1.31803e8 −0.427284
\(78\) −5.30267e7 −0.162207
\(79\) 4.35016e8 1.25656 0.628280 0.777987i \(-0.283759\pi\)
0.628280 + 0.777987i \(0.283759\pi\)
\(80\) −5.50210e6 −0.0150184
\(81\) −4.82665e8 −1.24584
\(82\) 6.79612e8 1.65997
\(83\) 5.43977e8 1.25814 0.629071 0.777348i \(-0.283436\pi\)
0.629071 + 0.777348i \(0.283436\pi\)
\(84\) 5.30414e8 1.16241
\(85\) 680803. 0.00141461
\(86\) 1.14625e9 2.25962
\(87\) −5.89986e8 −1.10409
\(88\) 4.54926e7 0.0808665
\(89\) −3.73265e8 −0.630612 −0.315306 0.948990i \(-0.602107\pi\)
−0.315306 + 0.948990i \(0.602107\pi\)
\(90\) 6.34993e6 0.0102018
\(91\) −6.84642e7 −0.104659
\(92\) 4.69974e8 0.683956
\(93\) −7.25522e8 −1.00572
\(94\) 9.91054e8 1.30925
\(95\) 2.42188e6 0.00305067
\(96\) −1.38171e9 −1.66034
\(97\) −9.35566e8 −1.07300 −0.536502 0.843899i \(-0.680255\pi\)
−0.536502 + 0.843899i \(0.680255\pi\)
\(98\) 2.52092e8 0.276084
\(99\) −2.10164e8 −0.219888
\(100\) −8.47113e8 −0.847113
\(101\) 1.37471e9 1.31451 0.657257 0.753667i \(-0.271717\pi\)
0.657257 + 0.753667i \(0.271717\pi\)
\(102\) 1.97703e8 0.180847
\(103\) 5.76818e8 0.504977 0.252488 0.967600i \(-0.418751\pi\)
0.252488 + 0.967600i \(0.418751\pi\)
\(104\) 2.36308e7 0.0198075
\(105\) 2.27229e7 0.0182437
\(106\) −2.23107e9 −1.71647
\(107\) 1.93168e9 1.42465 0.712325 0.701850i \(-0.247642\pi\)
0.712325 + 0.701850i \(0.247642\pi\)
\(108\) −6.52570e8 −0.461552
\(109\) −1.56006e9 −1.05858 −0.529289 0.848441i \(-0.677541\pi\)
−0.529289 + 0.848441i \(0.677541\pi\)
\(110\) −1.08110e7 −0.00704039
\(111\) −2.50066e9 −1.56351
\(112\) −2.06295e9 −1.23882
\(113\) 3.24522e8 0.187237 0.0936183 0.995608i \(-0.470157\pi\)
0.0936183 + 0.995608i \(0.470157\pi\)
\(114\) 7.03304e8 0.390006
\(115\) 2.01337e7 0.0107345
\(116\) −1.45848e9 −0.747893
\(117\) −1.09169e8 −0.0538594
\(118\) 3.00412e9 1.42642
\(119\) 2.55259e8 0.116686
\(120\) −7.84297e6 −0.00345275
\(121\) −2.00014e9 −0.848253
\(122\) 5.19287e9 2.12221
\(123\) 3.87785e9 1.52763
\(124\) −1.79353e9 −0.681259
\(125\) −7.25870e7 −0.0265928
\(126\) 2.38083e9 0.841514
\(127\) −2.50936e9 −0.855946 −0.427973 0.903792i \(-0.640772\pi\)
−0.427973 + 0.903792i \(0.640772\pi\)
\(128\) 1.24620e9 0.410339
\(129\) 6.54047e9 2.07948
\(130\) −5.61568e6 −0.00172448
\(131\) −4.96195e9 −1.47208 −0.736041 0.676937i \(-0.763307\pi\)
−0.736041 + 0.676937i \(0.763307\pi\)
\(132\) −1.43994e9 −0.412821
\(133\) 9.08055e8 0.251640
\(134\) 4.17906e9 1.11972
\(135\) −2.79561e7 −0.00724393
\(136\) −8.81044e7 −0.0220837
\(137\) 1.27017e9 0.308048 0.154024 0.988067i \(-0.450777\pi\)
0.154024 + 0.988067i \(0.450777\pi\)
\(138\) 5.84674e9 1.37233
\(139\) −6.65931e9 −1.51308 −0.756541 0.653946i \(-0.773112\pi\)
−0.756541 + 0.653946i \(0.773112\pi\)
\(140\) 5.61725e7 0.0123580
\(141\) 5.65493e9 1.20487
\(142\) −2.34802e9 −0.484624
\(143\) 1.85863e8 0.0371690
\(144\) −3.28945e9 −0.637517
\(145\) −6.24813e7 −0.0117380
\(146\) −3.20751e8 −0.0584226
\(147\) 1.43843e9 0.254074
\(148\) −6.18179e9 −1.05910
\(149\) −5.88858e9 −0.978752 −0.489376 0.872073i \(-0.662775\pi\)
−0.489376 + 0.872073i \(0.662775\pi\)
\(150\) −1.05386e10 −1.69970
\(151\) −9.02631e9 −1.41291 −0.706454 0.707759i \(-0.749706\pi\)
−0.706454 + 0.707759i \(0.749706\pi\)
\(152\) −3.13421e8 −0.0476247
\(153\) 4.07020e8 0.0600488
\(154\) −4.05344e9 −0.580739
\(155\) −7.68350e7 −0.0106922
\(156\) −7.47968e8 −0.101117
\(157\) 1.41058e10 1.85288 0.926442 0.376437i \(-0.122851\pi\)
0.926442 + 0.376437i \(0.122851\pi\)
\(158\) 1.33784e10 1.70784
\(159\) −1.27304e10 −1.57963
\(160\) −1.46327e8 −0.0176517
\(161\) 7.54889e9 0.885455
\(162\) −1.48438e10 −1.69328
\(163\) −5.08618e9 −0.564349 −0.282174 0.959363i \(-0.591056\pi\)
−0.282174 + 0.959363i \(0.591056\pi\)
\(164\) 9.58628e9 1.03479
\(165\) −6.16870e7 −0.00647912
\(166\) 1.67294e10 1.70999
\(167\) 1.58605e10 1.57795 0.788973 0.614428i \(-0.210613\pi\)
0.788973 + 0.614428i \(0.210613\pi\)
\(168\) −2.94063e9 −0.284806
\(169\) −1.05080e10 −0.990896
\(170\) 2.09373e7 0.00192265
\(171\) 1.44793e9 0.129498
\(172\) 1.61684e10 1.40861
\(173\) −8.55171e9 −0.725848 −0.362924 0.931819i \(-0.618221\pi\)
−0.362924 + 0.931819i \(0.618221\pi\)
\(174\) −1.81443e10 −1.50062
\(175\) −1.36066e10 −1.09668
\(176\) 5.60039e9 0.439958
\(177\) 1.71414e10 1.31270
\(178\) −1.14793e10 −0.857090
\(179\) −1.14032e10 −0.830207 −0.415103 0.909774i \(-0.636255\pi\)
−0.415103 + 0.909774i \(0.636255\pi\)
\(180\) 8.95690e7 0.00635962
\(181\) 2.11191e10 1.46258 0.731292 0.682064i \(-0.238918\pi\)
0.731292 + 0.682064i \(0.238918\pi\)
\(182\) −2.10554e9 −0.142246
\(183\) 2.96304e10 1.95302
\(184\) −2.60555e9 −0.167579
\(185\) −2.64828e8 −0.0166223
\(186\) −2.23126e10 −1.36692
\(187\) −6.92965e8 −0.0414404
\(188\) 1.39793e10 0.816161
\(189\) −1.04818e10 −0.597528
\(190\) 7.44820e7 0.00414629
\(191\) −5.43960e8 −0.0295744 −0.0147872 0.999891i \(-0.504707\pi\)
−0.0147872 + 0.999891i \(0.504707\pi\)
\(192\) −1.58924e10 −0.843982
\(193\) 6.38397e9 0.331194 0.165597 0.986193i \(-0.447045\pi\)
0.165597 + 0.986193i \(0.447045\pi\)
\(194\) −2.87722e10 −1.45836
\(195\) −3.20429e7 −0.00158700
\(196\) 3.55588e9 0.172106
\(197\) 3.17781e10 1.50325 0.751624 0.659592i \(-0.229271\pi\)
0.751624 + 0.659592i \(0.229271\pi\)
\(198\) −6.46336e9 −0.298858
\(199\) −1.21029e10 −0.547082 −0.273541 0.961860i \(-0.588195\pi\)
−0.273541 + 0.961860i \(0.588195\pi\)
\(200\) 4.69642e9 0.207554
\(201\) 2.38456e10 1.03045
\(202\) 4.22776e10 1.78661
\(203\) −2.34267e10 −0.968229
\(204\) 2.78870e9 0.112737
\(205\) 4.10676e8 0.0162408
\(206\) 1.77394e10 0.686335
\(207\) 1.20370e10 0.455670
\(208\) 2.90909e9 0.107763
\(209\) −2.46514e9 −0.0893683
\(210\) 6.98817e8 0.0247957
\(211\) 2.05788e10 0.714743 0.357372 0.933962i \(-0.383673\pi\)
0.357372 + 0.933962i \(0.383673\pi\)
\(212\) −3.14704e10 −1.07002
\(213\) −1.33978e10 −0.445989
\(214\) 5.94066e10 1.93630
\(215\) 6.92655e8 0.0221077
\(216\) 3.61787e9 0.113086
\(217\) −2.88084e10 −0.881963
\(218\) −4.79780e10 −1.43876
\(219\) −1.83020e9 −0.0537650
\(220\) −1.52494e8 −0.00438885
\(221\) −3.59956e8 −0.0101504
\(222\) −7.69050e10 −2.12504
\(223\) −1.86530e10 −0.505100 −0.252550 0.967584i \(-0.581269\pi\)
−0.252550 + 0.967584i \(0.581269\pi\)
\(224\) −5.48637e10 −1.45603
\(225\) −2.16963e10 −0.564370
\(226\) 9.98029e9 0.254481
\(227\) −3.96935e10 −0.992208 −0.496104 0.868263i \(-0.665237\pi\)
−0.496104 + 0.868263i \(0.665237\pi\)
\(228\) 9.92046e9 0.243122
\(229\) −5.29833e10 −1.27315 −0.636575 0.771215i \(-0.719649\pi\)
−0.636575 + 0.771215i \(0.719649\pi\)
\(230\) 6.19188e8 0.0145897
\(231\) −2.31289e10 −0.534441
\(232\) 8.08586e9 0.183244
\(233\) 2.54211e10 0.565058 0.282529 0.959259i \(-0.408827\pi\)
0.282529 + 0.959259i \(0.408827\pi\)
\(234\) −3.35735e9 −0.0732024
\(235\) 5.98874e8 0.0128094
\(236\) 4.23746e10 0.889204
\(237\) 7.63368e10 1.57169
\(238\) 7.85021e9 0.158593
\(239\) 4.24244e10 0.841056 0.420528 0.907280i \(-0.361845\pi\)
0.420528 + 0.907280i \(0.361845\pi\)
\(240\) −9.65512e8 −0.0187848
\(241\) 4.99900e10 0.954568 0.477284 0.878749i \(-0.341621\pi\)
0.477284 + 0.878749i \(0.341621\pi\)
\(242\) −6.15119e10 −1.15289
\(243\) −5.50890e10 −1.01353
\(244\) 7.32480e10 1.32295
\(245\) 1.52334e8 0.00270115
\(246\) 1.19259e11 2.07626
\(247\) −1.28050e9 −0.0218899
\(248\) 9.94341e9 0.166918
\(249\) 9.54575e10 1.57367
\(250\) −2.23233e9 −0.0361434
\(251\) −3.26128e10 −0.518628 −0.259314 0.965793i \(-0.583496\pi\)
−0.259314 + 0.965793i \(0.583496\pi\)
\(252\) 3.35829e10 0.524584
\(253\) −2.04933e10 −0.314463
\(254\) −7.71725e10 −1.16335
\(255\) 1.19468e8 0.00176938
\(256\) 8.46946e10 1.23247
\(257\) −1.30374e10 −0.186420 −0.0932100 0.995646i \(-0.529713\pi\)
−0.0932100 + 0.995646i \(0.529713\pi\)
\(258\) 2.01144e11 2.82631
\(259\) −9.92942e10 −1.37112
\(260\) −7.92121e7 −0.00107501
\(261\) −3.73546e10 −0.498267
\(262\) −1.52599e11 −2.00077
\(263\) 8.97581e10 1.15684 0.578419 0.815740i \(-0.303670\pi\)
0.578419 + 0.815740i \(0.303670\pi\)
\(264\) 7.98307e9 0.101147
\(265\) −1.34819e9 −0.0167937
\(266\) 2.79262e10 0.342014
\(267\) −6.55007e10 −0.788761
\(268\) 5.89478e10 0.698010
\(269\) −1.08597e11 −1.26454 −0.632271 0.774748i \(-0.717877\pi\)
−0.632271 + 0.774748i \(0.717877\pi\)
\(270\) −8.59757e8 −0.00984553
\(271\) −4.42538e10 −0.498412 −0.249206 0.968450i \(-0.580170\pi\)
−0.249206 + 0.968450i \(0.580170\pi\)
\(272\) −1.08461e10 −0.120148
\(273\) −1.20141e10 −0.130906
\(274\) 3.90625e10 0.418681
\(275\) 3.69386e10 0.389478
\(276\) 8.24713e10 0.855484
\(277\) 1.54037e10 0.157205 0.0786025 0.996906i \(-0.474954\pi\)
0.0786025 + 0.996906i \(0.474954\pi\)
\(278\) −2.04799e11 −2.05649
\(279\) −4.59360e10 −0.453873
\(280\) −3.11422e8 −0.00302787
\(281\) −1.11836e11 −1.07005 −0.535025 0.844836i \(-0.679698\pi\)
−0.535025 + 0.844836i \(0.679698\pi\)
\(282\) 1.73911e11 1.63759
\(283\) −1.19515e11 −1.10760 −0.553802 0.832649i \(-0.686823\pi\)
−0.553802 + 0.832649i \(0.686823\pi\)
\(284\) −3.31201e10 −0.302105
\(285\) 4.24992e8 0.00381574
\(286\) 5.71600e9 0.0505179
\(287\) 1.53978e11 1.33965
\(288\) −8.74822e10 −0.749296
\(289\) −1.17246e11 −0.988683
\(290\) −1.92154e9 −0.0159536
\(291\) −1.64174e11 −1.34210
\(292\) −4.52436e9 −0.0364195
\(293\) 1.57483e11 1.24833 0.624164 0.781293i \(-0.285440\pi\)
0.624164 + 0.781293i \(0.285440\pi\)
\(294\) 4.42372e10 0.345322
\(295\) 1.81533e9 0.0139558
\(296\) 3.42720e10 0.259494
\(297\) 2.84555e10 0.212208
\(298\) −1.81097e11 −1.33026
\(299\) −1.06451e10 −0.0770248
\(300\) −1.48652e11 −1.05956
\(301\) 2.59703e11 1.82359
\(302\) −2.77594e11 −1.92034
\(303\) 2.41235e11 1.64418
\(304\) −3.85838e10 −0.259104
\(305\) 3.13795e9 0.0207633
\(306\) 1.25174e10 0.0816148
\(307\) −1.69212e11 −1.08720 −0.543599 0.839345i \(-0.682939\pi\)
−0.543599 + 0.839345i \(0.682939\pi\)
\(308\) −5.71759e10 −0.362022
\(309\) 1.01220e11 0.631619
\(310\) −2.36297e9 −0.0145322
\(311\) 8.35259e10 0.506290 0.253145 0.967428i \(-0.418535\pi\)
0.253145 + 0.967428i \(0.418535\pi\)
\(312\) 4.14676e9 0.0247750
\(313\) −1.18434e11 −0.697474 −0.348737 0.937221i \(-0.613389\pi\)
−0.348737 + 0.937221i \(0.613389\pi\)
\(314\) 4.33806e11 2.51833
\(315\) 1.43869e9 0.00823322
\(316\) 1.88709e11 1.06464
\(317\) 1.69530e11 0.942933 0.471466 0.881884i \(-0.343725\pi\)
0.471466 + 0.881884i \(0.343725\pi\)
\(318\) −3.91510e11 −2.14695
\(319\) 6.35974e10 0.343860
\(320\) −1.68305e9 −0.00897268
\(321\) 3.38972e11 1.78193
\(322\) 2.32157e11 1.20346
\(323\) 4.77418e9 0.0244055
\(324\) −2.09380e11 −1.05556
\(325\) 1.91875e10 0.0953990
\(326\) −1.56420e11 −0.767029
\(327\) −2.73761e11 −1.32406
\(328\) −5.31466e10 −0.253538
\(329\) 2.24541e11 1.05661
\(330\) −1.89711e9 −0.00880604
\(331\) 1.47461e11 0.675231 0.337616 0.941284i \(-0.390380\pi\)
0.337616 + 0.941284i \(0.390380\pi\)
\(332\) 2.35977e11 1.06598
\(333\) −1.58328e11 −0.705601
\(334\) 4.87771e11 2.14465
\(335\) 2.52532e9 0.0109551
\(336\) −3.62008e11 −1.54950
\(337\) 1.06655e11 0.450449 0.225224 0.974307i \(-0.427688\pi\)
0.225224 + 0.974307i \(0.427688\pi\)
\(338\) −3.23160e11 −1.34677
\(339\) 5.69473e10 0.234193
\(340\) 2.95331e8 0.00119855
\(341\) 7.82076e10 0.313223
\(342\) 4.45293e10 0.176006
\(343\) −2.24061e11 −0.874064
\(344\) −8.96382e10 −0.345128
\(345\) 3.53307e9 0.0134266
\(346\) −2.62998e11 −0.986529
\(347\) −1.42482e10 −0.0527566 −0.0263783 0.999652i \(-0.508397\pi\)
−0.0263783 + 0.999652i \(0.508397\pi\)
\(348\) −2.55935e11 −0.935456
\(349\) 9.88298e10 0.356594 0.178297 0.983977i \(-0.442941\pi\)
0.178297 + 0.983977i \(0.442941\pi\)
\(350\) −4.18456e11 −1.49054
\(351\) 1.47810e10 0.0519784
\(352\) 1.48941e11 0.517098
\(353\) −1.59794e11 −0.547739 −0.273870 0.961767i \(-0.588304\pi\)
−0.273870 + 0.961767i \(0.588304\pi\)
\(354\) 5.27164e11 1.78415
\(355\) −1.41886e9 −0.00474147
\(356\) −1.61922e11 −0.534294
\(357\) 4.47931e10 0.145950
\(358\) −3.50691e11 −1.12837
\(359\) 2.23598e11 0.710466 0.355233 0.934778i \(-0.384401\pi\)
0.355233 + 0.934778i \(0.384401\pi\)
\(360\) −4.96573e8 −0.00155819
\(361\) 1.69836e10 0.0526316
\(362\) 6.49492e11 1.98786
\(363\) −3.50985e11 −1.06098
\(364\) −2.96997e10 −0.0886738
\(365\) −1.93824e8 −0.000571595 0
\(366\) 9.11248e11 2.65443
\(367\) 4.54458e11 1.30767 0.653833 0.756639i \(-0.273160\pi\)
0.653833 + 0.756639i \(0.273160\pi\)
\(368\) −3.20757e11 −0.911719
\(369\) 2.45524e11 0.689406
\(370\) −8.14447e9 −0.0225920
\(371\) −5.05490e11 −1.38525
\(372\) −3.14731e11 −0.852110
\(373\) 2.97149e11 0.794849 0.397424 0.917635i \(-0.369904\pi\)
0.397424 + 0.917635i \(0.369904\pi\)
\(374\) −2.13113e10 −0.0563233
\(375\) −1.27376e10 −0.0332619
\(376\) −7.75018e10 −0.199971
\(377\) 3.30353e10 0.0842252
\(378\) −3.22356e11 −0.812125
\(379\) −7.10294e11 −1.76832 −0.884161 0.467182i \(-0.845269\pi\)
−0.884161 + 0.467182i \(0.845269\pi\)
\(380\) 1.05061e9 0.00258472
\(381\) −4.40344e11 −1.07061
\(382\) −1.67288e10 −0.0401958
\(383\) −3.65667e11 −0.868342 −0.434171 0.900830i \(-0.642959\pi\)
−0.434171 + 0.900830i \(0.642959\pi\)
\(384\) 2.18684e11 0.513247
\(385\) −2.44941e9 −0.00568184
\(386\) 1.96332e11 0.450140
\(387\) 4.14106e11 0.938452
\(388\) −4.05847e11 −0.909117
\(389\) −5.61998e11 −1.24440 −0.622202 0.782856i \(-0.713762\pi\)
−0.622202 + 0.782856i \(0.713762\pi\)
\(390\) −9.85443e8 −0.00215695
\(391\) 3.96889e10 0.0858764
\(392\) −1.97139e10 −0.0421682
\(393\) −8.70727e11 −1.84126
\(394\) 9.77300e11 2.04312
\(395\) 8.08430e9 0.0167092
\(396\) −9.11690e10 −0.186303
\(397\) −4.61380e11 −0.932183 −0.466092 0.884736i \(-0.654338\pi\)
−0.466092 + 0.884736i \(0.654338\pi\)
\(398\) −3.72212e11 −0.743561
\(399\) 1.59346e11 0.314748
\(400\) 5.78155e11 1.12921
\(401\) 4.85965e11 0.938545 0.469273 0.883053i \(-0.344516\pi\)
0.469273 + 0.883053i \(0.344516\pi\)
\(402\) 7.33345e11 1.40053
\(403\) 4.06244e10 0.0767210
\(404\) 5.96348e11 1.11374
\(405\) −8.96982e9 −0.0165667
\(406\) −7.20459e11 −1.31596
\(407\) 2.69559e11 0.486943
\(408\) −1.54606e10 −0.0276221
\(409\) −7.75782e11 −1.37083 −0.685417 0.728151i \(-0.740380\pi\)
−0.685417 + 0.728151i \(0.740380\pi\)
\(410\) 1.26299e10 0.0220735
\(411\) 2.22890e11 0.385303
\(412\) 2.50223e11 0.427848
\(413\) 6.80636e11 1.15117
\(414\) 3.70183e11 0.619320
\(415\) 1.01092e10 0.0167302
\(416\) 7.73666e10 0.126658
\(417\) −1.16858e12 −1.89254
\(418\) −7.58125e10 −0.121464
\(419\) 8.05113e11 1.27613 0.638063 0.769984i \(-0.279736\pi\)
0.638063 + 0.769984i \(0.279736\pi\)
\(420\) 9.85718e9 0.0154572
\(421\) −2.23332e11 −0.346482 −0.173241 0.984879i \(-0.555424\pi\)
−0.173241 + 0.984879i \(0.555424\pi\)
\(422\) 6.32879e11 0.971436
\(423\) 3.58039e11 0.543749
\(424\) 1.74473e11 0.262169
\(425\) −7.15381e10 −0.106362
\(426\) −4.12032e11 −0.606161
\(427\) 1.17654e12 1.71270
\(428\) 8.37960e11 1.20705
\(429\) 3.26153e10 0.0464905
\(430\) 2.13018e10 0.0300475
\(431\) 1.41887e12 1.98059 0.990294 0.138985i \(-0.0443840\pi\)
0.990294 + 0.138985i \(0.0443840\pi\)
\(432\) 4.45379e11 0.615252
\(433\) 2.54646e10 0.0348131 0.0174065 0.999848i \(-0.494459\pi\)
0.0174065 + 0.999848i \(0.494459\pi\)
\(434\) −8.85969e11 −1.19871
\(435\) −1.09643e10 −0.0146817
\(436\) −6.76754e11 −0.896895
\(437\) 1.41189e11 0.185197
\(438\) −5.62856e10 −0.0730742
\(439\) −5.13529e11 −0.659895 −0.329947 0.943999i \(-0.607031\pi\)
−0.329947 + 0.943999i \(0.607031\pi\)
\(440\) 8.45431e8 0.00107533
\(441\) 9.10733e10 0.114661
\(442\) −1.10700e10 −0.0137959
\(443\) 1.09746e12 1.35386 0.676929 0.736048i \(-0.263310\pi\)
0.676929 + 0.736048i \(0.263310\pi\)
\(444\) −1.08478e12 −1.32471
\(445\) −6.93672e9 −0.00838561
\(446\) −5.73652e11 −0.686502
\(447\) −1.03333e12 −1.22421
\(448\) −6.31040e11 −0.740127
\(449\) 9.63066e11 1.11827 0.559136 0.829076i \(-0.311133\pi\)
0.559136 + 0.829076i \(0.311133\pi\)
\(450\) −6.67244e11 −0.767058
\(451\) −4.18012e11 −0.475767
\(452\) 1.40777e11 0.158639
\(453\) −1.58394e12 −1.76725
\(454\) −1.22073e12 −1.34855
\(455\) −1.27233e9 −0.00139171
\(456\) −5.49993e10 −0.0595683
\(457\) −6.89529e11 −0.739486 −0.369743 0.929134i \(-0.620554\pi\)
−0.369743 + 0.929134i \(0.620554\pi\)
\(458\) −1.62944e12 −1.73039
\(459\) −5.51091e10 −0.0579517
\(460\) 8.73396e9 0.00909496
\(461\) −1.22997e12 −1.26835 −0.634177 0.773188i \(-0.718661\pi\)
−0.634177 + 0.773188i \(0.718661\pi\)
\(462\) −7.11301e11 −0.726381
\(463\) −2.76406e11 −0.279533 −0.139767 0.990184i \(-0.544635\pi\)
−0.139767 + 0.990184i \(0.544635\pi\)
\(464\) 9.95413e11 0.996948
\(465\) −1.34831e10 −0.0133737
\(466\) 7.81797e11 0.767993
\(467\) −9.83451e11 −0.956812 −0.478406 0.878139i \(-0.658785\pi\)
−0.478406 + 0.878139i \(0.658785\pi\)
\(468\) −4.73572e10 −0.0456330
\(469\) 9.46842e11 0.903649
\(470\) 1.84177e10 0.0174098
\(471\) 2.47529e12 2.31756
\(472\) −2.34926e11 −0.217867
\(473\) −7.05029e11 −0.647637
\(474\) 2.34765e12 2.13615
\(475\) −2.54488e11 −0.229375
\(476\) 1.10731e11 0.0988641
\(477\) −8.06021e11 −0.712875
\(478\) 1.30471e12 1.14311
\(479\) −1.06153e12 −0.921343 −0.460672 0.887571i \(-0.652391\pi\)
−0.460672 + 0.887571i \(0.652391\pi\)
\(480\) −2.56776e10 −0.0220785
\(481\) 1.40021e11 0.119272
\(482\) 1.53739e12 1.29739
\(483\) 1.32468e12 1.10752
\(484\) −8.67656e11 −0.718693
\(485\) −1.73865e10 −0.0142684
\(486\) −1.69420e12 −1.37753
\(487\) 1.77513e11 0.143005 0.0715024 0.997440i \(-0.477221\pi\)
0.0715024 + 0.997440i \(0.477221\pi\)
\(488\) −4.06089e11 −0.324140
\(489\) −8.92526e11 −0.705880
\(490\) 4.68485e9 0.00367125
\(491\) 1.81491e12 1.40925 0.704625 0.709580i \(-0.251115\pi\)
0.704625 + 0.709580i \(0.251115\pi\)
\(492\) 1.68221e12 1.29430
\(493\) −1.23168e11 −0.0939043
\(494\) −3.93803e10 −0.0297514
\(495\) −3.90568e9 −0.00292397
\(496\) 1.22409e12 0.908124
\(497\) −5.31986e11 −0.391108
\(498\) 2.93568e12 2.13884
\(499\) −1.01252e12 −0.731060 −0.365530 0.930800i \(-0.619112\pi\)
−0.365530 + 0.930800i \(0.619112\pi\)
\(500\) −3.14882e10 −0.0225311
\(501\) 2.78321e12 1.97368
\(502\) −1.00297e12 −0.704888
\(503\) 1.30672e11 0.0910176 0.0455088 0.998964i \(-0.485509\pi\)
0.0455088 + 0.998964i \(0.485509\pi\)
\(504\) −1.86184e11 −0.128530
\(505\) 2.55475e10 0.0174798
\(506\) −6.30249e11 −0.427400
\(507\) −1.84394e12 −1.23940
\(508\) −1.08856e12 −0.725211
\(509\) 4.82132e11 0.318373 0.159186 0.987249i \(-0.449113\pi\)
0.159186 + 0.987249i \(0.449113\pi\)
\(510\) 3.67409e9 0.00240483
\(511\) −7.26719e10 −0.0471490
\(512\) 1.96663e12 1.26476
\(513\) −1.96044e11 −0.124976
\(514\) −4.00951e11 −0.253371
\(515\) 1.07195e10 0.00671497
\(516\) 2.83725e12 1.76187
\(517\) −6.09572e11 −0.375248
\(518\) −3.05368e12 −1.86354
\(519\) −1.50066e12 −0.907881
\(520\) 4.39154e8 0.000263391 0
\(521\) 9.94202e11 0.591160 0.295580 0.955318i \(-0.404487\pi\)
0.295580 + 0.955318i \(0.404487\pi\)
\(522\) −1.14880e12 −0.677215
\(523\) 1.89994e12 1.11041 0.555203 0.831715i \(-0.312640\pi\)
0.555203 + 0.831715i \(0.312640\pi\)
\(524\) −2.15249e12 −1.24724
\(525\) −2.38770e12 −1.37171
\(526\) 2.76041e12 1.57231
\(527\) −1.51463e11 −0.0855378
\(528\) 9.82760e11 0.550294
\(529\) −6.27416e11 −0.348341
\(530\) −4.14621e10 −0.0228250
\(531\) 1.08530e12 0.592412
\(532\) 3.93913e11 0.213205
\(533\) −2.17134e11 −0.116535
\(534\) −2.01440e12 −1.07204
\(535\) 3.58982e10 0.0189444
\(536\) −3.26809e11 −0.171022
\(537\) −2.00103e12 −1.03841
\(538\) −3.33978e12 −1.71869
\(539\) −1.55055e11 −0.0791292
\(540\) −1.21273e10 −0.00613752
\(541\) 1.36007e12 0.682610 0.341305 0.939953i \(-0.389131\pi\)
0.341305 + 0.939953i \(0.389131\pi\)
\(542\) −1.36097e12 −0.677412
\(543\) 3.70599e12 1.82938
\(544\) −2.88451e11 −0.141214
\(545\) −2.89921e10 −0.0140765
\(546\) −3.69481e11 −0.177920
\(547\) 3.58318e12 1.71130 0.855649 0.517557i \(-0.173158\pi\)
0.855649 + 0.517557i \(0.173158\pi\)
\(548\) 5.50997e11 0.260998
\(549\) 1.87603e12 0.881382
\(550\) 1.13600e12 0.529356
\(551\) −4.38154e11 −0.202509
\(552\) −4.57223e11 −0.209605
\(553\) 3.03112e12 1.37829
\(554\) 4.73723e11 0.213664
\(555\) −4.64722e10 −0.0207910
\(556\) −2.88880e12 −1.28198
\(557\) 2.74318e12 1.20755 0.603775 0.797154i \(-0.293662\pi\)
0.603775 + 0.797154i \(0.293662\pi\)
\(558\) −1.41271e12 −0.616877
\(559\) −3.66223e11 −0.158632
\(560\) −3.83377e10 −0.0164733
\(561\) −1.21602e11 −0.0518331
\(562\) −3.43939e12 −1.45435
\(563\) −3.94195e12 −1.65357 −0.826785 0.562517i \(-0.809833\pi\)
−0.826785 + 0.562517i \(0.809833\pi\)
\(564\) 2.45310e12 1.02084
\(565\) 6.03089e9 0.00248979
\(566\) −3.67555e12 −1.50539
\(567\) −3.36313e12 −1.36653
\(568\) 1.83619e11 0.0740200
\(569\) −2.71080e12 −1.08416 −0.542078 0.840328i \(-0.682362\pi\)
−0.542078 + 0.840328i \(0.682362\pi\)
\(570\) 1.30701e10 0.00518613
\(571\) −1.39653e12 −0.549777 −0.274889 0.961476i \(-0.588641\pi\)
−0.274889 + 0.961476i \(0.588641\pi\)
\(572\) 8.06271e10 0.0314919
\(573\) −9.54544e10 −0.0369913
\(574\) 4.73543e12 1.82077
\(575\) −2.11562e12 −0.807111
\(576\) −1.00622e12 −0.380882
\(577\) 1.22532e12 0.460213 0.230106 0.973165i \(-0.426093\pi\)
0.230106 + 0.973165i \(0.426093\pi\)
\(578\) −3.60576e12 −1.34376
\(579\) 1.12026e12 0.414254
\(580\) −2.71043e10 −0.00994517
\(581\) 3.79034e12 1.38002
\(582\) −5.04897e12 −1.82410
\(583\) 1.37228e12 0.491964
\(584\) 2.50832e10 0.00892329
\(585\) −2.02878e9 −0.000716199 0
\(586\) 4.84320e12 1.69665
\(587\) −1.64735e11 −0.0572683 −0.0286341 0.999590i \(-0.509116\pi\)
−0.0286341 + 0.999590i \(0.509116\pi\)
\(588\) 6.23988e11 0.215268
\(589\) −5.38810e11 −0.184466
\(590\) 5.58283e10 0.0189679
\(591\) 5.57645e12 1.88024
\(592\) 4.21907e12 1.41179
\(593\) 3.61210e12 1.19954 0.599768 0.800174i \(-0.295259\pi\)
0.599768 + 0.800174i \(0.295259\pi\)
\(594\) 8.75116e11 0.288421
\(595\) 4.74372e9 0.00155165
\(596\) −2.55446e12 −0.829260
\(597\) −2.12383e12 −0.684283
\(598\) −3.27379e11 −0.104688
\(599\) −3.73918e12 −1.18674 −0.593369 0.804930i \(-0.702203\pi\)
−0.593369 + 0.804930i \(0.702203\pi\)
\(600\) 8.24131e11 0.259606
\(601\) −5.13623e12 −1.60587 −0.802934 0.596068i \(-0.796729\pi\)
−0.802934 + 0.596068i \(0.796729\pi\)
\(602\) 7.98687e12 2.47852
\(603\) 1.50977e12 0.465033
\(604\) −3.91560e12 −1.19710
\(605\) −3.71704e10 −0.0112797
\(606\) 7.41890e12 2.23467
\(607\) −2.95357e12 −0.883075 −0.441537 0.897243i \(-0.645567\pi\)
−0.441537 + 0.897243i \(0.645567\pi\)
\(608\) −1.02613e12 −0.304534
\(609\) −4.11092e12 −1.21105
\(610\) 9.65039e10 0.0282202
\(611\) −3.16639e11 −0.0919133
\(612\) 1.76565e11 0.0508771
\(613\) 3.52319e12 1.00778 0.503888 0.863769i \(-0.331902\pi\)
0.503888 + 0.863769i \(0.331902\pi\)
\(614\) −5.20392e12 −1.47765
\(615\) 7.20657e10 0.0203138
\(616\) 3.16985e11 0.0887003
\(617\) −4.38912e12 −1.21926 −0.609628 0.792688i \(-0.708681\pi\)
−0.609628 + 0.792688i \(0.708681\pi\)
\(618\) 3.11292e12 0.858459
\(619\) 1.94384e12 0.532174 0.266087 0.963949i \(-0.414269\pi\)
0.266087 + 0.963949i \(0.414269\pi\)
\(620\) −3.33309e10 −0.00905909
\(621\) −1.62976e12 −0.439756
\(622\) 2.56874e12 0.688120
\(623\) −2.60085e12 −0.691701
\(624\) 5.10488e11 0.134789
\(625\) 3.81267e12 0.999470
\(626\) −3.64231e12 −0.947965
\(627\) −4.32584e11 −0.111781
\(628\) 6.11906e12 1.56988
\(629\) −5.22048e11 −0.132979
\(630\) 4.42452e10 0.0111901
\(631\) −3.30231e12 −0.829250 −0.414625 0.909992i \(-0.636087\pi\)
−0.414625 + 0.909992i \(0.636087\pi\)
\(632\) −1.04621e12 −0.260851
\(633\) 3.61119e12 0.893992
\(634\) 5.21371e12 1.28158
\(635\) −4.66338e10 −0.0113820
\(636\) −5.52245e12 −1.33837
\(637\) −8.05424e10 −0.0193819
\(638\) 1.95587e12 0.467354
\(639\) −8.48271e11 −0.201271
\(640\) 2.31593e10 0.00545652
\(641\) 1.30981e12 0.306441 0.153220 0.988192i \(-0.451036\pi\)
0.153220 + 0.988192i \(0.451036\pi\)
\(642\) 1.04247e13 2.42190
\(643\) −2.85583e12 −0.658845 −0.329422 0.944183i \(-0.606854\pi\)
−0.329422 + 0.944183i \(0.606854\pi\)
\(644\) 3.27470e12 0.750213
\(645\) 1.21548e11 0.0276521
\(646\) 1.46824e11 0.0331705
\(647\) 5.71955e12 1.28319 0.641597 0.767042i \(-0.278272\pi\)
0.641597 + 0.767042i \(0.278272\pi\)
\(648\) 1.16081e12 0.258626
\(649\) −1.84776e12 −0.408831
\(650\) 5.90090e11 0.129661
\(651\) −5.05532e12 −1.10315
\(652\) −2.20638e12 −0.478152
\(653\) 5.16405e12 1.11143 0.555714 0.831373i \(-0.312445\pi\)
0.555714 + 0.831373i \(0.312445\pi\)
\(654\) −8.41920e12 −1.79958
\(655\) −9.22126e10 −0.0195751
\(656\) −6.54264e12 −1.37939
\(657\) −1.15878e11 −0.0242637
\(658\) 6.90550e12 1.43608
\(659\) −5.94875e12 −1.22869 −0.614343 0.789039i \(-0.710579\pi\)
−0.614343 + 0.789039i \(0.710579\pi\)
\(660\) −2.67598e10 −0.00548952
\(661\) −3.54759e12 −0.722815 −0.361407 0.932408i \(-0.617704\pi\)
−0.361407 + 0.932408i \(0.617704\pi\)
\(662\) 4.53501e12 0.917734
\(663\) −6.31653e10 −0.0126960
\(664\) −1.30826e12 −0.261179
\(665\) 1.68752e10 0.00334620
\(666\) −4.86920e12 −0.959010
\(667\) −3.64249e12 −0.712577
\(668\) 6.88025e12 1.33694
\(669\) −3.27325e12 −0.631773
\(670\) 7.76634e10 0.0148895
\(671\) −3.19400e12 −0.608252
\(672\) −9.62752e12 −1.82118
\(673\) −4.90748e12 −0.922127 −0.461064 0.887367i \(-0.652532\pi\)
−0.461064 + 0.887367i \(0.652532\pi\)
\(674\) 3.28004e12 0.612223
\(675\) 2.93760e12 0.544660
\(676\) −4.55834e12 −0.839549
\(677\) 4.39260e12 0.803661 0.401830 0.915714i \(-0.368374\pi\)
0.401830 + 0.915714i \(0.368374\pi\)
\(678\) 1.75135e12 0.318302
\(679\) −6.51886e12 −1.17695
\(680\) −1.63733e9 −0.000293660 0
\(681\) −6.96544e12 −1.24104
\(682\) 2.40518e12 0.425714
\(683\) 9.86928e12 1.73537 0.867685 0.497114i \(-0.165607\pi\)
0.867685 + 0.497114i \(0.165607\pi\)
\(684\) 6.28108e11 0.109719
\(685\) 2.36047e10 0.00409629
\(686\) −6.89075e12 −1.18798
\(687\) −9.29755e12 −1.59244
\(688\) −1.10350e13 −1.87768
\(689\) 7.12820e11 0.120502
\(690\) 1.08655e11 0.0182486
\(691\) 6.23342e12 1.04010 0.520050 0.854136i \(-0.325913\pi\)
0.520050 + 0.854136i \(0.325913\pi\)
\(692\) −3.70972e12 −0.614984
\(693\) −1.46439e12 −0.241189
\(694\) −4.38187e11 −0.0717037
\(695\) −1.23756e11 −0.0201203
\(696\) 1.41891e12 0.229200
\(697\) 8.09554e11 0.129927
\(698\) 3.03940e12 0.484661
\(699\) 4.46091e12 0.706767
\(700\) −5.90254e12 −0.929176
\(701\) 7.27475e12 1.13786 0.568928 0.822388i \(-0.307358\pi\)
0.568928 + 0.822388i \(0.307358\pi\)
\(702\) 4.54573e11 0.0706459
\(703\) −1.85712e12 −0.286775
\(704\) 1.71312e12 0.262851
\(705\) 1.05091e11 0.0160219
\(706\) −4.91427e12 −0.744455
\(707\) 9.57875e12 1.44185
\(708\) 7.43592e12 1.11221
\(709\) 8.89732e12 1.32237 0.661183 0.750225i \(-0.270055\pi\)
0.661183 + 0.750225i \(0.270055\pi\)
\(710\) −4.36355e10 −0.00644432
\(711\) 4.83322e12 0.709290
\(712\) 8.97699e11 0.130909
\(713\) −4.47927e12 −0.649089
\(714\) 1.37756e12 0.198366
\(715\) 3.45406e9 0.000494257 0
\(716\) −4.94667e12 −0.703404
\(717\) 7.44466e12 1.05198
\(718\) 6.87651e12 0.965624
\(719\) 3.34256e12 0.466444 0.233222 0.972424i \(-0.425073\pi\)
0.233222 + 0.972424i \(0.425073\pi\)
\(720\) −6.11308e10 −0.00847743
\(721\) 4.01917e12 0.553896
\(722\) 5.22310e11 0.0715337
\(723\) 8.77228e12 1.19396
\(724\) 9.16142e12 1.23919
\(725\) 6.56547e12 0.882561
\(726\) −1.07941e13 −1.44203
\(727\) 4.10387e12 0.544865 0.272433 0.962175i \(-0.412172\pi\)
0.272433 + 0.962175i \(0.412172\pi\)
\(728\) 1.64656e11 0.0217263
\(729\) −1.66748e11 −0.0218668
\(730\) −5.96082e9 −0.000776878 0
\(731\) 1.36541e12 0.176862
\(732\) 1.28536e13 1.65472
\(733\) −2.80544e12 −0.358949 −0.179474 0.983763i \(-0.557440\pi\)
−0.179474 + 0.983763i \(0.557440\pi\)
\(734\) 1.39763e13 1.77730
\(735\) 2.67317e10 0.00337857
\(736\) −8.53047e12 −1.07158
\(737\) −2.57044e12 −0.320925
\(738\) 7.55080e12 0.937000
\(739\) −1.41237e13 −1.74201 −0.871003 0.491277i \(-0.836530\pi\)
−0.871003 + 0.491277i \(0.836530\pi\)
\(740\) −1.14882e11 −0.0140835
\(741\) −2.24703e11 −0.0273796
\(742\) −1.55457e13 −1.88276
\(743\) −1.18845e13 −1.43064 −0.715319 0.698798i \(-0.753719\pi\)
−0.715319 + 0.698798i \(0.753719\pi\)
\(744\) 1.74488e12 0.208779
\(745\) −1.09433e11 −0.0130150
\(746\) 9.13847e12 1.08031
\(747\) 6.04384e12 0.710183
\(748\) −3.00607e11 −0.0351109
\(749\) 1.34596e13 1.56266
\(750\) −3.91731e11 −0.0452077
\(751\) −1.11983e13 −1.28461 −0.642307 0.766447i \(-0.722023\pi\)
−0.642307 + 0.766447i \(0.722023\pi\)
\(752\) −9.54089e12 −1.08795
\(753\) −5.72291e12 −0.648693
\(754\) 1.01596e12 0.114474
\(755\) −1.67744e11 −0.0187882
\(756\) −4.54700e12 −0.506264
\(757\) −9.01390e12 −0.997657 −0.498829 0.866701i \(-0.666236\pi\)
−0.498829 + 0.866701i \(0.666236\pi\)
\(758\) −2.18443e13 −2.40340
\(759\) −3.59618e12 −0.393327
\(760\) −5.82459e9 −0.000633293 0
\(761\) 1.74817e13 1.88952 0.944760 0.327762i \(-0.106294\pi\)
0.944760 + 0.327762i \(0.106294\pi\)
\(762\) −1.35423e13 −1.45510
\(763\) −1.08703e13 −1.16113
\(764\) −2.35969e11 −0.0250573
\(765\) 7.56403e9 0.000798504 0
\(766\) −1.12457e13 −1.18020
\(767\) −9.59805e11 −0.100139
\(768\) 1.48623e13 1.54156
\(769\) 9.66287e12 0.996409 0.498204 0.867060i \(-0.333993\pi\)
0.498204 + 0.867060i \(0.333993\pi\)
\(770\) −7.53289e10 −0.00772242
\(771\) −2.28781e12 −0.233172
\(772\) 2.76936e12 0.280609
\(773\) −7.02830e12 −0.708016 −0.354008 0.935242i \(-0.615181\pi\)
−0.354008 + 0.935242i \(0.615181\pi\)
\(774\) 1.27353e13 1.27549
\(775\) 8.07374e12 0.803928
\(776\) 2.25003e12 0.222746
\(777\) −1.74242e13 −1.71498
\(778\) −1.72836e13 −1.69132
\(779\) 2.87989e12 0.280193
\(780\) −1.39002e10 −0.00134461
\(781\) 1.44421e12 0.138899
\(782\) 1.22059e12 0.116718
\(783\) 5.05768e12 0.480865
\(784\) −2.42689e12 −0.229418
\(785\) 2.62141e11 0.0246389
\(786\) −2.67782e13 −2.50253
\(787\) 1.54625e13 1.43679 0.718396 0.695635i \(-0.244877\pi\)
0.718396 + 0.695635i \(0.244877\pi\)
\(788\) 1.37853e13 1.27365
\(789\) 1.57508e13 1.44696
\(790\) 2.48623e11 0.0227101
\(791\) 2.26121e12 0.205375
\(792\) 5.05444e11 0.0456467
\(793\) −1.65910e12 −0.148986
\(794\) −1.41892e13 −1.26697
\(795\) −2.36582e11 −0.0210053
\(796\) −5.25024e12 −0.463522
\(797\) −5.78851e12 −0.508164 −0.254082 0.967183i \(-0.581773\pi\)
−0.254082 + 0.967183i \(0.581773\pi\)
\(798\) 4.90050e12 0.427787
\(799\) 1.18054e12 0.102476
\(800\) 1.53759e13 1.32720
\(801\) −4.14714e12 −0.355961
\(802\) 1.49453e13 1.27561
\(803\) 1.97286e11 0.0167447
\(804\) 1.03442e13 0.873062
\(805\) 1.40288e11 0.0117744
\(806\) 1.24936e12 0.104275
\(807\) −1.90567e13 −1.58167
\(808\) −3.30617e12 −0.272881
\(809\) 1.36385e13 1.11943 0.559716 0.828684i \(-0.310910\pi\)
0.559716 + 0.828684i \(0.310910\pi\)
\(810\) −2.75856e11 −0.0225165
\(811\) −3.27696e12 −0.265997 −0.132999 0.991116i \(-0.542461\pi\)
−0.132999 + 0.991116i \(0.542461\pi\)
\(812\) −1.01624e13 −0.820344
\(813\) −7.76568e12 −0.623408
\(814\) 8.28996e12 0.661825
\(815\) −9.45212e10 −0.00750447
\(816\) −1.90329e12 −0.150279
\(817\) 4.85729e12 0.381412
\(818\) −2.38583e13 −1.86315
\(819\) −7.60668e11 −0.0590769
\(820\) 1.78151e11 0.0137602
\(821\) 9.44287e12 0.725370 0.362685 0.931912i \(-0.381860\pi\)
0.362685 + 0.931912i \(0.381860\pi\)
\(822\) 6.85472e12 0.523681
\(823\) 9.97478e12 0.757886 0.378943 0.925420i \(-0.376288\pi\)
0.378943 + 0.925420i \(0.376288\pi\)
\(824\) −1.38724e12 −0.104829
\(825\) 6.48201e12 0.487155
\(826\) 2.09322e13 1.56460
\(827\) −7.36925e12 −0.547834 −0.273917 0.961753i \(-0.588319\pi\)
−0.273917 + 0.961753i \(0.588319\pi\)
\(828\) 5.22162e12 0.386072
\(829\) 6.88866e12 0.506570 0.253285 0.967392i \(-0.418489\pi\)
0.253285 + 0.967392i \(0.418489\pi\)
\(830\) 3.10898e11 0.0227387
\(831\) 2.70305e12 0.196630
\(832\) 8.89867e11 0.0643828
\(833\) 3.00292e11 0.0216093
\(834\) −3.59383e13 −2.57223
\(835\) 2.94750e11 0.0209829
\(836\) −1.06937e12 −0.0757184
\(837\) 6.21957e12 0.438022
\(838\) 2.47603e13 1.73443
\(839\) −1.64491e13 −1.14608 −0.573038 0.819529i \(-0.694235\pi\)
−0.573038 + 0.819529i \(0.694235\pi\)
\(840\) −5.46485e10 −0.00378723
\(841\) −3.20333e12 −0.220811
\(842\) −6.86831e12 −0.470918
\(843\) −1.96251e13 −1.33840
\(844\) 8.92708e12 0.605575
\(845\) −1.95279e11 −0.0131765
\(846\) 1.10111e13 0.739031
\(847\) −1.39366e13 −0.930426
\(848\) 2.14786e13 1.42634
\(849\) −2.09726e13 −1.38538
\(850\) −2.20007e12 −0.144561
\(851\) −1.54387e13 −1.00909
\(852\) −5.81193e12 −0.377870
\(853\) 1.01785e13 0.658282 0.329141 0.944281i \(-0.393241\pi\)
0.329141 + 0.944281i \(0.393241\pi\)
\(854\) 3.61830e13 2.32779
\(855\) 2.69081e10 0.00172201
\(856\) −4.64567e12 −0.295745
\(857\) −2.17224e13 −1.37561 −0.687804 0.725897i \(-0.741425\pi\)
−0.687804 + 0.725897i \(0.741425\pi\)
\(858\) 1.00305e12 0.0631871
\(859\) −1.32470e13 −0.830132 −0.415066 0.909791i \(-0.636241\pi\)
−0.415066 + 0.909791i \(0.636241\pi\)
\(860\) 3.00473e11 0.0187311
\(861\) 2.70202e13 1.67562
\(862\) 4.36356e13 2.69190
\(863\) −7.58119e12 −0.465252 −0.232626 0.972566i \(-0.574732\pi\)
−0.232626 + 0.972566i \(0.574732\pi\)
\(864\) 1.18448e13 0.723127
\(865\) −1.58924e11 −0.00965202
\(866\) 7.83136e11 0.0473158
\(867\) −2.05744e13 −1.23663
\(868\) −1.24970e13 −0.747255
\(869\) −8.22872e12 −0.489489
\(870\) −3.37193e11 −0.0199546
\(871\) −1.33520e12 −0.0786074
\(872\) 3.75194e12 0.219752
\(873\) −1.03946e13 −0.605678
\(874\) 4.34209e12 0.251708
\(875\) −5.05774e11 −0.0291689
\(876\) −7.93938e11 −0.0455531
\(877\) 1.52429e13 0.870100 0.435050 0.900406i \(-0.356731\pi\)
0.435050 + 0.900406i \(0.356731\pi\)
\(878\) −1.57930e13 −0.896889
\(879\) 2.76352e13 1.56139
\(880\) 1.04077e11 0.00585037
\(881\) 3.65973e12 0.204671 0.102336 0.994750i \(-0.467368\pi\)
0.102336 + 0.994750i \(0.467368\pi\)
\(882\) 2.80085e12 0.155841
\(883\) 9.65287e12 0.534359 0.267179 0.963647i \(-0.413908\pi\)
0.267179 + 0.963647i \(0.413908\pi\)
\(884\) −1.56149e11 −0.00860008
\(885\) 3.18555e11 0.0174558
\(886\) 3.37512e13 1.84008
\(887\) 2.99592e12 0.162508 0.0812538 0.996693i \(-0.474108\pi\)
0.0812538 + 0.996693i \(0.474108\pi\)
\(888\) 6.01408e12 0.324572
\(889\) −1.74848e13 −0.938864
\(890\) −2.13331e11 −0.0113972
\(891\) 9.13005e12 0.485315
\(892\) −8.09166e12 −0.427953
\(893\) 4.19964e12 0.220994
\(894\) −3.17789e13 −1.66387
\(895\) −2.11915e11 −0.0110397
\(896\) 8.68332e12 0.450090
\(897\) −1.86801e12 −0.0963417
\(898\) 2.96180e13 1.51989
\(899\) 1.39006e13 0.709766
\(900\) −9.41181e12 −0.478170
\(901\) −2.65765e12 −0.134350
\(902\) −1.28555e13 −0.646635
\(903\) 4.55729e13 2.28093
\(904\) −7.80472e11 −0.0388687
\(905\) 3.92475e11 0.0194488
\(906\) −4.87123e13 −2.40194
\(907\) −3.69924e13 −1.81501 −0.907507 0.420037i \(-0.862017\pi\)
−0.907507 + 0.420037i \(0.862017\pi\)
\(908\) −1.72190e13 −0.840661
\(909\) 1.52737e13 0.742003
\(910\) −3.91291e10 −0.00189153
\(911\) 1.99144e12 0.0957930 0.0478965 0.998852i \(-0.484748\pi\)
0.0478965 + 0.998852i \(0.484748\pi\)
\(912\) −6.77072e12 −0.324084
\(913\) −1.02898e13 −0.490105
\(914\) −2.12057e13 −1.00507
\(915\) 5.50649e11 0.0259705
\(916\) −2.29841e13 −1.07869
\(917\) −3.45740e13 −1.61469
\(918\) −1.69482e12 −0.0787645
\(919\) 3.16685e12 0.146456 0.0732282 0.997315i \(-0.476670\pi\)
0.0732282 + 0.997315i \(0.476670\pi\)
\(920\) −4.84213e10 −0.00222839
\(921\) −2.96934e13 −1.35985
\(922\) −3.78263e13 −1.72387
\(923\) 7.50185e11 0.0340221
\(924\) −1.00333e13 −0.452812
\(925\) 2.78278e13 1.24980
\(926\) −8.50055e12 −0.379925
\(927\) 6.40871e12 0.285044
\(928\) 2.64728e13 1.17175
\(929\) 8.22120e12 0.362130 0.181065 0.983471i \(-0.442046\pi\)
0.181065 + 0.983471i \(0.442046\pi\)
\(930\) −4.14656e11 −0.0181767
\(931\) 1.06825e12 0.0466015
\(932\) 1.10276e13 0.478752
\(933\) 1.46572e13 0.633262
\(934\) −3.02449e13 −1.30044
\(935\) −1.28780e10 −0.000551057 0
\(936\) 2.62549e11 0.0111807
\(937\) −4.01692e13 −1.70241 −0.851207 0.524830i \(-0.824129\pi\)
−0.851207 + 0.524830i \(0.824129\pi\)
\(938\) 2.91190e13 1.22819
\(939\) −2.07829e13 −0.872392
\(940\) 2.59791e11 0.0108530
\(941\) 2.17605e13 0.904724 0.452362 0.891834i \(-0.350582\pi\)
0.452362 + 0.891834i \(0.350582\pi\)
\(942\) 7.61246e13 3.14990
\(943\) 2.39413e13 0.985927
\(944\) −2.89207e13 −1.18532
\(945\) −1.94793e11 −0.00794568
\(946\) −2.16823e13 −0.880229
\(947\) −1.63289e13 −0.659752 −0.329876 0.944024i \(-0.607007\pi\)
−0.329876 + 0.944024i \(0.607007\pi\)
\(948\) 3.31148e13 1.33163
\(949\) 1.02479e11 0.00410144
\(950\) −7.82649e12 −0.311753
\(951\) 2.97493e13 1.17941
\(952\) −6.13897e11 −0.0242231
\(953\) −3.27105e13 −1.28460 −0.642302 0.766452i \(-0.722021\pi\)
−0.642302 + 0.766452i \(0.722021\pi\)
\(954\) −2.47882e13 −0.968898
\(955\) −1.01089e10 −0.000393268 0
\(956\) 1.84036e13 0.712596
\(957\) 1.11601e13 0.430096
\(958\) −3.26461e13 −1.25224
\(959\) 8.85032e12 0.337890
\(960\) −2.95343e11 −0.0112229
\(961\) −9.34564e12 −0.353471
\(962\) 4.30617e12 0.162108
\(963\) 2.14618e13 0.804171
\(964\) 2.16856e13 0.808770
\(965\) 1.18639e11 0.00440408
\(966\) 4.07391e13 1.50527
\(967\) 3.85406e13 1.41742 0.708712 0.705498i \(-0.249277\pi\)
0.708712 + 0.705498i \(0.249277\pi\)
\(968\) 4.81031e12 0.176090
\(969\) 8.37775e11 0.0305261
\(970\) −5.34701e11 −0.0193927
\(971\) 4.84114e13 1.74768 0.873839 0.486216i \(-0.161623\pi\)
0.873839 + 0.486216i \(0.161623\pi\)
\(972\) −2.38975e13 −0.858726
\(973\) −4.64009e13 −1.65966
\(974\) 5.45922e12 0.194364
\(975\) 3.36704e12 0.119324
\(976\) −4.99918e13 −1.76350
\(977\) −4.12824e13 −1.44957 −0.724785 0.688975i \(-0.758061\pi\)
−0.724785 + 0.688975i \(0.758061\pi\)
\(978\) −2.74486e13 −0.959390
\(979\) 7.06064e12 0.245653
\(980\) 6.60822e10 0.00228859
\(981\) −1.73330e13 −0.597536
\(982\) 5.58154e13 1.91537
\(983\) −1.19116e13 −0.406891 −0.203446 0.979086i \(-0.565214\pi\)
−0.203446 + 0.979086i \(0.565214\pi\)
\(984\) −9.32620e12 −0.317122
\(985\) 5.90563e11 0.0199895
\(986\) −3.78788e12 −0.127629
\(987\) 3.94026e13 1.32159
\(988\) −5.55480e11 −0.0185465
\(989\) 4.03799e13 1.34209
\(990\) −1.20115e11 −0.00397409
\(991\) 2.52732e12 0.0832394 0.0416197 0.999134i \(-0.486748\pi\)
0.0416197 + 0.999134i \(0.486748\pi\)
\(992\) 3.25544e13 1.06735
\(993\) 2.58766e13 0.844571
\(994\) −1.63606e13 −0.531571
\(995\) −2.24920e11 −0.00727486
\(996\) 4.14093e13 1.33331
\(997\) 2.47258e13 0.792540 0.396270 0.918134i \(-0.370304\pi\)
0.396270 + 0.918134i \(0.370304\pi\)
\(998\) −3.11390e13 −0.993613
\(999\) 2.14371e13 0.680958
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 19.10.a.b.1.7 8
3.2 odd 2 171.10.a.f.1.2 8
4.3 odd 2 304.10.a.i.1.3 8
19.18 odd 2 361.10.a.c.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.b.1.7 8 1.1 even 1 trivial
171.10.a.f.1.2 8 3.2 odd 2
304.10.a.i.1.3 8 4.3 odd 2
361.10.a.c.1.2 8 19.18 odd 2