Defining parameters
Level: | \( N \) | \(=\) | \( 19 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 19.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(19))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 14 | 2 |
Cusp forms | 14 | 14 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(19\) | Dim |
---|---|
\(+\) | \(6\) |
\(-\) | \(8\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(19))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 19 | |||||||
19.10.a.a | $6$ | $9.786$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-33\) | \(-155\) | \(-3612\) | \(4085\) | $+$ | \(q+(-6+\beta _{1})q^{2}+(-26+\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\) | |
19.10.a.b | $8$ | $9.786$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(15\) | \(7\) | \(3894\) | \(-7133\) | $-$ | \(q+(2-\beta _{1})q^{2}+(1+\beta _{1}-\beta _{3})q^{3}+(331+\cdots)q^{4}+\cdots\) |