Properties

Label 19.10.a.b.1.5
Level $19$
Weight $10$
Character 19.1
Self dual yes
Analytic conductor $9.786$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,10,Mod(1,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 19.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78568088711\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 3356 x^{6} - 1330 x^{5} + 3186388 x^{4} - 1801192 x^{3} - 758043152 x^{2} + \cdots - 16080668672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(5.24681\) of defining polynomial
Character \(\chi\) \(=\) 19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.24681 q^{2} -81.1272 q^{3} -501.458 q^{4} -574.796 q^{5} +263.404 q^{6} +7689.68 q^{7} +3290.50 q^{8} -13101.4 q^{9} +1866.25 q^{10} +60571.0 q^{11} +40681.9 q^{12} +34661.6 q^{13} -24966.9 q^{14} +46631.6 q^{15} +246063. q^{16} +234734. q^{17} +42537.7 q^{18} +130321. q^{19} +288236. q^{20} -623842. q^{21} -196662. q^{22} +605608. q^{23} -266949. q^{24} -1.62273e6 q^{25} -112540. q^{26} +2.65970e6 q^{27} -3.85605e6 q^{28} -5.19841e6 q^{29} -151404. q^{30} +3.54178e6 q^{31} -2.48366e6 q^{32} -4.91395e6 q^{33} -762136. q^{34} -4.42000e6 q^{35} +6.56979e6 q^{36} +1.32901e7 q^{37} -423127. q^{38} -2.81200e6 q^{39} -1.89137e6 q^{40} +6.50795e6 q^{41} +2.02550e6 q^{42} +2.56640e7 q^{43} -3.03738e7 q^{44} +7.53062e6 q^{45} -1.96629e6 q^{46} +4.47280e7 q^{47} -1.99624e7 q^{48} +1.87776e7 q^{49} +5.26871e6 q^{50} -1.90433e7 q^{51} -1.73814e7 q^{52} +8.47379e7 q^{53} -8.63555e6 q^{54} -3.48160e7 q^{55} +2.53029e7 q^{56} -1.05726e7 q^{57} +1.68783e7 q^{58} -4.30786e7 q^{59} -2.33838e7 q^{60} -1.06856e8 q^{61} -1.14995e7 q^{62} -1.00745e8 q^{63} -1.17920e8 q^{64} -1.99234e7 q^{65} +1.59547e7 q^{66} -5.31220e7 q^{67} -1.17709e8 q^{68} -4.91313e7 q^{69} +1.43509e7 q^{70} +3.40103e8 q^{71} -4.31101e7 q^{72} +3.23066e8 q^{73} -4.31505e7 q^{74} +1.31648e8 q^{75} -6.53505e7 q^{76} +4.65771e8 q^{77} +9.13003e6 q^{78} -4.18008e8 q^{79} -1.41436e8 q^{80} +4.21001e7 q^{81} -2.11301e7 q^{82} -2.27387e8 q^{83} +3.12831e8 q^{84} -1.34924e8 q^{85} -8.33262e7 q^{86} +4.21733e8 q^{87} +1.99309e8 q^{88} +8.88341e8 q^{89} -2.44505e7 q^{90} +2.66537e8 q^{91} -3.03687e8 q^{92} -2.87335e8 q^{93} -1.45223e8 q^{94} -7.49080e7 q^{95} +2.01492e8 q^{96} -6.59774e8 q^{97} -6.09673e7 q^{98} -7.93563e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 15 q^{2} + 7 q^{3} + 2645 q^{4} + 3894 q^{5} - 9723 q^{6} - 7133 q^{7} + 10911 q^{8} + 102715 q^{9} + 113172 q^{10} + 172818 q^{11} + 349117 q^{12} + 109291 q^{13} + 250959 q^{14} + 457332 q^{15}+ \cdots - 1682553420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.24681 −0.143490 −0.0717450 0.997423i \(-0.522857\pi\)
−0.0717450 + 0.997423i \(0.522857\pi\)
\(3\) −81.1272 −0.578257 −0.289128 0.957290i \(-0.593365\pi\)
−0.289128 + 0.957290i \(0.593365\pi\)
\(4\) −501.458 −0.979411
\(5\) −574.796 −0.411291 −0.205645 0.978627i \(-0.565929\pi\)
−0.205645 + 0.978627i \(0.565929\pi\)
\(6\) 263.404 0.0829741
\(7\) 7689.68 1.21051 0.605253 0.796033i \(-0.293072\pi\)
0.605253 + 0.796033i \(0.293072\pi\)
\(8\) 3290.50 0.284026
\(9\) −13101.4 −0.665619
\(10\) 1866.25 0.0590161
\(11\) 60571.0 1.24738 0.623688 0.781673i \(-0.285634\pi\)
0.623688 + 0.781673i \(0.285634\pi\)
\(12\) 40681.9 0.566351
\(13\) 34661.6 0.336592 0.168296 0.985736i \(-0.446174\pi\)
0.168296 + 0.985736i \(0.446174\pi\)
\(14\) −24966.9 −0.173696
\(15\) 46631.6 0.237832
\(16\) 246063. 0.938656
\(17\) 234734. 0.681641 0.340820 0.940128i \(-0.389295\pi\)
0.340820 + 0.940128i \(0.389295\pi\)
\(18\) 42537.7 0.0955097
\(19\) 130321. 0.229416
\(20\) 288236. 0.402822
\(21\) −623842. −0.699984
\(22\) −196662. −0.178986
\(23\) 605608. 0.451249 0.225625 0.974214i \(-0.427558\pi\)
0.225625 + 0.974214i \(0.427558\pi\)
\(24\) −266949. −0.164240
\(25\) −1.62273e6 −0.830840
\(26\) −112540. −0.0482976
\(27\) 2.65970e6 0.963156
\(28\) −3.85605e6 −1.18558
\(29\) −5.19841e6 −1.36483 −0.682417 0.730963i \(-0.739071\pi\)
−0.682417 + 0.730963i \(0.739071\pi\)
\(30\) −151404. −0.0341265
\(31\) 3.54178e6 0.688802 0.344401 0.938823i \(-0.388082\pi\)
0.344401 + 0.938823i \(0.388082\pi\)
\(32\) −2.48366e6 −0.418713
\(33\) −4.91395e6 −0.721304
\(34\) −762136. −0.0978086
\(35\) −4.42000e6 −0.497870
\(36\) 6.56979e6 0.651914
\(37\) 1.32901e7 1.16579 0.582897 0.812546i \(-0.301919\pi\)
0.582897 + 0.812546i \(0.301919\pi\)
\(38\) −423127. −0.0329189
\(39\) −2.81200e6 −0.194637
\(40\) −1.89137e6 −0.116817
\(41\) 6.50795e6 0.359681 0.179840 0.983696i \(-0.442442\pi\)
0.179840 + 0.983696i \(0.442442\pi\)
\(42\) 2.02550e6 0.100441
\(43\) 2.56640e7 1.14477 0.572383 0.819986i \(-0.306019\pi\)
0.572383 + 0.819986i \(0.306019\pi\)
\(44\) −3.03738e7 −1.22169
\(45\) 7.53062e6 0.273763
\(46\) −1.96629e6 −0.0647498
\(47\) 4.47280e7 1.33702 0.668512 0.743702i \(-0.266932\pi\)
0.668512 + 0.743702i \(0.266932\pi\)
\(48\) −1.99624e7 −0.542784
\(49\) 1.87776e7 0.465327
\(50\) 5.26871e6 0.119217
\(51\) −1.90433e7 −0.394163
\(52\) −1.73814e7 −0.329662
\(53\) 8.47379e7 1.47515 0.737575 0.675265i \(-0.235971\pi\)
0.737575 + 0.675265i \(0.235971\pi\)
\(54\) −8.63555e6 −0.138203
\(55\) −3.48160e7 −0.513034
\(56\) 2.53029e7 0.343815
\(57\) −1.05726e7 −0.132661
\(58\) 1.68783e7 0.195840
\(59\) −4.30786e7 −0.462836 −0.231418 0.972854i \(-0.574337\pi\)
−0.231418 + 0.972854i \(0.574337\pi\)
\(60\) −2.33838e7 −0.232935
\(61\) −1.06856e8 −0.988132 −0.494066 0.869424i \(-0.664490\pi\)
−0.494066 + 0.869424i \(0.664490\pi\)
\(62\) −1.14995e7 −0.0988361
\(63\) −1.00745e8 −0.805736
\(64\) −1.17920e8 −0.878575
\(65\) −1.99234e7 −0.138437
\(66\) 1.59547e7 0.103500
\(67\) −5.31220e7 −0.322061 −0.161030 0.986949i \(-0.551482\pi\)
−0.161030 + 0.986949i \(0.551482\pi\)
\(68\) −1.17709e8 −0.667606
\(69\) −4.91313e7 −0.260938
\(70\) 1.43509e7 0.0714394
\(71\) 3.40103e8 1.58836 0.794178 0.607685i \(-0.207902\pi\)
0.794178 + 0.607685i \(0.207902\pi\)
\(72\) −4.31101e7 −0.189053
\(73\) 3.23066e8 1.33149 0.665745 0.746179i \(-0.268114\pi\)
0.665745 + 0.746179i \(0.268114\pi\)
\(74\) −4.31505e7 −0.167280
\(75\) 1.31648e8 0.480439
\(76\) −6.53505e7 −0.224692
\(77\) 4.65771e8 1.50996
\(78\) 9.13003e6 0.0279284
\(79\) −4.18008e8 −1.20743 −0.603716 0.797200i \(-0.706314\pi\)
−0.603716 + 0.797200i \(0.706314\pi\)
\(80\) −1.41436e8 −0.386060
\(81\) 4.21001e7 0.108668
\(82\) −2.11301e7 −0.0516106
\(83\) −2.27387e8 −0.525913 −0.262956 0.964808i \(-0.584697\pi\)
−0.262956 + 0.964808i \(0.584697\pi\)
\(84\) 3.12831e8 0.685572
\(85\) −1.34924e8 −0.280352
\(86\) −8.33262e7 −0.164263
\(87\) 4.21733e8 0.789225
\(88\) 1.99309e8 0.354287
\(89\) 8.88341e8 1.50081 0.750403 0.660980i \(-0.229859\pi\)
0.750403 + 0.660980i \(0.229859\pi\)
\(90\) −2.44505e7 −0.0392822
\(91\) 2.66537e8 0.407447
\(92\) −3.03687e8 −0.441958
\(93\) −2.87335e8 −0.398304
\(94\) −1.45223e8 −0.191849
\(95\) −7.49080e7 −0.0943565
\(96\) 2.01492e8 0.242124
\(97\) −6.59774e8 −0.756697 −0.378349 0.925663i \(-0.623508\pi\)
−0.378349 + 0.925663i \(0.623508\pi\)
\(98\) −6.09673e7 −0.0667697
\(99\) −7.93563e8 −0.830277
\(100\) 8.13734e8 0.813734
\(101\) −2.70406e8 −0.258565 −0.129282 0.991608i \(-0.541267\pi\)
−0.129282 + 0.991608i \(0.541267\pi\)
\(102\) 6.18299e7 0.0565585
\(103\) −1.36034e9 −1.19092 −0.595458 0.803386i \(-0.703029\pi\)
−0.595458 + 0.803386i \(0.703029\pi\)
\(104\) 1.14054e8 0.0956008
\(105\) 3.58582e8 0.287897
\(106\) −2.75128e8 −0.211669
\(107\) −1.13851e8 −0.0839673 −0.0419837 0.999118i \(-0.513368\pi\)
−0.0419837 + 0.999118i \(0.513368\pi\)
\(108\) −1.33373e9 −0.943325
\(109\) −1.28185e9 −0.869797 −0.434898 0.900480i \(-0.643216\pi\)
−0.434898 + 0.900480i \(0.643216\pi\)
\(110\) 1.13041e8 0.0736153
\(111\) −1.07819e9 −0.674128
\(112\) 1.89215e9 1.13625
\(113\) −9.68156e8 −0.558589 −0.279294 0.960206i \(-0.590101\pi\)
−0.279294 + 0.960206i \(0.590101\pi\)
\(114\) 3.43271e7 0.0190356
\(115\) −3.48101e8 −0.185595
\(116\) 2.60679e9 1.33673
\(117\) −4.54115e8 −0.224042
\(118\) 1.39868e8 0.0664124
\(119\) 1.80503e9 0.825131
\(120\) 1.53441e8 0.0675503
\(121\) 1.31089e9 0.555947
\(122\) 3.46941e8 0.141787
\(123\) −5.27972e8 −0.207988
\(124\) −1.77606e9 −0.674620
\(125\) 2.05539e9 0.753007
\(126\) 3.27101e8 0.115615
\(127\) −2.35163e9 −0.802144 −0.401072 0.916047i \(-0.631362\pi\)
−0.401072 + 0.916047i \(0.631362\pi\)
\(128\) 1.65450e9 0.544780
\(129\) −2.08205e9 −0.661969
\(130\) 6.46874e7 0.0198644
\(131\) 2.44701e9 0.725963 0.362982 0.931796i \(-0.381759\pi\)
0.362982 + 0.931796i \(0.381759\pi\)
\(132\) 2.46414e9 0.706453
\(133\) 1.00213e9 0.277709
\(134\) 1.72477e8 0.0462125
\(135\) −1.52879e9 −0.396137
\(136\) 7.72393e8 0.193603
\(137\) 1.29516e9 0.314110 0.157055 0.987590i \(-0.449800\pi\)
0.157055 + 0.987590i \(0.449800\pi\)
\(138\) 1.59520e8 0.0374420
\(139\) 3.42786e9 0.778854 0.389427 0.921057i \(-0.372673\pi\)
0.389427 + 0.921057i \(0.372673\pi\)
\(140\) 2.21645e9 0.487619
\(141\) −3.62866e9 −0.773143
\(142\) −1.10425e9 −0.227913
\(143\) 2.09949e9 0.419857
\(144\) −3.22376e9 −0.624787
\(145\) 2.98803e9 0.561344
\(146\) −1.04893e9 −0.191056
\(147\) −1.52337e9 −0.269078
\(148\) −6.66445e9 −1.14179
\(149\) 7.12315e9 1.18395 0.591975 0.805956i \(-0.298348\pi\)
0.591975 + 0.805956i \(0.298348\pi\)
\(150\) −4.27435e8 −0.0689382
\(151\) −8.26959e9 −1.29446 −0.647228 0.762296i \(-0.724072\pi\)
−0.647228 + 0.762296i \(0.724072\pi\)
\(152\) 4.28822e8 0.0651599
\(153\) −3.07534e9 −0.453713
\(154\) −1.51227e9 −0.216664
\(155\) −2.03580e9 −0.283298
\(156\) 1.41010e9 0.190629
\(157\) −6.90556e9 −0.907090 −0.453545 0.891233i \(-0.649841\pi\)
−0.453545 + 0.891233i \(0.649841\pi\)
\(158\) 1.35719e9 0.173254
\(159\) −6.87454e9 −0.853015
\(160\) 1.42760e9 0.172213
\(161\) 4.65694e9 0.546240
\(162\) −1.36691e8 −0.0155927
\(163\) 1.37188e10 1.52220 0.761101 0.648634i \(-0.224659\pi\)
0.761101 + 0.648634i \(0.224659\pi\)
\(164\) −3.26347e9 −0.352275
\(165\) 2.82452e9 0.296665
\(166\) 7.38281e8 0.0754632
\(167\) −9.50978e9 −0.946120 −0.473060 0.881030i \(-0.656851\pi\)
−0.473060 + 0.881030i \(0.656851\pi\)
\(168\) −2.05276e9 −0.198813
\(169\) −9.40307e9 −0.886706
\(170\) 4.38073e8 0.0402278
\(171\) −1.70738e9 −0.152703
\(172\) −1.28694e10 −1.12120
\(173\) 1.13844e10 0.966278 0.483139 0.875544i \(-0.339497\pi\)
0.483139 + 0.875544i \(0.339497\pi\)
\(174\) −1.36929e9 −0.113246
\(175\) −1.24783e10 −1.00574
\(176\) 1.49043e10 1.17086
\(177\) 3.49485e9 0.267638
\(178\) −2.88427e9 −0.215351
\(179\) 1.54746e10 1.12663 0.563315 0.826243i \(-0.309526\pi\)
0.563315 + 0.826243i \(0.309526\pi\)
\(180\) −3.77629e9 −0.268126
\(181\) 2.39651e10 1.65968 0.829841 0.558000i \(-0.188431\pi\)
0.829841 + 0.558000i \(0.188431\pi\)
\(182\) −8.65394e8 −0.0584646
\(183\) 8.66894e9 0.571394
\(184\) 1.99276e9 0.128166
\(185\) −7.63912e9 −0.479480
\(186\) 9.32921e8 0.0571527
\(187\) 1.42181e10 0.850262
\(188\) −2.24292e10 −1.30949
\(189\) 2.04523e10 1.16591
\(190\) 2.43212e8 0.0135392
\(191\) 4.76003e9 0.258797 0.129399 0.991593i \(-0.458695\pi\)
0.129399 + 0.991593i \(0.458695\pi\)
\(192\) 9.56654e9 0.508042
\(193\) −4.05799e9 −0.210525 −0.105262 0.994444i \(-0.533568\pi\)
−0.105262 + 0.994444i \(0.533568\pi\)
\(194\) 2.14216e9 0.108578
\(195\) 1.61633e9 0.0800522
\(196\) −9.41618e9 −0.455746
\(197\) −2.77493e9 −0.131266 −0.0656332 0.997844i \(-0.520907\pi\)
−0.0656332 + 0.997844i \(0.520907\pi\)
\(198\) 2.57655e9 0.119136
\(199\) 2.20221e10 0.995453 0.497726 0.867334i \(-0.334168\pi\)
0.497726 + 0.867334i \(0.334168\pi\)
\(200\) −5.33961e9 −0.235980
\(201\) 4.30964e9 0.186234
\(202\) 8.77955e8 0.0371015
\(203\) −3.99742e10 −1.65214
\(204\) 9.54942e9 0.386048
\(205\) −3.74075e9 −0.147933
\(206\) 4.41678e9 0.170885
\(207\) −7.93430e9 −0.300360
\(208\) 8.52894e9 0.315944
\(209\) 7.89367e9 0.286168
\(210\) −1.16425e9 −0.0413103
\(211\) −2.50523e10 −0.870116 −0.435058 0.900402i \(-0.643272\pi\)
−0.435058 + 0.900402i \(0.643272\pi\)
\(212\) −4.24925e10 −1.44478
\(213\) −2.75916e10 −0.918478
\(214\) 3.69653e8 0.0120485
\(215\) −1.47516e10 −0.470832
\(216\) 8.75177e9 0.273561
\(217\) 2.72352e10 0.833799
\(218\) 4.16192e9 0.124807
\(219\) −2.62094e10 −0.769944
\(220\) 1.74587e10 0.502471
\(221\) 8.13626e9 0.229435
\(222\) 3.50068e9 0.0967307
\(223\) −6.55132e10 −1.77401 −0.887007 0.461755i \(-0.847220\pi\)
−0.887007 + 0.461755i \(0.847220\pi\)
\(224\) −1.90985e10 −0.506855
\(225\) 2.12601e10 0.553023
\(226\) 3.14342e9 0.0801519
\(227\) 3.56305e10 0.890647 0.445323 0.895370i \(-0.353089\pi\)
0.445323 + 0.895370i \(0.353089\pi\)
\(228\) 5.30171e9 0.129930
\(229\) 3.42364e10 0.822676 0.411338 0.911483i \(-0.365062\pi\)
0.411338 + 0.911483i \(0.365062\pi\)
\(230\) 1.13022e9 0.0266310
\(231\) −3.77867e10 −0.873143
\(232\) −1.71054e10 −0.387648
\(233\) 7.28411e10 1.61910 0.809552 0.587048i \(-0.199710\pi\)
0.809552 + 0.587048i \(0.199710\pi\)
\(234\) 1.47442e9 0.0321478
\(235\) −2.57095e10 −0.549905
\(236\) 2.16021e10 0.453307
\(237\) 3.39118e10 0.698206
\(238\) −5.86058e9 −0.118398
\(239\) −1.26967e10 −0.251710 −0.125855 0.992049i \(-0.540167\pi\)
−0.125855 + 0.992049i \(0.540167\pi\)
\(240\) 1.14743e10 0.223242
\(241\) −7.73438e10 −1.47689 −0.738446 0.674312i \(-0.764440\pi\)
−0.738446 + 0.674312i \(0.764440\pi\)
\(242\) −4.25622e9 −0.0797729
\(243\) −5.57664e10 −1.02599
\(244\) 5.35839e10 0.967787
\(245\) −1.07933e10 −0.191384
\(246\) 1.71422e9 0.0298442
\(247\) 4.51714e9 0.0772195
\(248\) 1.16542e10 0.195637
\(249\) 1.84472e10 0.304113
\(250\) −6.67346e9 −0.108049
\(251\) −6.57920e10 −1.04626 −0.523132 0.852252i \(-0.675236\pi\)
−0.523132 + 0.852252i \(0.675236\pi\)
\(252\) 5.05196e10 0.789147
\(253\) 3.66823e10 0.562878
\(254\) 7.63529e9 0.115100
\(255\) 1.09460e10 0.162116
\(256\) 5.50034e10 0.800404
\(257\) 8.87269e10 1.26869 0.634346 0.773049i \(-0.281269\pi\)
0.634346 + 0.773049i \(0.281269\pi\)
\(258\) 6.76002e9 0.0949859
\(259\) 1.02197e11 1.41120
\(260\) 9.99074e9 0.135587
\(261\) 6.81064e10 0.908460
\(262\) −7.94497e9 −0.104168
\(263\) −7.91129e10 −1.01964 −0.509819 0.860282i \(-0.670288\pi\)
−0.509819 + 0.860282i \(0.670288\pi\)
\(264\) −1.61694e10 −0.204869
\(265\) −4.87070e10 −0.606715
\(266\) −3.25371e9 −0.0398485
\(267\) −7.20686e10 −0.867852
\(268\) 2.66385e10 0.315430
\(269\) −1.49917e11 −1.74568 −0.872840 0.488007i \(-0.837724\pi\)
−0.872840 + 0.488007i \(0.837724\pi\)
\(270\) 4.96368e9 0.0568417
\(271\) 1.57117e11 1.76954 0.884770 0.466028i \(-0.154315\pi\)
0.884770 + 0.466028i \(0.154315\pi\)
\(272\) 5.77593e10 0.639826
\(273\) −2.16234e10 −0.235609
\(274\) −4.20515e9 −0.0450717
\(275\) −9.82906e10 −1.03637
\(276\) 2.46373e10 0.255565
\(277\) 1.91123e11 1.95054 0.975268 0.221027i \(-0.0709409\pi\)
0.975268 + 0.221027i \(0.0709409\pi\)
\(278\) −1.11296e10 −0.111758
\(279\) −4.64022e10 −0.458479
\(280\) −1.45440e10 −0.141408
\(281\) −1.67593e11 −1.60353 −0.801767 0.597637i \(-0.796106\pi\)
−0.801767 + 0.597637i \(0.796106\pi\)
\(282\) 1.17815e10 0.110938
\(283\) −1.42558e11 −1.32115 −0.660574 0.750761i \(-0.729687\pi\)
−0.660574 + 0.750761i \(0.729687\pi\)
\(284\) −1.70547e11 −1.55565
\(285\) 6.07708e9 0.0545623
\(286\) −6.81664e9 −0.0602453
\(287\) 5.00441e10 0.435396
\(288\) 3.25393e10 0.278704
\(289\) −6.34879e10 −0.535366
\(290\) −9.70155e9 −0.0805472
\(291\) 5.35256e10 0.437565
\(292\) −1.62004e11 −1.30408
\(293\) −1.34002e11 −1.06220 −0.531099 0.847310i \(-0.678221\pi\)
−0.531099 + 0.847310i \(0.678221\pi\)
\(294\) 4.94610e9 0.0386100
\(295\) 2.47614e10 0.190360
\(296\) 4.37313e10 0.331115
\(297\) 1.61101e11 1.20142
\(298\) −2.31275e10 −0.169885
\(299\) 2.09914e10 0.151887
\(300\) −6.60159e10 −0.470547
\(301\) 1.97348e11 1.38575
\(302\) 2.68498e10 0.185742
\(303\) 2.19372e10 0.149517
\(304\) 3.20672e10 0.215342
\(305\) 6.14205e10 0.406410
\(306\) 9.98503e9 0.0651033
\(307\) −1.00992e11 −0.648880 −0.324440 0.945906i \(-0.605176\pi\)
−0.324440 + 0.945906i \(0.605176\pi\)
\(308\) −2.33565e11 −1.47887
\(309\) 1.10361e11 0.688656
\(310\) 6.60986e9 0.0406504
\(311\) 9.95701e10 0.603542 0.301771 0.953380i \(-0.402422\pi\)
0.301771 + 0.953380i \(0.402422\pi\)
\(312\) −9.25290e9 −0.0552818
\(313\) 3.35986e10 0.197866 0.0989332 0.995094i \(-0.468457\pi\)
0.0989332 + 0.995094i \(0.468457\pi\)
\(314\) 2.24210e10 0.130158
\(315\) 5.79081e10 0.331392
\(316\) 2.09613e11 1.18257
\(317\) −1.95756e11 −1.08880 −0.544400 0.838826i \(-0.683243\pi\)
−0.544400 + 0.838826i \(0.683243\pi\)
\(318\) 2.23203e10 0.122399
\(319\) −3.14873e11 −1.70246
\(320\) 6.77801e10 0.361349
\(321\) 9.23642e9 0.0485547
\(322\) −1.51202e10 −0.0783800
\(323\) 3.05907e10 0.156379
\(324\) −2.11114e10 −0.106430
\(325\) −5.62466e10 −0.279654
\(326\) −4.45423e10 −0.218421
\(327\) 1.03993e11 0.502966
\(328\) 2.14145e10 0.102159
\(329\) 3.43944e11 1.61848
\(330\) −9.17068e9 −0.0425685
\(331\) 2.03233e11 0.930613 0.465307 0.885150i \(-0.345944\pi\)
0.465307 + 0.885150i \(0.345944\pi\)
\(332\) 1.14025e11 0.515084
\(333\) −1.74119e11 −0.775975
\(334\) 3.08764e10 0.135759
\(335\) 3.05343e10 0.132461
\(336\) −1.53504e11 −0.657044
\(337\) 9.99467e10 0.422118 0.211059 0.977473i \(-0.432309\pi\)
0.211059 + 0.977473i \(0.432309\pi\)
\(338\) 3.05300e10 0.127233
\(339\) 7.85438e10 0.323008
\(340\) 6.76588e10 0.274580
\(341\) 2.14529e11 0.859195
\(342\) 5.54355e9 0.0219114
\(343\) −1.65913e11 −0.647226
\(344\) 8.44476e10 0.325143
\(345\) 2.82405e10 0.107321
\(346\) −3.69629e10 −0.138651
\(347\) 5.16938e11 1.91406 0.957031 0.289986i \(-0.0936506\pi\)
0.957031 + 0.289986i \(0.0936506\pi\)
\(348\) −2.11481e11 −0.772975
\(349\) −2.69448e10 −0.0972209 −0.0486105 0.998818i \(-0.515479\pi\)
−0.0486105 + 0.998818i \(0.515479\pi\)
\(350\) 4.05147e10 0.144313
\(351\) 9.21897e10 0.324191
\(352\) −1.50438e11 −0.522293
\(353\) −5.37140e10 −0.184120 −0.0920601 0.995753i \(-0.529345\pi\)
−0.0920601 + 0.995753i \(0.529345\pi\)
\(354\) −1.13471e10 −0.0384034
\(355\) −1.95490e11 −0.653276
\(356\) −4.45466e11 −1.46991
\(357\) −1.46437e11 −0.477137
\(358\) −5.02431e10 −0.161660
\(359\) −2.09514e11 −0.665714 −0.332857 0.942977i \(-0.608013\pi\)
−0.332857 + 0.942977i \(0.608013\pi\)
\(360\) 2.47795e10 0.0777557
\(361\) 1.69836e10 0.0526316
\(362\) −7.78099e10 −0.238148
\(363\) −1.06349e11 −0.321480
\(364\) −1.33657e11 −0.399058
\(365\) −1.85697e11 −0.547630
\(366\) −2.81464e10 −0.0819894
\(367\) −4.58735e11 −1.31997 −0.659986 0.751278i \(-0.729438\pi\)
−0.659986 + 0.751278i \(0.729438\pi\)
\(368\) 1.49018e11 0.423568
\(369\) −8.52632e10 −0.239410
\(370\) 2.48028e10 0.0688006
\(371\) 6.51607e11 1.78568
\(372\) 1.44086e11 0.390103
\(373\) −1.67027e11 −0.446785 −0.223392 0.974729i \(-0.571713\pi\)
−0.223392 + 0.974729i \(0.571713\pi\)
\(374\) −4.61633e10 −0.122004
\(375\) −1.66748e11 −0.435432
\(376\) 1.47178e11 0.379749
\(377\) −1.80186e11 −0.459392
\(378\) −6.64046e10 −0.167296
\(379\) 3.79339e11 0.944390 0.472195 0.881494i \(-0.343462\pi\)
0.472195 + 0.881494i \(0.343462\pi\)
\(380\) 3.75632e10 0.0924138
\(381\) 1.90781e11 0.463845
\(382\) −1.54549e10 −0.0371348
\(383\) −6.61133e11 −1.56998 −0.784990 0.619508i \(-0.787332\pi\)
−0.784990 + 0.619508i \(0.787332\pi\)
\(384\) −1.34225e11 −0.315023
\(385\) −2.67724e11 −0.621031
\(386\) 1.31755e10 0.0302082
\(387\) −3.36234e11 −0.761978
\(388\) 3.30849e11 0.741117
\(389\) 5.16360e11 1.14335 0.571675 0.820480i \(-0.306294\pi\)
0.571675 + 0.820480i \(0.306294\pi\)
\(390\) −5.24790e9 −0.0114867
\(391\) 1.42157e11 0.307590
\(392\) 6.17878e10 0.132165
\(393\) −1.98519e11 −0.419793
\(394\) 9.00966e9 0.0188354
\(395\) 2.40269e11 0.496605
\(396\) 3.97939e11 0.813182
\(397\) −3.77903e11 −0.763525 −0.381762 0.924261i \(-0.624683\pi\)
−0.381762 + 0.924261i \(0.624683\pi\)
\(398\) −7.15017e10 −0.142838
\(399\) −8.12998e10 −0.160587
\(400\) −3.99295e11 −0.779873
\(401\) 5.12837e11 0.990443 0.495222 0.868767i \(-0.335087\pi\)
0.495222 + 0.868767i \(0.335087\pi\)
\(402\) −1.39926e10 −0.0267227
\(403\) 1.22764e11 0.231845
\(404\) 1.35597e11 0.253241
\(405\) −2.41990e10 −0.0446940
\(406\) 1.29788e11 0.237066
\(407\) 8.04997e11 1.45418
\(408\) −6.26620e10 −0.111953
\(409\) 1.34868e11 0.238316 0.119158 0.992875i \(-0.461981\pi\)
0.119158 + 0.992875i \(0.461981\pi\)
\(410\) 1.21455e10 0.0212269
\(411\) −1.05073e11 −0.181637
\(412\) 6.82156e11 1.16640
\(413\) −3.31261e11 −0.560267
\(414\) 2.57612e10 0.0430987
\(415\) 1.30701e11 0.216303
\(416\) −8.60876e10 −0.140936
\(417\) −2.78092e11 −0.450378
\(418\) −2.56292e10 −0.0410622
\(419\) 9.46722e11 1.50058 0.750290 0.661108i \(-0.229914\pi\)
0.750290 + 0.661108i \(0.229914\pi\)
\(420\) −1.79814e11 −0.281969
\(421\) 3.46061e11 0.536888 0.268444 0.963295i \(-0.413491\pi\)
0.268444 + 0.963295i \(0.413491\pi\)
\(422\) 8.13401e10 0.124853
\(423\) −5.85998e11 −0.889948
\(424\) 2.78830e11 0.418980
\(425\) −3.80911e11 −0.566334
\(426\) 8.95846e10 0.131792
\(427\) −8.21690e11 −1.19614
\(428\) 5.70916e10 0.0822385
\(429\) −1.70326e11 −0.242785
\(430\) 4.78956e10 0.0675596
\(431\) 6.90474e11 0.963828 0.481914 0.876219i \(-0.339942\pi\)
0.481914 + 0.876219i \(0.339942\pi\)
\(432\) 6.54455e11 0.904072
\(433\) −8.66732e11 −1.18492 −0.592460 0.805600i \(-0.701843\pi\)
−0.592460 + 0.805600i \(0.701843\pi\)
\(434\) −8.84274e10 −0.119642
\(435\) −2.42410e11 −0.324601
\(436\) 6.42794e11 0.851888
\(437\) 7.89235e10 0.103524
\(438\) 8.50970e10 0.110479
\(439\) 2.59579e10 0.0333564 0.0166782 0.999861i \(-0.494691\pi\)
0.0166782 + 0.999861i \(0.494691\pi\)
\(440\) −1.14562e11 −0.145715
\(441\) −2.46013e11 −0.309730
\(442\) −2.64169e10 −0.0329216
\(443\) 6.72106e10 0.0829127 0.0414564 0.999140i \(-0.486800\pi\)
0.0414564 + 0.999140i \(0.486800\pi\)
\(444\) 5.40668e11 0.660248
\(445\) −5.10615e11 −0.617268
\(446\) 2.12709e11 0.254553
\(447\) −5.77881e11 −0.684628
\(448\) −9.06770e11 −1.06352
\(449\) −1.56169e12 −1.81337 −0.906684 0.421810i \(-0.861395\pi\)
−0.906684 + 0.421810i \(0.861395\pi\)
\(450\) −6.90273e10 −0.0793533
\(451\) 3.94193e11 0.448657
\(452\) 4.85490e11 0.547088
\(453\) 6.70888e11 0.748529
\(454\) −1.15685e11 −0.127799
\(455\) −1.53204e11 −0.167579
\(456\) −3.47891e10 −0.0376792
\(457\) −5.93865e11 −0.636891 −0.318445 0.947941i \(-0.603161\pi\)
−0.318445 + 0.947941i \(0.603161\pi\)
\(458\) −1.11159e11 −0.118046
\(459\) 6.24323e11 0.656526
\(460\) 1.74558e11 0.181773
\(461\) −7.37247e11 −0.760254 −0.380127 0.924934i \(-0.624120\pi\)
−0.380127 + 0.924934i \(0.624120\pi\)
\(462\) 1.22686e11 0.125287
\(463\) −1.63862e11 −0.165716 −0.0828580 0.996561i \(-0.526405\pi\)
−0.0828580 + 0.996561i \(0.526405\pi\)
\(464\) −1.27914e12 −1.28111
\(465\) 1.65159e11 0.163819
\(466\) −2.36501e11 −0.232325
\(467\) 6.03966e11 0.587606 0.293803 0.955866i \(-0.405079\pi\)
0.293803 + 0.955866i \(0.405079\pi\)
\(468\) 2.27720e11 0.219429
\(469\) −4.08492e11 −0.389857
\(470\) 8.34737e10 0.0789059
\(471\) 5.60229e11 0.524531
\(472\) −1.41750e11 −0.131457
\(473\) 1.55450e12 1.42795
\(474\) −1.10105e11 −0.100186
\(475\) −2.11476e11 −0.190608
\(476\) −9.05146e11 −0.808142
\(477\) −1.11018e12 −0.981888
\(478\) 4.12238e10 0.0361179
\(479\) 8.46003e11 0.734281 0.367140 0.930166i \(-0.380337\pi\)
0.367140 + 0.930166i \(0.380337\pi\)
\(480\) −1.15817e11 −0.0995833
\(481\) 4.60658e11 0.392397
\(482\) 2.51120e11 0.211919
\(483\) −3.77804e11 −0.315867
\(484\) −6.57359e11 −0.544501
\(485\) 3.79235e11 0.311222
\(486\) 1.81063e11 0.147220
\(487\) 9.97270e11 0.803401 0.401701 0.915771i \(-0.368419\pi\)
0.401701 + 0.915771i \(0.368419\pi\)
\(488\) −3.51611e11 −0.280655
\(489\) −1.11297e12 −0.880223
\(490\) 3.50438e10 0.0274618
\(491\) −2.43053e12 −1.88727 −0.943635 0.330988i \(-0.892618\pi\)
−0.943635 + 0.330988i \(0.892618\pi\)
\(492\) 2.64756e11 0.203705
\(493\) −1.22024e12 −0.930327
\(494\) −1.46663e10 −0.0110802
\(495\) 4.56137e11 0.341485
\(496\) 8.71501e11 0.646548
\(497\) 2.61528e12 1.92272
\(498\) −5.98946e10 −0.0436371
\(499\) 3.11964e11 0.225244 0.112622 0.993638i \(-0.464075\pi\)
0.112622 + 0.993638i \(0.464075\pi\)
\(500\) −1.03069e12 −0.737503
\(501\) 7.71501e11 0.547100
\(502\) 2.13614e11 0.150128
\(503\) 2.54578e11 0.177323 0.0886616 0.996062i \(-0.471741\pi\)
0.0886616 + 0.996062i \(0.471741\pi\)
\(504\) −3.31503e11 −0.228850
\(505\) 1.55428e11 0.106345
\(506\) −1.19100e11 −0.0807673
\(507\) 7.62845e11 0.512744
\(508\) 1.17924e12 0.785628
\(509\) 2.71409e12 1.79223 0.896117 0.443818i \(-0.146376\pi\)
0.896117 + 0.443818i \(0.146376\pi\)
\(510\) −3.55396e10 −0.0232620
\(511\) 2.48427e12 1.61178
\(512\) −1.02569e12 −0.659630
\(513\) 3.46615e11 0.220963
\(514\) −2.88079e11 −0.182045
\(515\) 7.81921e11 0.489813
\(516\) 1.04406e12 0.648340
\(517\) 2.70922e12 1.66777
\(518\) −3.31814e11 −0.202493
\(519\) −9.23583e11 −0.558757
\(520\) −6.55579e10 −0.0393197
\(521\) −2.99301e12 −1.77967 −0.889834 0.456284i \(-0.849180\pi\)
−0.889834 + 0.456284i \(0.849180\pi\)
\(522\) −2.21128e11 −0.130355
\(523\) −1.17827e12 −0.688631 −0.344316 0.938854i \(-0.611889\pi\)
−0.344316 + 0.938854i \(0.611889\pi\)
\(524\) −1.22707e12 −0.711016
\(525\) 1.01233e12 0.581575
\(526\) 2.56864e11 0.146308
\(527\) 8.31376e11 0.469515
\(528\) −1.20914e12 −0.677056
\(529\) −1.43439e12 −0.796374
\(530\) 1.58142e11 0.0870576
\(531\) 5.64389e11 0.308073
\(532\) −5.02525e11 −0.271991
\(533\) 2.25576e11 0.121066
\(534\) 2.33993e11 0.124528
\(535\) 6.54412e10 0.0345350
\(536\) −1.74798e11 −0.0914736
\(537\) −1.25541e12 −0.651481
\(538\) 4.86751e11 0.250488
\(539\) 1.13738e12 0.580437
\(540\) 7.66623e11 0.387981
\(541\) −2.54553e12 −1.27759 −0.638794 0.769378i \(-0.720566\pi\)
−0.638794 + 0.769378i \(0.720566\pi\)
\(542\) −5.10128e11 −0.253911
\(543\) −1.94422e12 −0.959723
\(544\) −5.82998e11 −0.285412
\(545\) 7.36802e11 0.357739
\(546\) 7.02070e10 0.0338075
\(547\) 1.90937e12 0.911902 0.455951 0.890005i \(-0.349299\pi\)
0.455951 + 0.890005i \(0.349299\pi\)
\(548\) −6.49471e11 −0.307643
\(549\) 1.39996e12 0.657720
\(550\) 3.19131e11 0.148709
\(551\) −6.77463e11 −0.313114
\(552\) −1.61667e11 −0.0741131
\(553\) −3.21435e12 −1.46160
\(554\) −6.20539e11 −0.279882
\(555\) 6.19740e11 0.277263
\(556\) −1.71893e12 −0.762818
\(557\) −5.55672e11 −0.244608 −0.122304 0.992493i \(-0.539028\pi\)
−0.122304 + 0.992493i \(0.539028\pi\)
\(558\) 1.50659e11 0.0657872
\(559\) 8.89557e11 0.385319
\(560\) −1.08760e12 −0.467329
\(561\) −1.15347e12 −0.491670
\(562\) 5.44143e11 0.230091
\(563\) −3.23986e12 −1.35906 −0.679530 0.733648i \(-0.737816\pi\)
−0.679530 + 0.733648i \(0.737816\pi\)
\(564\) 1.81962e12 0.757224
\(565\) 5.56492e11 0.229742
\(566\) 4.62858e11 0.189572
\(567\) 3.23736e11 0.131543
\(568\) 1.11911e12 0.451134
\(569\) −2.05854e12 −0.823294 −0.411647 0.911343i \(-0.635046\pi\)
−0.411647 + 0.911343i \(0.635046\pi\)
\(570\) −1.97311e10 −0.00782915
\(571\) 2.86995e12 1.12983 0.564914 0.825150i \(-0.308909\pi\)
0.564914 + 0.825150i \(0.308909\pi\)
\(572\) −1.05281e12 −0.411212
\(573\) −3.86168e11 −0.149651
\(574\) −1.62484e11 −0.0624750
\(575\) −9.82741e11 −0.374916
\(576\) 1.54492e12 0.584796
\(577\) 2.73923e11 0.102882 0.0514408 0.998676i \(-0.483619\pi\)
0.0514408 + 0.998676i \(0.483619\pi\)
\(578\) 2.06133e11 0.0768196
\(579\) 3.29213e11 0.121737
\(580\) −1.49837e12 −0.549786
\(581\) −1.74853e12 −0.636621
\(582\) −1.73787e11 −0.0627862
\(583\) 5.13265e12 1.84007
\(584\) 1.06305e12 0.378177
\(585\) 2.61024e11 0.0921464
\(586\) 4.35077e11 0.152415
\(587\) −4.78452e12 −1.66328 −0.831642 0.555311i \(-0.812599\pi\)
−0.831642 + 0.555311i \(0.812599\pi\)
\(588\) 7.63909e11 0.263538
\(589\) 4.61568e11 0.158022
\(590\) −8.03956e10 −0.0273148
\(591\) 2.25122e11 0.0759057
\(592\) 3.27021e12 1.09428
\(593\) 6.38899e11 0.212171 0.106085 0.994357i \(-0.466168\pi\)
0.106085 + 0.994357i \(0.466168\pi\)
\(594\) −5.23064e11 −0.172391
\(595\) −1.03752e12 −0.339369
\(596\) −3.57196e12 −1.15957
\(597\) −1.78659e12 −0.575627
\(598\) −6.81550e10 −0.0217943
\(599\) 3.23170e12 1.02568 0.512838 0.858485i \(-0.328594\pi\)
0.512838 + 0.858485i \(0.328594\pi\)
\(600\) 4.33188e11 0.136457
\(601\) −3.51971e12 −1.10046 −0.550228 0.835015i \(-0.685459\pi\)
−0.550228 + 0.835015i \(0.685459\pi\)
\(602\) −6.40752e11 −0.198841
\(603\) 6.95972e11 0.214370
\(604\) 4.14685e12 1.26780
\(605\) −7.53497e11 −0.228656
\(606\) −7.12260e10 −0.0214542
\(607\) 2.21746e12 0.662990 0.331495 0.943457i \(-0.392447\pi\)
0.331495 + 0.943457i \(0.392447\pi\)
\(608\) −3.23673e11 −0.0960594
\(609\) 3.24299e12 0.955362
\(610\) −1.99421e11 −0.0583157
\(611\) 1.55035e12 0.450032
\(612\) 1.54215e12 0.444371
\(613\) −2.85427e12 −0.816437 −0.408219 0.912884i \(-0.633850\pi\)
−0.408219 + 0.912884i \(0.633850\pi\)
\(614\) 3.27902e11 0.0931078
\(615\) 3.03476e11 0.0855434
\(616\) 1.53262e12 0.428867
\(617\) 1.30623e12 0.362859 0.181430 0.983404i \(-0.441928\pi\)
0.181430 + 0.983404i \(0.441928\pi\)
\(618\) −3.58321e11 −0.0988152
\(619\) −4.71506e12 −1.29086 −0.645430 0.763820i \(-0.723322\pi\)
−0.645430 + 0.763820i \(0.723322\pi\)
\(620\) 1.02087e12 0.277465
\(621\) 1.61074e12 0.434623
\(622\) −3.23285e11 −0.0866022
\(623\) 6.83106e12 1.81674
\(624\) −6.91929e11 −0.182697
\(625\) 1.98797e12 0.521135
\(626\) −1.09088e11 −0.0283918
\(627\) −6.40391e11 −0.165478
\(628\) 3.46285e12 0.888414
\(629\) 3.11965e12 0.794653
\(630\) −1.88016e11 −0.0475514
\(631\) −3.23953e12 −0.813486 −0.406743 0.913543i \(-0.633336\pi\)
−0.406743 + 0.913543i \(0.633336\pi\)
\(632\) −1.37546e12 −0.342941
\(633\) 2.03243e12 0.503151
\(634\) 6.35582e11 0.156232
\(635\) 1.35171e12 0.329914
\(636\) 3.44730e12 0.835452
\(637\) 6.50862e11 0.156625
\(638\) 1.02233e12 0.244286
\(639\) −4.45582e12 −1.05724
\(640\) −9.50999e11 −0.224063
\(641\) 1.11319e11 0.0260441 0.0130220 0.999915i \(-0.495855\pi\)
0.0130220 + 0.999915i \(0.495855\pi\)
\(642\) −2.99889e10 −0.00696711
\(643\) −2.08312e12 −0.480580 −0.240290 0.970701i \(-0.577243\pi\)
−0.240290 + 0.970701i \(0.577243\pi\)
\(644\) −2.33526e12 −0.534994
\(645\) 1.19675e12 0.272262
\(646\) −9.93223e10 −0.0224388
\(647\) −8.83448e12 −1.98204 −0.991019 0.133724i \(-0.957306\pi\)
−0.991019 + 0.133724i \(0.957306\pi\)
\(648\) 1.38531e11 0.0308644
\(649\) −2.60931e12 −0.577331
\(650\) 1.82622e11 0.0401276
\(651\) −2.20951e12 −0.482150
\(652\) −6.87941e12 −1.49086
\(653\) 4.23720e12 0.911948 0.455974 0.889993i \(-0.349291\pi\)
0.455974 + 0.889993i \(0.349291\pi\)
\(654\) −3.37645e11 −0.0721706
\(655\) −1.40653e12 −0.298582
\(656\) 1.60137e12 0.337616
\(657\) −4.23261e12 −0.886265
\(658\) −1.11672e12 −0.232235
\(659\) −2.00145e12 −0.413391 −0.206695 0.978405i \(-0.566271\pi\)
−0.206695 + 0.978405i \(0.566271\pi\)
\(660\) −1.41638e12 −0.290557
\(661\) −1.82759e12 −0.372368 −0.186184 0.982515i \(-0.559612\pi\)
−0.186184 + 0.982515i \(0.559612\pi\)
\(662\) −6.59860e11 −0.133534
\(663\) −6.60072e11 −0.132672
\(664\) −7.48217e11 −0.149373
\(665\) −5.76019e11 −0.114219
\(666\) 5.65331e11 0.111345
\(667\) −3.14820e12 −0.615881
\(668\) 4.76876e12 0.926640
\(669\) 5.31491e12 1.02584
\(670\) −9.91391e10 −0.0190068
\(671\) −6.47238e12 −1.23257
\(672\) 1.54941e12 0.293093
\(673\) 5.16769e12 0.971020 0.485510 0.874231i \(-0.338634\pi\)
0.485510 + 0.874231i \(0.338634\pi\)
\(674\) −3.24508e11 −0.0605697
\(675\) −4.31599e12 −0.800228
\(676\) 4.71525e12 0.868449
\(677\) 6.87219e12 1.25732 0.628661 0.777680i \(-0.283603\pi\)
0.628661 + 0.777680i \(0.283603\pi\)
\(678\) −2.55017e11 −0.0463484
\(679\) −5.07345e12 −0.915987
\(680\) −4.43968e11 −0.0796273
\(681\) −2.89060e12 −0.515023
\(682\) −6.96535e11 −0.123286
\(683\) 6.91843e12 1.21651 0.608253 0.793743i \(-0.291871\pi\)
0.608253 + 0.793743i \(0.291871\pi\)
\(684\) 8.56182e11 0.149559
\(685\) −7.44456e11 −0.129191
\(686\) 5.38686e11 0.0928704
\(687\) −2.77751e12 −0.475718
\(688\) 6.31497e12 1.07454
\(689\) 2.93715e12 0.496524
\(690\) −9.16914e10 −0.0153995
\(691\) −2.65947e12 −0.443755 −0.221877 0.975075i \(-0.571218\pi\)
−0.221877 + 0.975075i \(0.571218\pi\)
\(692\) −5.70879e12 −0.946383
\(693\) −6.10225e12 −1.00506
\(694\) −1.67840e12 −0.274649
\(695\) −1.97032e12 −0.320335
\(696\) 1.38771e12 0.224160
\(697\) 1.52764e12 0.245173
\(698\) 8.74845e10 0.0139502
\(699\) −5.90940e12 −0.936258
\(700\) 6.25735e12 0.985030
\(701\) 5.34357e12 0.835796 0.417898 0.908494i \(-0.362767\pi\)
0.417898 + 0.908494i \(0.362767\pi\)
\(702\) −2.99322e11 −0.0465181
\(703\) 1.73198e12 0.267451
\(704\) −7.14255e12 −1.09591
\(705\) 2.08574e12 0.317986
\(706\) 1.74399e11 0.0264194
\(707\) −2.07933e12 −0.312994
\(708\) −1.75252e12 −0.262128
\(709\) 1.20705e13 1.79398 0.896988 0.442055i \(-0.145750\pi\)
0.896988 + 0.442055i \(0.145750\pi\)
\(710\) 6.34718e11 0.0937385
\(711\) 5.47648e12 0.803689
\(712\) 2.92309e12 0.426267
\(713\) 2.14493e12 0.310821
\(714\) 4.75452e11 0.0684645
\(715\) −1.20678e12 −0.172683
\(716\) −7.75987e12 −1.10343
\(717\) 1.03005e12 0.145553
\(718\) 6.80251e11 0.0955233
\(719\) 1.72998e12 0.241413 0.120707 0.992688i \(-0.461484\pi\)
0.120707 + 0.992688i \(0.461484\pi\)
\(720\) 1.85301e12 0.256969
\(721\) −1.04606e13 −1.44161
\(722\) −5.51424e10 −0.00755211
\(723\) 6.27469e12 0.854023
\(724\) −1.20175e13 −1.62551
\(725\) 8.43565e12 1.13396
\(726\) 3.45295e11 0.0461292
\(727\) 7.85052e11 0.104230 0.0521151 0.998641i \(-0.483404\pi\)
0.0521151 + 0.998641i \(0.483404\pi\)
\(728\) 8.77041e11 0.115725
\(729\) 3.69552e12 0.484620
\(730\) 6.02922e11 0.0785794
\(731\) 6.02422e12 0.780319
\(732\) −4.34711e12 −0.559630
\(733\) 5.44899e12 0.697185 0.348593 0.937274i \(-0.386660\pi\)
0.348593 + 0.937274i \(0.386660\pi\)
\(734\) 1.48943e12 0.189403
\(735\) 8.75630e11 0.110669
\(736\) −1.50412e12 −0.188944
\(737\) −3.21765e12 −0.401731
\(738\) 2.76833e11 0.0343530
\(739\) 4.24026e12 0.522989 0.261494 0.965205i \(-0.415785\pi\)
0.261494 + 0.965205i \(0.415785\pi\)
\(740\) 3.83070e12 0.469608
\(741\) −3.66463e11 −0.0446527
\(742\) −2.11564e12 −0.256227
\(743\) 7.99474e12 0.962398 0.481199 0.876611i \(-0.340201\pi\)
0.481199 + 0.876611i \(0.340201\pi\)
\(744\) −9.45476e11 −0.113129
\(745\) −4.09436e12 −0.486948
\(746\) 5.42306e11 0.0641091
\(747\) 2.97908e12 0.350057
\(748\) −7.12976e12 −0.832756
\(749\) −8.75479e11 −0.101643
\(750\) 5.41399e11 0.0624801
\(751\) 8.90356e12 1.02137 0.510686 0.859767i \(-0.329392\pi\)
0.510686 + 0.859767i \(0.329392\pi\)
\(752\) 1.10059e13 1.25500
\(753\) 5.33752e12 0.605009
\(754\) 5.85028e11 0.0659182
\(755\) 4.75333e12 0.532398
\(756\) −1.02560e13 −1.14190
\(757\) 4.72816e12 0.523312 0.261656 0.965161i \(-0.415731\pi\)
0.261656 + 0.965161i \(0.415731\pi\)
\(758\) −1.23164e12 −0.135510
\(759\) −2.97593e12 −0.325488
\(760\) −2.46485e11 −0.0267997
\(761\) −8.00319e12 −0.865032 −0.432516 0.901626i \(-0.642374\pi\)
−0.432516 + 0.901626i \(0.642374\pi\)
\(762\) −6.19430e11 −0.0665571
\(763\) −9.85701e12 −1.05289
\(764\) −2.38696e12 −0.253469
\(765\) 1.76769e12 0.186608
\(766\) 2.14657e12 0.225276
\(767\) −1.49317e12 −0.155787
\(768\) −4.46227e12 −0.462839
\(769\) −1.22600e13 −1.26421 −0.632106 0.774882i \(-0.717809\pi\)
−0.632106 + 0.774882i \(0.717809\pi\)
\(770\) 8.69247e11 0.0891118
\(771\) −7.19816e12 −0.733630
\(772\) 2.03491e12 0.206190
\(773\) 1.49322e12 0.150424 0.0752118 0.997168i \(-0.476037\pi\)
0.0752118 + 0.997168i \(0.476037\pi\)
\(774\) 1.09169e12 0.109336
\(775\) −5.74737e12 −0.572284
\(776\) −2.17099e12 −0.214921
\(777\) −8.29095e12 −0.816037
\(778\) −1.67652e12 −0.164059
\(779\) 8.48123e11 0.0825164
\(780\) −8.10521e11 −0.0784040
\(781\) 2.06004e13 1.98128
\(782\) −4.61556e11 −0.0441361
\(783\) −1.38262e13 −1.31455
\(784\) 4.62047e12 0.436781
\(785\) 3.96929e12 0.373078
\(786\) 6.44553e11 0.0602361
\(787\) −1.87740e13 −1.74450 −0.872248 0.489063i \(-0.837339\pi\)
−0.872248 + 0.489063i \(0.837339\pi\)
\(788\) 1.39151e12 0.128564
\(789\) 6.41820e12 0.589613
\(790\) −7.80108e11 −0.0712579
\(791\) −7.44481e12 −0.676176
\(792\) −2.61122e12 −0.235820
\(793\) −3.70381e12 −0.332598
\(794\) 1.22698e12 0.109558
\(795\) 3.95146e12 0.350837
\(796\) −1.10432e13 −0.974957
\(797\) −6.37960e12 −0.560055 −0.280028 0.959992i \(-0.590344\pi\)
−0.280028 + 0.959992i \(0.590344\pi\)
\(798\) 2.63965e11 0.0230427
\(799\) 1.04992e13 0.911370
\(800\) 4.03032e12 0.347884
\(801\) −1.16385e13 −0.998965
\(802\) −1.66508e12 −0.142119
\(803\) 1.95684e13 1.66087
\(804\) −2.16111e12 −0.182400
\(805\) −2.67679e12 −0.224664
\(806\) −3.98591e11 −0.0332675
\(807\) 1.21623e13 1.00945
\(808\) −8.89771e11 −0.0734390
\(809\) 1.10650e13 0.908202 0.454101 0.890950i \(-0.349960\pi\)
0.454101 + 0.890950i \(0.349960\pi\)
\(810\) 7.85694e10 0.00641314
\(811\) −1.58748e13 −1.28859 −0.644295 0.764777i \(-0.722849\pi\)
−0.644295 + 0.764777i \(0.722849\pi\)
\(812\) 2.00454e13 1.61812
\(813\) −1.27464e13 −1.02325
\(814\) −2.61367e12 −0.208661
\(815\) −7.88552e12 −0.626067
\(816\) −4.68585e12 −0.369984
\(817\) 3.34456e12 0.262627
\(818\) −4.37889e11 −0.0341959
\(819\) −3.49200e12 −0.271204
\(820\) 1.87583e12 0.144887
\(821\) −8.18555e12 −0.628787 −0.314393 0.949293i \(-0.601801\pi\)
−0.314393 + 0.949293i \(0.601801\pi\)
\(822\) 3.41152e11 0.0260630
\(823\) 5.58150e12 0.424083 0.212042 0.977261i \(-0.431989\pi\)
0.212042 + 0.977261i \(0.431989\pi\)
\(824\) −4.47622e12 −0.338251
\(825\) 7.97404e12 0.599288
\(826\) 1.07554e12 0.0803927
\(827\) 4.11888e12 0.306199 0.153100 0.988211i \(-0.451074\pi\)
0.153100 + 0.988211i \(0.451074\pi\)
\(828\) 3.97872e12 0.294176
\(829\) 6.22311e12 0.457628 0.228814 0.973470i \(-0.426515\pi\)
0.228814 + 0.973470i \(0.426515\pi\)
\(830\) −4.24361e11 −0.0310373
\(831\) −1.55053e13 −1.12791
\(832\) −4.08731e12 −0.295721
\(833\) 4.40774e12 0.317186
\(834\) 9.02912e11 0.0646247
\(835\) 5.46618e12 0.389130
\(836\) −3.95835e12 −0.280276
\(837\) 9.42009e12 0.663423
\(838\) −3.07383e12 −0.215318
\(839\) −2.68941e13 −1.87382 −0.936910 0.349570i \(-0.886328\pi\)
−0.936910 + 0.349570i \(0.886328\pi\)
\(840\) 1.17992e12 0.0817701
\(841\) 1.25164e13 0.862773
\(842\) −1.12359e12 −0.0770380
\(843\) 1.35964e13 0.927254
\(844\) 1.25627e13 0.852201
\(845\) 5.40485e12 0.364694
\(846\) 1.90262e12 0.127699
\(847\) 1.00804e13 0.672978
\(848\) 2.08509e13 1.38466
\(849\) 1.15653e13 0.763963
\(850\) 1.23674e12 0.0812633
\(851\) 8.04862e12 0.526064
\(852\) 1.38360e13 0.899567
\(853\) 2.06845e13 1.33775 0.668875 0.743375i \(-0.266776\pi\)
0.668875 + 0.743375i \(0.266776\pi\)
\(854\) 2.66787e12 0.171634
\(855\) 9.81398e11 0.0628055
\(856\) −3.74628e11 −0.0238489
\(857\) −2.10702e13 −1.33430 −0.667151 0.744923i \(-0.732486\pi\)
−0.667151 + 0.744923i \(0.732486\pi\)
\(858\) 5.53015e11 0.0348372
\(859\) −1.51766e13 −0.951052 −0.475526 0.879702i \(-0.657742\pi\)
−0.475526 + 0.879702i \(0.657742\pi\)
\(860\) 7.39731e12 0.461138
\(861\) −4.05994e12 −0.251771
\(862\) −2.24184e12 −0.138300
\(863\) 1.27112e13 0.780080 0.390040 0.920798i \(-0.372461\pi\)
0.390040 + 0.920798i \(0.372461\pi\)
\(864\) −6.60579e12 −0.403286
\(865\) −6.54370e12 −0.397421
\(866\) 2.81411e12 0.170024
\(867\) 5.15060e12 0.309579
\(868\) −1.36573e13 −0.816631
\(869\) −2.53191e13 −1.50612
\(870\) 7.87060e11 0.0465770
\(871\) −1.84130e12 −0.108403
\(872\) −4.21793e12 −0.247045
\(873\) 8.64394e12 0.503672
\(874\) −2.56249e11 −0.0148546
\(875\) 1.58053e13 0.911520
\(876\) 1.31429e13 0.754091
\(877\) −2.74138e13 −1.56484 −0.782422 0.622749i \(-0.786016\pi\)
−0.782422 + 0.622749i \(0.786016\pi\)
\(878\) −8.42804e10 −0.00478631
\(879\) 1.08712e13 0.614223
\(880\) −8.56692e12 −0.481562
\(881\) −2.81214e13 −1.57270 −0.786348 0.617783i \(-0.788031\pi\)
−0.786348 + 0.617783i \(0.788031\pi\)
\(882\) 7.98755e11 0.0444432
\(883\) 1.08099e13 0.598407 0.299204 0.954189i \(-0.403279\pi\)
0.299204 + 0.954189i \(0.403279\pi\)
\(884\) −4.07999e12 −0.224711
\(885\) −2.00882e12 −0.110077
\(886\) −2.18220e11 −0.0118971
\(887\) −9.93185e12 −0.538733 −0.269367 0.963038i \(-0.586814\pi\)
−0.269367 + 0.963038i \(0.586814\pi\)
\(888\) −3.54779e12 −0.191470
\(889\) −1.80833e13 −0.971001
\(890\) 1.65787e12 0.0885717
\(891\) 2.55004e12 0.135549
\(892\) 3.28522e13 1.73749
\(893\) 5.82900e12 0.306734
\(894\) 1.87627e12 0.0982372
\(895\) −8.89474e12 −0.463372
\(896\) 1.27226e13 0.659460
\(897\) −1.70297e12 −0.0878297
\(898\) 5.07051e12 0.260200
\(899\) −1.84116e13 −0.940100
\(900\) −1.06610e13 −0.541637
\(901\) 1.98908e13 1.00552
\(902\) −1.27987e12 −0.0643778
\(903\) −1.60103e13 −0.801318
\(904\) −3.18572e12 −0.158654
\(905\) −1.37750e13 −0.682612
\(906\) −2.17825e12 −0.107406
\(907\) 4.94879e12 0.242810 0.121405 0.992603i \(-0.461260\pi\)
0.121405 + 0.992603i \(0.461260\pi\)
\(908\) −1.78672e13 −0.872309
\(909\) 3.54269e12 0.172106
\(910\) 4.97425e11 0.0240459
\(911\) −1.39546e13 −0.671250 −0.335625 0.941996i \(-0.608947\pi\)
−0.335625 + 0.941996i \(0.608947\pi\)
\(912\) −2.60152e12 −0.124523
\(913\) −1.37730e13 −0.656011
\(914\) 1.92817e12 0.0913875
\(915\) −4.98287e12 −0.235009
\(916\) −1.71681e13 −0.805738
\(917\) 1.88167e13 0.878783
\(918\) −2.02706e12 −0.0942049
\(919\) 1.95589e13 0.904535 0.452267 0.891882i \(-0.350615\pi\)
0.452267 + 0.891882i \(0.350615\pi\)
\(920\) −1.14543e12 −0.0527136
\(921\) 8.19320e12 0.375220
\(922\) 2.39370e12 0.109089
\(923\) 1.17885e13 0.534628
\(924\) 1.89485e13 0.855166
\(925\) −2.15664e13 −0.968588
\(926\) 5.32030e11 0.0237786
\(927\) 1.78224e13 0.792697
\(928\) 1.29111e13 0.571474
\(929\) −2.58169e13 −1.13719 −0.568595 0.822618i \(-0.692513\pi\)
−0.568595 + 0.822618i \(0.692513\pi\)
\(930\) −5.36239e11 −0.0235064
\(931\) 2.44712e12 0.106753
\(932\) −3.65268e13 −1.58577
\(933\) −8.07784e12 −0.349002
\(934\) −1.96096e12 −0.0843156
\(935\) −8.17248e12 −0.349705
\(936\) −1.49427e12 −0.0636337
\(937\) 1.56558e13 0.663507 0.331754 0.943366i \(-0.392360\pi\)
0.331754 + 0.943366i \(0.392360\pi\)
\(938\) 1.32629e12 0.0559406
\(939\) −2.72576e12 −0.114418
\(940\) 1.28922e13 0.538583
\(941\) 1.38700e13 0.576665 0.288333 0.957530i \(-0.406899\pi\)
0.288333 + 0.957530i \(0.406899\pi\)
\(942\) −1.81895e12 −0.0752649
\(943\) 3.94127e12 0.162306
\(944\) −1.06000e13 −0.434444
\(945\) −1.17559e13 −0.479526
\(946\) −5.04715e12 −0.204897
\(947\) −8.73576e12 −0.352960 −0.176480 0.984304i \(-0.556471\pi\)
−0.176480 + 0.984304i \(0.556471\pi\)
\(948\) −1.70054e13 −0.683830
\(949\) 1.11980e13 0.448169
\(950\) 6.86623e11 0.0273503
\(951\) 1.58811e13 0.629606
\(952\) 5.93945e12 0.234358
\(953\) −4.02296e13 −1.57989 −0.789947 0.613175i \(-0.789892\pi\)
−0.789947 + 0.613175i \(0.789892\pi\)
\(954\) 3.60455e12 0.140891
\(955\) −2.73605e12 −0.106441
\(956\) 6.36687e12 0.246527
\(957\) 2.55448e13 0.984460
\(958\) −2.74681e12 −0.105362
\(959\) 9.95940e12 0.380233
\(960\) −5.49881e12 −0.208953
\(961\) −1.38954e13 −0.525552
\(962\) −1.49567e12 −0.0563050
\(963\) 1.49161e12 0.0558903
\(964\) 3.87847e13 1.44648
\(965\) 2.33252e12 0.0865869
\(966\) 1.22666e12 0.0453238
\(967\) −2.77429e13 −1.02031 −0.510157 0.860082i \(-0.670413\pi\)
−0.510157 + 0.860082i \(0.670413\pi\)
\(968\) 4.31350e12 0.157903
\(969\) −2.48174e12 −0.0904273
\(970\) −1.23130e12 −0.0446573
\(971\) 3.62305e13 1.30794 0.653969 0.756521i \(-0.273103\pi\)
0.653969 + 0.756521i \(0.273103\pi\)
\(972\) 2.79645e13 1.00487
\(973\) 2.63591e13 0.942808
\(974\) −3.23794e12 −0.115280
\(975\) 4.56313e12 0.161712
\(976\) −2.62933e13 −0.927516
\(977\) −1.17286e13 −0.411832 −0.205916 0.978570i \(-0.566017\pi\)
−0.205916 + 0.978570i \(0.566017\pi\)
\(978\) 3.61359e12 0.126303
\(979\) 5.38077e13 1.87207
\(980\) 5.41239e12 0.187444
\(981\) 1.67940e13 0.578953
\(982\) 7.89146e12 0.270804
\(983\) −1.84727e13 −0.631016 −0.315508 0.948923i \(-0.602175\pi\)
−0.315508 + 0.948923i \(0.602175\pi\)
\(984\) −1.73729e12 −0.0590739
\(985\) 1.59502e12 0.0539886
\(986\) 3.96190e12 0.133493
\(987\) −2.79032e13 −0.935895
\(988\) −2.26516e12 −0.0756296
\(989\) 1.55424e13 0.516575
\(990\) −1.48099e12 −0.0489997
\(991\) 5.21846e13 1.71874 0.859372 0.511351i \(-0.170855\pi\)
0.859372 + 0.511351i \(0.170855\pi\)
\(992\) −8.79657e12 −0.288410
\(993\) −1.64878e13 −0.538133
\(994\) −8.49132e12 −0.275890
\(995\) −1.26582e13 −0.409420
\(996\) −9.25052e12 −0.297851
\(997\) −1.78238e13 −0.571311 −0.285655 0.958332i \(-0.592211\pi\)
−0.285655 + 0.958332i \(0.592211\pi\)
\(998\) −1.01289e12 −0.0323202
\(999\) 3.53478e13 1.12284
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 19.10.a.b.1.5 8
3.2 odd 2 171.10.a.f.1.4 8
4.3 odd 2 304.10.a.i.1.6 8
19.18 odd 2 361.10.a.c.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.b.1.5 8 1.1 even 1 trivial
171.10.a.f.1.4 8 3.2 odd 2
304.10.a.i.1.6 8 4.3 odd 2
361.10.a.c.1.4 8 19.18 odd 2