Properties

Label 19.10.a.b.1.2
Level $19$
Weight $10$
Character 19.1
Self dual yes
Analytic conductor $9.786$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,10,Mod(1,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 19.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78568088711\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 3356 x^{6} - 1330 x^{5} + 3186388 x^{4} - 1801192 x^{3} - 758043152 x^{2} + \cdots - 16080668672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(34.1433\) of defining polynomial
Character \(\chi\) \(=\) 19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.1433 q^{2} +6.24328 q^{3} +521.193 q^{4} -1240.15 q^{5} -200.680 q^{6} -8874.26 q^{7} -295.489 q^{8} -19644.0 q^{9} +39862.5 q^{10} +14509.7 q^{11} +3253.95 q^{12} +171819. q^{13} +285248. q^{14} -7742.60 q^{15} -257353. q^{16} +250400. q^{17} +631424. q^{18} +130321. q^{19} -646357. q^{20} -55404.5 q^{21} -466389. q^{22} +370879. q^{23} -1844.82 q^{24} -415154. q^{25} -5.52282e6 q^{26} -245530. q^{27} -4.62520e6 q^{28} +5.30618e6 q^{29} +248873. q^{30} +3.66089e6 q^{31} +8.42346e6 q^{32} +90587.9 q^{33} -8.04869e6 q^{34} +1.10054e7 q^{35} -1.02383e7 q^{36} -1.93497e7 q^{37} -4.18895e6 q^{38} +1.07271e6 q^{39} +366450. q^{40} +2.31432e7 q^{41} +1.78088e6 q^{42} -1.20515e7 q^{43} +7.56233e6 q^{44} +2.43615e7 q^{45} -1.19213e7 q^{46} +6.98659e6 q^{47} -1.60672e6 q^{48} +3.83990e7 q^{49} +1.33444e7 q^{50} +1.56332e6 q^{51} +8.95506e7 q^{52} -4.90402e7 q^{53} +7.89213e6 q^{54} -1.79941e7 q^{55} +2.62225e6 q^{56} +813630. q^{57} -1.70558e8 q^{58} +6.35336e7 q^{59} -4.03539e6 q^{60} -7.02244e6 q^{61} -1.17673e8 q^{62} +1.74326e8 q^{63} -1.38993e8 q^{64} -2.13081e8 q^{65} -2.91179e6 q^{66} -1.38553e8 q^{67} +1.30507e8 q^{68} +2.31550e6 q^{69} -3.53751e8 q^{70} -1.11040e8 q^{71} +5.80459e6 q^{72} +1.22351e8 q^{73} +6.21964e8 q^{74} -2.59192e6 q^{75} +6.79224e7 q^{76} -1.28763e8 q^{77} -3.44805e7 q^{78} +6.37779e8 q^{79} +3.19156e8 q^{80} +3.85120e8 q^{81} -7.43898e8 q^{82} +7.84665e8 q^{83} -2.88764e7 q^{84} -3.10534e8 q^{85} +3.87374e8 q^{86} +3.31279e7 q^{87} -4.28744e6 q^{88} +6.81105e8 q^{89} -7.83060e8 q^{90} -1.52476e9 q^{91} +1.93300e8 q^{92} +2.28560e7 q^{93} -2.24572e8 q^{94} -1.61618e8 q^{95} +5.25900e7 q^{96} +8.49995e8 q^{97} -1.23427e9 q^{98} -2.85028e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 15 q^{2} + 7 q^{3} + 2645 q^{4} + 3894 q^{5} - 9723 q^{6} - 7133 q^{7} + 10911 q^{8} + 102715 q^{9} + 113172 q^{10} + 172818 q^{11} + 349117 q^{12} + 109291 q^{13} + 250959 q^{14} + 457332 q^{15}+ \cdots - 1682553420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.1433 −1.42055 −0.710274 0.703926i \(-0.751429\pi\)
−0.710274 + 0.703926i \(0.751429\pi\)
\(3\) 6.24328 0.0445007 0.0222504 0.999752i \(-0.492917\pi\)
0.0222504 + 0.999752i \(0.492917\pi\)
\(4\) 521.193 1.01795
\(5\) −1240.15 −0.887379 −0.443689 0.896181i \(-0.646331\pi\)
−0.443689 + 0.896181i \(0.646331\pi\)
\(6\) −200.680 −0.0632154
\(7\) −8874.26 −1.39698 −0.698492 0.715618i \(-0.746145\pi\)
−0.698492 + 0.715618i \(0.746145\pi\)
\(8\) −295.489 −0.0255056
\(9\) −19644.0 −0.998020
\(10\) 39862.5 1.26056
\(11\) 14509.7 0.298807 0.149403 0.988776i \(-0.452265\pi\)
0.149403 + 0.988776i \(0.452265\pi\)
\(12\) 3253.95 0.0452997
\(13\) 171819. 1.66850 0.834248 0.551390i \(-0.185902\pi\)
0.834248 + 0.551390i \(0.185902\pi\)
\(14\) 285248. 1.98448
\(15\) −7742.60 −0.0394890
\(16\) −257353. −0.981723
\(17\) 250400. 0.727134 0.363567 0.931568i \(-0.381559\pi\)
0.363567 + 0.931568i \(0.381559\pi\)
\(18\) 631424. 1.41773
\(19\) 130321. 0.229416
\(20\) −646357. −0.903312
\(21\) −55404.5 −0.0621668
\(22\) −466389. −0.424469
\(23\) 370879. 0.276349 0.138174 0.990408i \(-0.455877\pi\)
0.138174 + 0.990408i \(0.455877\pi\)
\(24\) −1844.82 −0.00113502
\(25\) −415154. −0.212559
\(26\) −5.52282e6 −2.37018
\(27\) −245530. −0.0889133
\(28\) −4.62520e6 −1.42207
\(29\) 5.30618e6 1.39313 0.696564 0.717495i \(-0.254711\pi\)
0.696564 + 0.717495i \(0.254711\pi\)
\(30\) 248873. 0.0560960
\(31\) 3.66089e6 0.711966 0.355983 0.934492i \(-0.384146\pi\)
0.355983 + 0.934492i \(0.384146\pi\)
\(32\) 8.42346e6 1.42009
\(33\) 90587.9 0.0132971
\(34\) −8.04869e6 −1.03293
\(35\) 1.10054e7 1.23965
\(36\) −1.02383e7 −1.01594
\(37\) −1.93497e7 −1.69733 −0.848666 0.528929i \(-0.822594\pi\)
−0.848666 + 0.528929i \(0.822594\pi\)
\(38\) −4.18895e6 −0.325896
\(39\) 1.07271e6 0.0742493
\(40\) 366450. 0.0226332
\(41\) 2.31432e7 1.27907 0.639537 0.768760i \(-0.279126\pi\)
0.639537 + 0.768760i \(0.279126\pi\)
\(42\) 1.78088e6 0.0883108
\(43\) −1.20515e7 −0.537565 −0.268783 0.963201i \(-0.586621\pi\)
−0.268783 + 0.963201i \(0.586621\pi\)
\(44\) 7.56233e6 0.304172
\(45\) 2.43615e7 0.885622
\(46\) −1.19213e7 −0.392566
\(47\) 6.98659e6 0.208846 0.104423 0.994533i \(-0.466701\pi\)
0.104423 + 0.994533i \(0.466701\pi\)
\(48\) −1.60672e6 −0.0436874
\(49\) 3.83990e7 0.951562
\(50\) 1.33444e7 0.301950
\(51\) 1.56332e6 0.0323580
\(52\) 8.95506e7 1.69845
\(53\) −4.90402e7 −0.853711 −0.426855 0.904320i \(-0.640379\pi\)
−0.426855 + 0.904320i \(0.640379\pi\)
\(54\) 7.89213e6 0.126306
\(55\) −1.79941e7 −0.265155
\(56\) 2.62225e6 0.0356309
\(57\) 813630. 0.0102092
\(58\) −1.70558e8 −1.97900
\(59\) 6.35336e7 0.682605 0.341303 0.939954i \(-0.389132\pi\)
0.341303 + 0.939954i \(0.389132\pi\)
\(60\) −4.03539e6 −0.0401980
\(61\) −7.02244e6 −0.0649387 −0.0324694 0.999473i \(-0.510337\pi\)
−0.0324694 + 0.999473i \(0.510337\pi\)
\(62\) −1.17673e8 −1.01138
\(63\) 1.74326e8 1.39422
\(64\) −1.38993e8 −1.03558
\(65\) −2.13081e8 −1.48059
\(66\) −2.91179e6 −0.0188892
\(67\) −1.38553e8 −0.840000 −0.420000 0.907524i \(-0.637970\pi\)
−0.420000 + 0.907524i \(0.637970\pi\)
\(68\) 1.30507e8 0.740189
\(69\) 2.31550e6 0.0122977
\(70\) −3.53751e8 −1.76099
\(71\) −1.11040e8 −0.518579 −0.259290 0.965800i \(-0.583488\pi\)
−0.259290 + 0.965800i \(0.583488\pi\)
\(72\) 5.80459e6 0.0254551
\(73\) 1.22351e8 0.504259 0.252130 0.967693i \(-0.418869\pi\)
0.252130 + 0.967693i \(0.418869\pi\)
\(74\) 6.21964e8 2.41114
\(75\) −2.59192e6 −0.00945902
\(76\) 6.79224e7 0.233535
\(77\) −1.28763e8 −0.417428
\(78\) −3.44805e7 −0.105475
\(79\) 6.37779e8 1.84225 0.921124 0.389269i \(-0.127272\pi\)
0.921124 + 0.389269i \(0.127272\pi\)
\(80\) 3.19156e8 0.871160
\(81\) 3.85120e8 0.994063
\(82\) −7.43898e8 −1.81699
\(83\) 7.84665e8 1.81482 0.907409 0.420250i \(-0.138057\pi\)
0.907409 + 0.420250i \(0.138057\pi\)
\(84\) −2.88764e7 −0.0632830
\(85\) −3.10534e8 −0.645243
\(86\) 3.87374e8 0.763637
\(87\) 3.31279e7 0.0619952
\(88\) −4.28744e6 −0.00762125
\(89\) 6.81105e8 1.15069 0.575346 0.817910i \(-0.304868\pi\)
0.575346 + 0.817910i \(0.304868\pi\)
\(90\) −7.83060e8 −1.25807
\(91\) −1.52476e9 −2.33086
\(92\) 1.93300e8 0.281310
\(93\) 2.28560e7 0.0316830
\(94\) −2.24572e8 −0.296675
\(95\) −1.61618e8 −0.203579
\(96\) 5.25900e7 0.0631950
\(97\) 8.49995e8 0.974863 0.487432 0.873161i \(-0.337934\pi\)
0.487432 + 0.873161i \(0.337934\pi\)
\(98\) −1.23427e9 −1.35174
\(99\) −2.85028e8 −0.298215
\(100\) −2.16375e8 −0.216375
\(101\) 4.49876e8 0.430177 0.215088 0.976595i \(-0.430996\pi\)
0.215088 + 0.976595i \(0.430996\pi\)
\(102\) −5.02502e7 −0.0459660
\(103\) −7.66689e8 −0.671199 −0.335600 0.942005i \(-0.608939\pi\)
−0.335600 + 0.942005i \(0.608939\pi\)
\(104\) −5.07705e7 −0.0425561
\(105\) 6.87099e7 0.0551655
\(106\) 1.57631e9 1.21274
\(107\) −1.97149e9 −1.45401 −0.727006 0.686631i \(-0.759089\pi\)
−0.727006 + 0.686631i \(0.759089\pi\)
\(108\) −1.27968e8 −0.0905097
\(109\) −3.72061e8 −0.252462 −0.126231 0.992001i \(-0.540288\pi\)
−0.126231 + 0.992001i \(0.540288\pi\)
\(110\) 5.78392e8 0.376665
\(111\) −1.20806e8 −0.0755325
\(112\) 2.28382e9 1.37145
\(113\) 2.17965e9 1.25758 0.628788 0.777576i \(-0.283551\pi\)
0.628788 + 0.777576i \(0.283551\pi\)
\(114\) −2.61528e7 −0.0145026
\(115\) −4.59946e8 −0.245226
\(116\) 2.76554e9 1.41814
\(117\) −3.37521e9 −1.66519
\(118\) −2.04218e9 −0.969673
\(119\) −2.22212e9 −1.01579
\(120\) 2.28785e6 0.00100719
\(121\) −2.14742e9 −0.910715
\(122\) 2.25724e8 0.0922485
\(123\) 1.44489e8 0.0569197
\(124\) 1.90803e9 0.724749
\(125\) 2.93702e9 1.07600
\(126\) −5.60342e9 −1.98055
\(127\) 3.25291e9 1.10957 0.554785 0.831994i \(-0.312800\pi\)
0.554785 + 0.831994i \(0.312800\pi\)
\(128\) 1.54896e8 0.0510031
\(129\) −7.52406e7 −0.0239221
\(130\) 6.84912e9 2.10325
\(131\) 2.11327e8 0.0626953 0.0313476 0.999509i \(-0.490020\pi\)
0.0313476 + 0.999509i \(0.490020\pi\)
\(132\) 4.72137e7 0.0135359
\(133\) −1.15650e9 −0.320490
\(134\) 4.45355e9 1.19326
\(135\) 3.04493e8 0.0788998
\(136\) −7.39905e7 −0.0185460
\(137\) −6.91279e9 −1.67653 −0.838264 0.545265i \(-0.816429\pi\)
−0.838264 + 0.545265i \(0.816429\pi\)
\(138\) −7.44280e7 −0.0174695
\(139\) −3.99615e9 −0.907978 −0.453989 0.891007i \(-0.650000\pi\)
−0.453989 + 0.891007i \(0.650000\pi\)
\(140\) 5.73594e9 1.26191
\(141\) 4.36193e7 0.00929378
\(142\) 3.56918e9 0.736666
\(143\) 2.49303e9 0.498558
\(144\) 5.05544e9 0.979779
\(145\) −6.58045e9 −1.23623
\(146\) −3.93276e9 −0.716324
\(147\) 2.39735e8 0.0423452
\(148\) −1.00849e10 −1.72781
\(149\) 9.81038e9 1.63060 0.815301 0.579038i \(-0.196572\pi\)
0.815301 + 0.579038i \(0.196572\pi\)
\(150\) 8.33130e7 0.0134370
\(151\) 1.13142e10 1.77103 0.885517 0.464607i \(-0.153804\pi\)
0.885517 + 0.464607i \(0.153804\pi\)
\(152\) −3.85084e7 −0.00585140
\(153\) −4.91887e9 −0.725694
\(154\) 4.13886e9 0.592976
\(155\) −4.54005e9 −0.631784
\(156\) 5.59090e8 0.0755824
\(157\) 9.30128e9 1.22178 0.610892 0.791714i \(-0.290811\pi\)
0.610892 + 0.791714i \(0.290811\pi\)
\(158\) −2.05003e10 −2.61700
\(159\) −3.06172e8 −0.0379908
\(160\) −1.04464e10 −1.26016
\(161\) −3.29128e9 −0.386054
\(162\) −1.23790e10 −1.41211
\(163\) −3.82971e9 −0.424934 −0.212467 0.977168i \(-0.568150\pi\)
−0.212467 + 0.977168i \(0.568150\pi\)
\(164\) 1.20621e10 1.30204
\(165\) −1.12342e8 −0.0117996
\(166\) −2.52217e10 −2.57803
\(167\) −7.83909e9 −0.779905 −0.389952 0.920835i \(-0.627509\pi\)
−0.389952 + 0.920835i \(0.627509\pi\)
\(168\) 1.63714e7 0.00158560
\(169\) 1.89171e10 1.78388
\(170\) 9.98158e9 0.916598
\(171\) −2.56003e9 −0.228961
\(172\) −6.28113e9 −0.547217
\(173\) 9.97767e9 0.846880 0.423440 0.905924i \(-0.360823\pi\)
0.423440 + 0.905924i \(0.360823\pi\)
\(174\) −1.06484e9 −0.0880671
\(175\) 3.68419e9 0.296941
\(176\) −3.73410e9 −0.293345
\(177\) 3.96658e8 0.0303764
\(178\) −2.18930e10 −1.63461
\(179\) 6.49148e9 0.472612 0.236306 0.971679i \(-0.424063\pi\)
0.236306 + 0.971679i \(0.424063\pi\)
\(180\) 1.26971e10 0.901523
\(181\) 1.36985e10 0.948679 0.474339 0.880342i \(-0.342687\pi\)
0.474339 + 0.880342i \(0.342687\pi\)
\(182\) 4.90110e10 3.31110
\(183\) −4.38430e7 −0.00288982
\(184\) −1.09591e8 −0.00704845
\(185\) 2.39966e10 1.50618
\(186\) −7.34667e8 −0.0450072
\(187\) 3.63322e9 0.217272
\(188\) 3.64136e9 0.212595
\(189\) 2.17889e9 0.124210
\(190\) 5.19492e9 0.289193
\(191\) −2.21243e10 −1.20287 −0.601435 0.798921i \(-0.705404\pi\)
−0.601435 + 0.798921i \(0.705404\pi\)
\(192\) −8.67774e8 −0.0460841
\(193\) −5.70496e9 −0.295968 −0.147984 0.988990i \(-0.547278\pi\)
−0.147984 + 0.988990i \(0.547278\pi\)
\(194\) −2.73217e10 −1.38484
\(195\) −1.33032e9 −0.0658872
\(196\) 2.00133e10 0.968647
\(197\) 3.08490e10 1.45929 0.729647 0.683824i \(-0.239684\pi\)
0.729647 + 0.683824i \(0.239684\pi\)
\(198\) 9.16175e9 0.423628
\(199\) −1.72813e10 −0.781156 −0.390578 0.920570i \(-0.627725\pi\)
−0.390578 + 0.920570i \(0.627725\pi\)
\(200\) 1.22673e8 0.00542145
\(201\) −8.65025e8 −0.0373806
\(202\) −1.44605e10 −0.611086
\(203\) −4.70884e10 −1.94618
\(204\) 8.14790e8 0.0329390
\(205\) −2.87010e10 −1.13502
\(206\) 2.46439e10 0.953470
\(207\) −7.28556e9 −0.275801
\(208\) −4.42180e10 −1.63800
\(209\) 1.89091e9 0.0685509
\(210\) −2.20856e9 −0.0783652
\(211\) 8.20745e9 0.285060 0.142530 0.989790i \(-0.454476\pi\)
0.142530 + 0.989790i \(0.454476\pi\)
\(212\) −2.55594e10 −0.869039
\(213\) −6.93251e8 −0.0230772
\(214\) 6.33703e10 2.06549
\(215\) 1.49456e10 0.477024
\(216\) 7.25513e7 0.00226779
\(217\) −3.24877e10 −0.994605
\(218\) 1.19593e10 0.358634
\(219\) 7.63870e8 0.0224399
\(220\) −9.37842e9 −0.269915
\(221\) 4.30234e10 1.21322
\(222\) 3.88310e9 0.107298
\(223\) −3.07148e10 −0.831718 −0.415859 0.909429i \(-0.636519\pi\)
−0.415859 + 0.909429i \(0.636519\pi\)
\(224\) −7.47520e10 −1.98384
\(225\) 8.15529e9 0.212138
\(226\) −7.00613e10 −1.78645
\(227\) −2.43129e10 −0.607744 −0.303872 0.952713i \(-0.598279\pi\)
−0.303872 + 0.952713i \(0.598279\pi\)
\(228\) 4.24058e8 0.0103925
\(229\) 5.56525e10 1.33729 0.668644 0.743582i \(-0.266875\pi\)
0.668644 + 0.743582i \(0.266875\pi\)
\(230\) 1.47842e10 0.348355
\(231\) −8.03901e8 −0.0185758
\(232\) −1.56792e9 −0.0355326
\(233\) −3.47756e10 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(234\) 1.08490e11 2.36548
\(235\) −8.66442e9 −0.185325
\(236\) 3.31133e10 0.694861
\(237\) 3.98183e9 0.0819814
\(238\) 7.14262e10 1.44298
\(239\) −4.50629e10 −0.893364 −0.446682 0.894693i \(-0.647394\pi\)
−0.446682 + 0.894693i \(0.647394\pi\)
\(240\) 1.99258e9 0.0387673
\(241\) 3.19551e10 0.610189 0.305094 0.952322i \(-0.401312\pi\)
0.305094 + 0.952322i \(0.401312\pi\)
\(242\) 6.90251e10 1.29371
\(243\) 7.23717e9 0.133150
\(244\) −3.66004e9 −0.0661047
\(245\) −4.76204e10 −0.844396
\(246\) −4.64437e9 −0.0808572
\(247\) 2.23916e10 0.382779
\(248\) −1.08175e9 −0.0181592
\(249\) 4.89888e9 0.0807607
\(250\) −9.44056e10 −1.52851
\(251\) −4.83205e10 −0.768422 −0.384211 0.923245i \(-0.625526\pi\)
−0.384211 + 0.923245i \(0.625526\pi\)
\(252\) 9.08576e10 1.41925
\(253\) 5.38133e9 0.0825748
\(254\) −1.04559e11 −1.57620
\(255\) −1.93875e9 −0.0287138
\(256\) 6.61857e10 0.963129
\(257\) 1.61379e10 0.230754 0.115377 0.993322i \(-0.463192\pi\)
0.115377 + 0.993322i \(0.463192\pi\)
\(258\) 2.41848e9 0.0339824
\(259\) 1.71715e11 2.37115
\(260\) −1.11056e11 −1.50717
\(261\) −1.04235e11 −1.39037
\(262\) −6.79276e9 −0.0890616
\(263\) −1.13746e11 −1.46601 −0.733003 0.680225i \(-0.761882\pi\)
−0.733003 + 0.680225i \(0.761882\pi\)
\(264\) −2.67677e7 −0.000339151 0
\(265\) 6.08172e10 0.757565
\(266\) 3.71738e10 0.455271
\(267\) 4.25233e9 0.0512066
\(268\) −7.22128e10 −0.855082
\(269\) 2.26757e10 0.264043 0.132022 0.991247i \(-0.457853\pi\)
0.132022 + 0.991247i \(0.457853\pi\)
\(270\) −9.78743e9 −0.112081
\(271\) 1.44599e11 1.62856 0.814278 0.580475i \(-0.197133\pi\)
0.814278 + 0.580475i \(0.197133\pi\)
\(272\) −6.44412e10 −0.713844
\(273\) −9.51953e9 −0.103725
\(274\) 2.22200e11 2.38159
\(275\) −6.02374e9 −0.0635140
\(276\) 1.20682e9 0.0125185
\(277\) 6.06156e10 0.618622 0.309311 0.950961i \(-0.399902\pi\)
0.309311 + 0.950961i \(0.399902\pi\)
\(278\) 1.28450e11 1.28983
\(279\) −7.19146e10 −0.710556
\(280\) −3.25198e9 −0.0316181
\(281\) 5.17469e10 0.495115 0.247557 0.968873i \(-0.420372\pi\)
0.247557 + 0.968873i \(0.420372\pi\)
\(282\) −1.40207e9 −0.0132022
\(283\) −1.36866e11 −1.26840 −0.634198 0.773170i \(-0.718670\pi\)
−0.634198 + 0.773170i \(0.718670\pi\)
\(284\) −5.78730e10 −0.527890
\(285\) −1.00902e9 −0.00905940
\(286\) −8.01342e10 −0.708225
\(287\) −2.05379e11 −1.78684
\(288\) −1.65471e11 −1.41728
\(289\) −5.58877e10 −0.471276
\(290\) 2.11518e11 1.75613
\(291\) 5.30676e9 0.0433821
\(292\) 6.37684e10 0.513313
\(293\) 1.54294e11 1.22305 0.611525 0.791225i \(-0.290556\pi\)
0.611525 + 0.791225i \(0.290556\pi\)
\(294\) −7.70589e9 −0.0601534
\(295\) −7.87912e10 −0.605729
\(296\) 5.71763e9 0.0432916
\(297\) −3.56255e9 −0.0265679
\(298\) −3.15338e11 −2.31635
\(299\) 6.37240e10 0.461087
\(300\) −1.35089e9 −0.00962886
\(301\) 1.06948e11 0.750970
\(302\) −3.63675e11 −2.51584
\(303\) 2.80870e9 0.0191432
\(304\) −3.35385e10 −0.225223
\(305\) 8.70887e9 0.0576252
\(306\) 1.58109e11 1.03088
\(307\) −7.66818e10 −0.492685 −0.246343 0.969183i \(-0.579229\pi\)
−0.246343 + 0.969183i \(0.579229\pi\)
\(308\) −6.71101e10 −0.424923
\(309\) −4.78665e9 −0.0298689
\(310\) 1.45932e11 0.897479
\(311\) −1.01619e11 −0.615960 −0.307980 0.951393i \(-0.599653\pi\)
−0.307980 + 0.951393i \(0.599653\pi\)
\(312\) −3.16974e8 −0.00189378
\(313\) 1.80159e11 1.06098 0.530490 0.847691i \(-0.322008\pi\)
0.530490 + 0.847691i \(0.322008\pi\)
\(314\) −2.98974e11 −1.73560
\(315\) −2.16191e11 −1.23720
\(316\) 3.32406e11 1.87533
\(317\) 1.09242e10 0.0607610 0.0303805 0.999538i \(-0.490328\pi\)
0.0303805 + 0.999538i \(0.490328\pi\)
\(318\) 9.84137e9 0.0539677
\(319\) 7.69908e10 0.416276
\(320\) 1.72373e11 0.918953
\(321\) −1.23086e10 −0.0647046
\(322\) 1.05793e11 0.548409
\(323\) 3.26324e10 0.166816
\(324\) 2.00722e11 1.01191
\(325\) −7.13312e10 −0.354654
\(326\) 1.23099e11 0.603639
\(327\) −2.32288e9 −0.0112347
\(328\) −6.83855e9 −0.0326236
\(329\) −6.20009e10 −0.291754
\(330\) 3.61106e9 0.0167619
\(331\) 4.98916e10 0.228455 0.114228 0.993455i \(-0.463561\pi\)
0.114228 + 0.993455i \(0.463561\pi\)
\(332\) 4.08962e11 1.84740
\(333\) 3.80106e11 1.69397
\(334\) 2.51974e11 1.10789
\(335\) 1.71826e11 0.745398
\(336\) 1.42585e10 0.0610305
\(337\) −4.09090e10 −0.172776 −0.0863882 0.996262i \(-0.527533\pi\)
−0.0863882 + 0.996262i \(0.527533\pi\)
\(338\) −6.08060e11 −2.53408
\(339\) 1.36082e10 0.0559631
\(340\) −1.61848e11 −0.656828
\(341\) 5.31183e10 0.212740
\(342\) 8.22878e10 0.325251
\(343\) 1.73461e10 0.0676672
\(344\) 3.56107e9 0.0137110
\(345\) −2.87157e9 −0.0109127
\(346\) −3.20715e11 −1.20303
\(347\) 2.01278e11 0.745269 0.372635 0.927978i \(-0.378455\pi\)
0.372635 + 0.927978i \(0.378455\pi\)
\(348\) 1.72661e10 0.0631083
\(349\) −4.71409e11 −1.70092 −0.850460 0.526040i \(-0.823676\pi\)
−0.850460 + 0.526040i \(0.823676\pi\)
\(350\) −1.18422e11 −0.421819
\(351\) −4.21866e10 −0.148352
\(352\) 1.22222e11 0.424332
\(353\) 2.31623e11 0.793956 0.396978 0.917828i \(-0.370059\pi\)
0.396978 + 0.917828i \(0.370059\pi\)
\(354\) −1.27499e10 −0.0431511
\(355\) 1.37706e11 0.460176
\(356\) 3.54987e11 1.17135
\(357\) −1.38733e10 −0.0452036
\(358\) −2.08658e11 −0.671368
\(359\) 7.53299e10 0.239355 0.119677 0.992813i \(-0.461814\pi\)
0.119677 + 0.992813i \(0.461814\pi\)
\(360\) −7.19856e9 −0.0225883
\(361\) 1.69836e10 0.0526316
\(362\) −4.40315e11 −1.34764
\(363\) −1.34069e10 −0.0405275
\(364\) −7.94696e11 −2.37271
\(365\) −1.51733e11 −0.447469
\(366\) 1.40926e9 0.00410513
\(367\) 2.54619e11 0.732646 0.366323 0.930488i \(-0.380617\pi\)
0.366323 + 0.930488i \(0.380617\pi\)
\(368\) −9.54468e10 −0.271298
\(369\) −4.54625e11 −1.27654
\(370\) −7.71329e11 −2.13960
\(371\) 4.35196e11 1.19262
\(372\) 1.19124e10 0.0322519
\(373\) −6.37265e11 −1.70463 −0.852316 0.523027i \(-0.824803\pi\)
−0.852316 + 0.523027i \(0.824803\pi\)
\(374\) −1.16784e11 −0.308646
\(375\) 1.83366e10 0.0478827
\(376\) −2.06446e9 −0.00532674
\(377\) 9.11700e11 2.32443
\(378\) −7.00369e10 −0.176447
\(379\) −6.88255e11 −1.71346 −0.856728 0.515769i \(-0.827506\pi\)
−0.856728 + 0.515769i \(0.827506\pi\)
\(380\) −8.42339e10 −0.207234
\(381\) 2.03088e10 0.0493767
\(382\) 7.11148e11 1.70873
\(383\) 4.52345e11 1.07418 0.537088 0.843526i \(-0.319524\pi\)
0.537088 + 0.843526i \(0.319524\pi\)
\(384\) 9.67061e8 0.00226967
\(385\) 1.59685e11 0.370417
\(386\) 1.83376e11 0.420436
\(387\) 2.36739e11 0.536501
\(388\) 4.43012e11 0.992367
\(389\) −4.61174e10 −0.102115 −0.0510577 0.998696i \(-0.516259\pi\)
−0.0510577 + 0.998696i \(0.516259\pi\)
\(390\) 4.27610e10 0.0935959
\(391\) 9.28682e10 0.200942
\(392\) −1.13465e10 −0.0242702
\(393\) 1.31938e9 0.00278999
\(394\) −9.91589e11 −2.07300
\(395\) −7.90941e11 −1.63477
\(396\) −1.48555e11 −0.303569
\(397\) 7.38758e11 1.49260 0.746302 0.665607i \(-0.231827\pi\)
0.746302 + 0.665607i \(0.231827\pi\)
\(398\) 5.55479e11 1.10967
\(399\) −7.22037e9 −0.0142620
\(400\) 1.06841e11 0.208674
\(401\) 7.45051e10 0.143892 0.0719460 0.997409i \(-0.477079\pi\)
0.0719460 + 0.997409i \(0.477079\pi\)
\(402\) 2.78048e10 0.0531009
\(403\) 6.29009e11 1.18791
\(404\) 2.34472e11 0.437900
\(405\) −4.77607e11 −0.882110
\(406\) 1.51358e12 2.76463
\(407\) −2.80758e11 −0.507174
\(408\) −4.61943e8 −0.000825311 0
\(409\) −7.43819e10 −0.131435 −0.0657177 0.997838i \(-0.520934\pi\)
−0.0657177 + 0.997838i \(0.520934\pi\)
\(410\) 9.22545e11 1.61235
\(411\) −4.31585e10 −0.0746067
\(412\) −3.99593e11 −0.683251
\(413\) −5.63814e11 −0.953588
\(414\) 2.34182e11 0.391789
\(415\) −9.73102e11 −1.61043
\(416\) 1.44731e12 2.36941
\(417\) −2.49491e10 −0.0404057
\(418\) −6.07802e10 −0.0973798
\(419\) −2.32606e11 −0.368688 −0.184344 0.982862i \(-0.559016\pi\)
−0.184344 + 0.982862i \(0.559016\pi\)
\(420\) 3.58111e10 0.0561560
\(421\) −5.41341e11 −0.839849 −0.419924 0.907559i \(-0.637943\pi\)
−0.419924 + 0.907559i \(0.637943\pi\)
\(422\) −2.63815e11 −0.404942
\(423\) −1.37245e11 −0.208432
\(424\) 1.44908e10 0.0217744
\(425\) −1.03955e11 −0.154559
\(426\) 2.22834e10 0.0327822
\(427\) 6.23190e10 0.0907183
\(428\) −1.02753e12 −1.48012
\(429\) 1.55647e10 0.0221862
\(430\) −4.80401e11 −0.677635
\(431\) 5.20995e11 0.727253 0.363626 0.931545i \(-0.381538\pi\)
0.363626 + 0.931545i \(0.381538\pi\)
\(432\) 6.31877e10 0.0872882
\(433\) −1.26796e12 −1.73345 −0.866725 0.498786i \(-0.833779\pi\)
−0.866725 + 0.498786i \(0.833779\pi\)
\(434\) 1.04426e12 1.41288
\(435\) −4.10836e10 −0.0550132
\(436\) −1.93916e11 −0.256995
\(437\) 4.83334e10 0.0633987
\(438\) −2.45533e10 −0.0318770
\(439\) 1.45353e12 1.86782 0.933910 0.357508i \(-0.116373\pi\)
0.933910 + 0.357508i \(0.116373\pi\)
\(440\) 5.31707e9 0.00676294
\(441\) −7.54310e11 −0.949678
\(442\) −1.38291e12 −1.72344
\(443\) −3.99595e11 −0.492950 −0.246475 0.969149i \(-0.579272\pi\)
−0.246475 + 0.969149i \(0.579272\pi\)
\(444\) −6.29631e10 −0.0768887
\(445\) −8.44672e11 −1.02110
\(446\) 9.87276e11 1.18149
\(447\) 6.12490e10 0.0725629
\(448\) 1.23346e12 1.44669
\(449\) −2.62303e11 −0.304576 −0.152288 0.988336i \(-0.548664\pi\)
−0.152288 + 0.988336i \(0.548664\pi\)
\(450\) −2.62138e11 −0.301352
\(451\) 3.35800e11 0.382196
\(452\) 1.13602e12 1.28016
\(453\) 7.06376e10 0.0788123
\(454\) 7.81497e11 0.863329
\(455\) 1.89094e12 2.06836
\(456\) −2.40419e8 −0.000260391 0
\(457\) 5.46879e11 0.586500 0.293250 0.956036i \(-0.405263\pi\)
0.293250 + 0.956036i \(0.405263\pi\)
\(458\) −1.78886e12 −1.89968
\(459\) −6.14806e10 −0.0646519
\(460\) −2.39720e11 −0.249629
\(461\) −5.18813e11 −0.535003 −0.267502 0.963557i \(-0.586198\pi\)
−0.267502 + 0.963557i \(0.586198\pi\)
\(462\) 2.58400e10 0.0263879
\(463\) −4.45590e11 −0.450630 −0.225315 0.974286i \(-0.572341\pi\)
−0.225315 + 0.974286i \(0.572341\pi\)
\(464\) −1.36556e12 −1.36766
\(465\) −2.83448e10 −0.0281148
\(466\) 1.11780e12 1.09807
\(467\) −1.84238e12 −1.79247 −0.896237 0.443575i \(-0.853710\pi\)
−0.896237 + 0.443575i \(0.853710\pi\)
\(468\) −1.75913e12 −1.69509
\(469\) 1.22956e12 1.17347
\(470\) 2.78503e11 0.263263
\(471\) 5.80705e10 0.0543702
\(472\) −1.87735e10 −0.0174103
\(473\) −1.74862e11 −0.160628
\(474\) −1.27989e11 −0.116458
\(475\) −5.41033e10 −0.0487643
\(476\) −1.15815e12 −1.03403
\(477\) 9.63347e11 0.852020
\(478\) 1.44847e12 1.26907
\(479\) 1.55017e12 1.34546 0.672728 0.739890i \(-0.265123\pi\)
0.672728 + 0.739890i \(0.265123\pi\)
\(480\) −6.52195e10 −0.0560779
\(481\) −3.32464e12 −2.83199
\(482\) −1.02714e12 −0.866802
\(483\) −2.05484e10 −0.0171797
\(484\) −1.11922e12 −0.927066
\(485\) −1.05412e12 −0.865073
\(486\) −2.32627e11 −0.189146
\(487\) −3.95615e11 −0.318708 −0.159354 0.987222i \(-0.550941\pi\)
−0.159354 + 0.987222i \(0.550941\pi\)
\(488\) 2.07505e9 0.00165630
\(489\) −2.39099e10 −0.0189099
\(490\) 1.53068e12 1.19950
\(491\) 1.94721e12 1.51198 0.755991 0.654582i \(-0.227156\pi\)
0.755991 + 0.654582i \(0.227156\pi\)
\(492\) 7.53068e10 0.0579417
\(493\) 1.32867e12 1.01299
\(494\) −7.19739e11 −0.543756
\(495\) 3.53477e11 0.264630
\(496\) −9.42141e11 −0.698953
\(497\) 9.85394e11 0.724447
\(498\) −1.57466e11 −0.114724
\(499\) 2.58799e12 1.86858 0.934288 0.356520i \(-0.116037\pi\)
0.934288 + 0.356520i \(0.116037\pi\)
\(500\) 1.53075e12 1.09532
\(501\) −4.89416e10 −0.0347063
\(502\) 1.55318e12 1.09158
\(503\) −2.66146e12 −1.85381 −0.926903 0.375302i \(-0.877539\pi\)
−0.926903 + 0.375302i \(0.877539\pi\)
\(504\) −5.15115e10 −0.0355604
\(505\) −5.57914e11 −0.381730
\(506\) −1.72974e11 −0.117301
\(507\) 1.18105e11 0.0793839
\(508\) 1.69539e12 1.12949
\(509\) 2.00453e12 1.32368 0.661840 0.749645i \(-0.269776\pi\)
0.661840 + 0.749645i \(0.269776\pi\)
\(510\) 6.23178e10 0.0407893
\(511\) −1.08577e12 −0.704442
\(512\) −2.20674e12 −1.41917
\(513\) −3.19977e10 −0.0203981
\(514\) −5.18726e11 −0.327796
\(515\) 9.50809e11 0.595608
\(516\) −3.92149e10 −0.0243516
\(517\) 1.01373e11 0.0624044
\(518\) −5.51948e12 −3.36832
\(519\) 6.22934e10 0.0376868
\(520\) 6.29630e10 0.0377633
\(521\) 1.29928e12 0.772562 0.386281 0.922381i \(-0.373759\pi\)
0.386281 + 0.922381i \(0.373759\pi\)
\(522\) 3.35045e12 1.97508
\(523\) 2.43324e12 1.42209 0.711046 0.703145i \(-0.248222\pi\)
0.711046 + 0.703145i \(0.248222\pi\)
\(524\) 1.10142e11 0.0638210
\(525\) 2.30014e10 0.0132141
\(526\) 3.65618e12 2.08253
\(527\) 9.16688e11 0.517695
\(528\) −2.33130e10 −0.0130541
\(529\) −1.66360e12 −0.923631
\(530\) −1.95487e12 −1.07616
\(531\) −1.24806e12 −0.681253
\(532\) −6.02761e11 −0.326244
\(533\) 3.97643e12 2.13413
\(534\) −1.36684e11 −0.0727414
\(535\) 2.44494e12 1.29026
\(536\) 4.09409e10 0.0214247
\(537\) 4.05281e10 0.0210316
\(538\) −7.28872e11 −0.375086
\(539\) 5.57156e11 0.284333
\(540\) 1.58700e11 0.0803164
\(541\) 1.00558e12 0.504697 0.252349 0.967636i \(-0.418797\pi\)
0.252349 + 0.967636i \(0.418797\pi\)
\(542\) −4.64788e12 −2.31344
\(543\) 8.55235e10 0.0422169
\(544\) 2.10924e12 1.03260
\(545\) 4.61412e11 0.224029
\(546\) 3.05989e11 0.147346
\(547\) −7.27895e11 −0.347637 −0.173818 0.984778i \(-0.555611\pi\)
−0.173818 + 0.984778i \(0.555611\pi\)
\(548\) −3.60290e12 −1.70663
\(549\) 1.37949e11 0.0648101
\(550\) 1.93623e11 0.0902246
\(551\) 6.91506e11 0.319605
\(552\) −6.84205e8 −0.000313661 0
\(553\) −5.65982e12 −2.57359
\(554\) −1.94839e12 −0.878782
\(555\) 1.49817e11 0.0670260
\(556\) −2.08277e12 −0.924281
\(557\) 1.62693e11 0.0716177 0.0358088 0.999359i \(-0.488599\pi\)
0.0358088 + 0.999359i \(0.488599\pi\)
\(558\) 2.31158e12 1.00938
\(559\) −2.07066e12 −0.896926
\(560\) −2.83227e12 −1.21700
\(561\) 2.26832e10 0.00966878
\(562\) −1.66332e12 −0.703334
\(563\) 6.20629e10 0.0260342 0.0130171 0.999915i \(-0.495856\pi\)
0.0130171 + 0.999915i \(0.495856\pi\)
\(564\) 2.27340e10 0.00946064
\(565\) −2.70310e12 −1.11595
\(566\) 4.39931e12 1.80182
\(567\) −3.41766e12 −1.38869
\(568\) 3.28110e10 0.0132267
\(569\) 4.55359e11 0.182116 0.0910582 0.995846i \(-0.470975\pi\)
0.0910582 + 0.995846i \(0.470975\pi\)
\(570\) 3.24334e10 0.0128693
\(571\) −4.44357e12 −1.74932 −0.874661 0.484735i \(-0.838916\pi\)
−0.874661 + 0.484735i \(0.838916\pi\)
\(572\) 1.29935e12 0.507509
\(573\) −1.38128e11 −0.0535286
\(574\) 6.60155e12 2.53830
\(575\) −1.53972e11 −0.0587404
\(576\) 2.73039e12 1.03353
\(577\) −3.55560e12 −1.33543 −0.667716 0.744416i \(-0.732728\pi\)
−0.667716 + 0.744416i \(0.732728\pi\)
\(578\) 1.79641e12 0.669470
\(579\) −3.56176e10 −0.0131708
\(580\) −3.42969e12 −1.25843
\(581\) −6.96332e12 −2.53527
\(582\) −1.70577e11 −0.0616264
\(583\) −7.11557e11 −0.255094
\(584\) −3.61533e10 −0.0128615
\(585\) 4.18576e12 1.47766
\(586\) −4.95951e12 −1.73740
\(587\) 4.95575e12 1.72281 0.861405 0.507918i \(-0.169585\pi\)
0.861405 + 0.507918i \(0.169585\pi\)
\(588\) 1.24948e11 0.0431055
\(589\) 4.77091e11 0.163336
\(590\) 2.53261e12 0.860467
\(591\) 1.92599e11 0.0649397
\(592\) 4.97970e12 1.66631
\(593\) 3.26211e12 1.08331 0.541655 0.840601i \(-0.317798\pi\)
0.541655 + 0.840601i \(0.317798\pi\)
\(594\) 1.14512e11 0.0377409
\(595\) 2.75576e12 0.901394
\(596\) 5.11310e12 1.65988
\(597\) −1.07892e11 −0.0347620
\(598\) −2.04830e12 −0.654995
\(599\) 3.16477e12 1.00443 0.502217 0.864742i \(-0.332518\pi\)
0.502217 + 0.864742i \(0.332518\pi\)
\(600\) 7.65884e8 0.000241258 0
\(601\) 3.23436e11 0.101124 0.0505619 0.998721i \(-0.483899\pi\)
0.0505619 + 0.998721i \(0.483899\pi\)
\(602\) −3.43766e12 −1.06679
\(603\) 2.72174e12 0.838336
\(604\) 5.89687e12 1.80283
\(605\) 2.66312e12 0.808149
\(606\) −9.02810e10 −0.0271938
\(607\) −2.87199e12 −0.858686 −0.429343 0.903141i \(-0.641255\pi\)
−0.429343 + 0.903141i \(0.641255\pi\)
\(608\) 1.09775e12 0.325791
\(609\) −2.93986e11 −0.0866062
\(610\) −2.79932e11 −0.0818594
\(611\) 1.20043e12 0.348458
\(612\) −2.56368e12 −0.738724
\(613\) 3.75184e12 1.07318 0.536590 0.843843i \(-0.319712\pi\)
0.536590 + 0.843843i \(0.319712\pi\)
\(614\) 2.46481e12 0.699883
\(615\) −1.79188e11 −0.0505093
\(616\) 3.80479e10 0.0106468
\(617\) −1.23662e12 −0.343520 −0.171760 0.985139i \(-0.554945\pi\)
−0.171760 + 0.985139i \(0.554945\pi\)
\(618\) 1.53859e11 0.0424301
\(619\) −5.95594e12 −1.63058 −0.815290 0.579053i \(-0.803423\pi\)
−0.815290 + 0.579053i \(0.803423\pi\)
\(620\) −2.36624e12 −0.643127
\(621\) −9.10618e10 −0.0245711
\(622\) 3.26637e12 0.875000
\(623\) −6.04430e12 −1.60750
\(624\) −2.76065e11 −0.0728922
\(625\) −2.83150e12 −0.742260
\(626\) −5.79092e12 −1.50717
\(627\) 1.18055e10 0.00305057
\(628\) 4.84776e12 1.24372
\(629\) −4.84517e12 −1.23419
\(630\) 6.94908e12 1.75750
\(631\) 5.85099e11 0.146926 0.0734628 0.997298i \(-0.476595\pi\)
0.0734628 + 0.997298i \(0.476595\pi\)
\(632\) −1.88457e11 −0.0469877
\(633\) 5.12414e10 0.0126854
\(634\) −3.51142e11 −0.0863139
\(635\) −4.03409e12 −0.984609
\(636\) −1.59574e11 −0.0386729
\(637\) 6.59766e12 1.58768
\(638\) −2.47474e12 −0.591339
\(639\) 2.18126e12 0.517552
\(640\) −1.92095e11 −0.0452590
\(641\) −9.42630e11 −0.220536 −0.110268 0.993902i \(-0.535171\pi\)
−0.110268 + 0.993902i \(0.535171\pi\)
\(642\) 3.95638e11 0.0919159
\(643\) −4.77642e12 −1.10193 −0.550963 0.834529i \(-0.685740\pi\)
−0.550963 + 0.834529i \(0.685740\pi\)
\(644\) −1.71539e12 −0.392986
\(645\) 9.33096e10 0.0212279
\(646\) −1.04891e12 −0.236970
\(647\) 1.98087e12 0.444414 0.222207 0.975000i \(-0.428674\pi\)
0.222207 + 0.975000i \(0.428674\pi\)
\(648\) −1.13799e11 −0.0253542
\(649\) 9.21851e11 0.203967
\(650\) 2.29282e12 0.503802
\(651\) −2.02830e11 −0.0442606
\(652\) −1.99602e12 −0.432563
\(653\) −7.31543e11 −0.157446 −0.0787228 0.996897i \(-0.525084\pi\)
−0.0787228 + 0.996897i \(0.525084\pi\)
\(654\) 7.46652e10 0.0159595
\(655\) −2.62078e11 −0.0556345
\(656\) −5.95596e12 −1.25570
\(657\) −2.40346e12 −0.503261
\(658\) 1.99291e12 0.414450
\(659\) 6.80012e12 1.40453 0.702267 0.711914i \(-0.252171\pi\)
0.702267 + 0.711914i \(0.252171\pi\)
\(660\) −5.85521e10 −0.0120114
\(661\) 1.11163e12 0.226493 0.113247 0.993567i \(-0.463875\pi\)
0.113247 + 0.993567i \(0.463875\pi\)
\(662\) −1.60368e12 −0.324531
\(663\) 2.68607e11 0.0539892
\(664\) −2.31860e11 −0.0462881
\(665\) 1.43424e12 0.284396
\(666\) −1.22179e13 −2.40637
\(667\) 1.96795e12 0.384989
\(668\) −4.08568e12 −0.793908
\(669\) −1.91761e11 −0.0370120
\(670\) −5.52307e12 −1.05887
\(671\) −1.01893e11 −0.0194041
\(672\) −4.66698e11 −0.0882824
\(673\) 2.47185e12 0.464466 0.232233 0.972660i \(-0.425397\pi\)
0.232233 + 0.972660i \(0.425397\pi\)
\(674\) 1.31495e12 0.245437
\(675\) 1.01933e11 0.0188993
\(676\) 9.85948e12 1.81591
\(677\) 4.80539e12 0.879183 0.439591 0.898198i \(-0.355123\pi\)
0.439591 + 0.898198i \(0.355123\pi\)
\(678\) −4.37412e11 −0.0794982
\(679\) −7.54308e12 −1.36187
\(680\) 9.17592e10 0.0164573
\(681\) −1.51792e11 −0.0270450
\(682\) −1.70740e12 −0.302207
\(683\) −2.32385e12 −0.408615 −0.204307 0.978907i \(-0.565494\pi\)
−0.204307 + 0.978907i \(0.565494\pi\)
\(684\) −1.33427e12 −0.233072
\(685\) 8.57289e12 1.48771
\(686\) −5.57561e11 −0.0961245
\(687\) 3.47454e11 0.0595103
\(688\) 3.10147e12 0.527740
\(689\) −8.42602e12 −1.42441
\(690\) 9.23018e10 0.0155021
\(691\) 8.11211e10 0.0135358 0.00676788 0.999977i \(-0.497846\pi\)
0.00676788 + 0.999977i \(0.497846\pi\)
\(692\) 5.20029e12 0.862085
\(693\) 2.52941e12 0.416601
\(694\) −6.46973e12 −1.05869
\(695\) 4.95583e12 0.805721
\(696\) −9.78894e9 −0.00158123
\(697\) 5.79505e12 0.930058
\(698\) 1.51527e13 2.41624
\(699\) −2.17114e11 −0.0343985
\(700\) 1.92017e12 0.302273
\(701\) −3.44255e12 −0.538454 −0.269227 0.963077i \(-0.586768\pi\)
−0.269227 + 0.963077i \(0.586768\pi\)
\(702\) 1.35602e12 0.210740
\(703\) −2.52168e12 −0.389395
\(704\) −2.01675e12 −0.309439
\(705\) −5.40944e10 −0.00824710
\(706\) −7.44515e12 −1.12785
\(707\) −3.99232e12 −0.600950
\(708\) 2.06735e11 0.0309218
\(709\) 4.26474e12 0.633848 0.316924 0.948451i \(-0.397350\pi\)
0.316924 + 0.948451i \(0.397350\pi\)
\(710\) −4.42632e12 −0.653702
\(711\) −1.25285e13 −1.83860
\(712\) −2.01259e11 −0.0293491
\(713\) 1.35775e12 0.196751
\(714\) 4.45934e11 0.0642138
\(715\) −3.09173e12 −0.442409
\(716\) 3.38331e12 0.481098
\(717\) −2.81340e11 −0.0397553
\(718\) −2.42135e12 −0.340015
\(719\) 6.75064e12 0.942031 0.471015 0.882125i \(-0.343888\pi\)
0.471015 + 0.882125i \(0.343888\pi\)
\(720\) −6.26951e12 −0.869435
\(721\) 6.80380e12 0.937654
\(722\) −5.45908e11 −0.0747657
\(723\) 1.99505e11 0.0271538
\(724\) 7.13956e12 0.965712
\(725\) −2.20288e12 −0.296122
\(726\) 4.30943e11 0.0575712
\(727\) 1.03379e12 0.137254 0.0686272 0.997642i \(-0.478138\pi\)
0.0686272 + 0.997642i \(0.478138\pi\)
\(728\) 4.50551e11 0.0594501
\(729\) −7.53514e12 −0.988138
\(730\) 4.87721e12 0.635651
\(731\) −3.01768e12 −0.390882
\(732\) −2.28507e10 −0.00294171
\(733\) 6.86393e12 0.878223 0.439112 0.898432i \(-0.355293\pi\)
0.439112 + 0.898432i \(0.355293\pi\)
\(734\) −8.18431e12 −1.04076
\(735\) −2.97308e11 −0.0375762
\(736\) 3.12409e12 0.392440
\(737\) −2.01036e12 −0.250997
\(738\) 1.46132e13 1.81339
\(739\) 4.93061e12 0.608136 0.304068 0.952650i \(-0.401655\pi\)
0.304068 + 0.952650i \(0.401655\pi\)
\(740\) 1.25068e13 1.53322
\(741\) 1.39797e11 0.0170340
\(742\) −1.39886e13 −1.69417
\(743\) 1.44876e12 0.174400 0.0871999 0.996191i \(-0.472208\pi\)
0.0871999 + 0.996191i \(0.472208\pi\)
\(744\) −6.75369e9 −0.000808095 0
\(745\) −1.21663e13 −1.44696
\(746\) 2.04838e13 2.42151
\(747\) −1.54140e13 −1.81122
\(748\) 1.89361e12 0.221173
\(749\) 1.74955e13 2.03123
\(750\) −5.89400e11 −0.0680197
\(751\) 1.10310e13 1.26542 0.632709 0.774390i \(-0.281943\pi\)
0.632709 + 0.774390i \(0.281943\pi\)
\(752\) −1.79802e12 −0.205028
\(753\) −3.01678e11 −0.0341953
\(754\) −2.93051e13 −3.30196
\(755\) −1.40313e13 −1.57158
\(756\) 1.13562e12 0.126441
\(757\) 6.01909e12 0.666192 0.333096 0.942893i \(-0.391907\pi\)
0.333096 + 0.942893i \(0.391907\pi\)
\(758\) 2.21228e13 2.43404
\(759\) 3.35972e10 0.00367464
\(760\) 4.77562e10 0.00519240
\(761\) 1.31729e13 1.42381 0.711904 0.702277i \(-0.247833\pi\)
0.711904 + 0.702277i \(0.247833\pi\)
\(762\) −6.52792e11 −0.0701419
\(763\) 3.30177e12 0.352685
\(764\) −1.15310e13 −1.22447
\(765\) 6.10013e12 0.643965
\(766\) −1.45399e13 −1.52592
\(767\) 1.09163e13 1.13892
\(768\) 4.13216e11 0.0428599
\(769\) 1.18311e12 0.121999 0.0609993 0.998138i \(-0.480571\pi\)
0.0609993 + 0.998138i \(0.480571\pi\)
\(770\) −5.13280e12 −0.526194
\(771\) 1.00754e11 0.0102687
\(772\) −2.97338e12 −0.301282
\(773\) 7.44943e12 0.750439 0.375220 0.926936i \(-0.377567\pi\)
0.375220 + 0.926936i \(0.377567\pi\)
\(774\) −7.60958e12 −0.762125
\(775\) −1.51983e12 −0.151335
\(776\) −2.51164e11 −0.0248645
\(777\) 1.07206e12 0.105518
\(778\) 1.48237e12 0.145060
\(779\) 3.01604e12 0.293440
\(780\) −6.93355e11 −0.0670702
\(781\) −1.61115e12 −0.154955
\(782\) −2.98509e12 −0.285448
\(783\) −1.30282e12 −0.123868
\(784\) −9.88208e12 −0.934170
\(785\) −1.15350e13 −1.08418
\(786\) −4.24091e10 −0.00396331
\(787\) −1.78315e13 −1.65692 −0.828460 0.560048i \(-0.810783\pi\)
−0.828460 + 0.560048i \(0.810783\pi\)
\(788\) 1.60783e13 1.48550
\(789\) −7.10149e11 −0.0652383
\(790\) 2.54235e13 2.32227
\(791\) −1.93428e13 −1.75681
\(792\) 8.42226e10 0.00760616
\(793\) −1.20659e12 −0.108350
\(794\) −2.37461e13 −2.12032
\(795\) 3.79699e11 0.0337122
\(796\) −9.00690e12 −0.795182
\(797\) 1.15025e13 1.00979 0.504894 0.863181i \(-0.331532\pi\)
0.504894 + 0.863181i \(0.331532\pi\)
\(798\) 2.32087e11 0.0202599
\(799\) 1.74944e12 0.151859
\(800\) −3.49703e12 −0.301853
\(801\) −1.33796e13 −1.14841
\(802\) −2.39484e12 −0.204405
\(803\) 1.77527e12 0.150676
\(804\) −4.50845e11 −0.0380518
\(805\) 4.08168e12 0.342577
\(806\) −2.02184e13 −1.68749
\(807\) 1.41571e11 0.0117501
\(808\) −1.32933e11 −0.0109719
\(809\) −1.47465e13 −1.21038 −0.605188 0.796083i \(-0.706902\pi\)
−0.605188 + 0.796083i \(0.706902\pi\)
\(810\) 1.53519e13 1.25308
\(811\) −1.72663e13 −1.40154 −0.700770 0.713387i \(-0.747160\pi\)
−0.700770 + 0.713387i \(0.747160\pi\)
\(812\) −2.45422e13 −1.98112
\(813\) 9.02771e11 0.0724719
\(814\) 9.02449e12 0.720465
\(815\) 4.74941e12 0.377077
\(816\) −4.02324e11 −0.0317666
\(817\) −1.57056e12 −0.123326
\(818\) 2.39088e12 0.186710
\(819\) 2.99525e13 2.32624
\(820\) −1.49588e13 −1.15540
\(821\) 3.86659e11 0.0297019 0.0148510 0.999890i \(-0.495273\pi\)
0.0148510 + 0.999890i \(0.495273\pi\)
\(822\) 1.38726e12 0.105982
\(823\) 1.82542e13 1.38696 0.693478 0.720478i \(-0.256078\pi\)
0.693478 + 0.720478i \(0.256078\pi\)
\(824\) 2.26548e11 0.0171194
\(825\) −3.76079e10 −0.00282642
\(826\) 1.81229e13 1.35462
\(827\) 1.39909e13 1.04009 0.520044 0.854140i \(-0.325916\pi\)
0.520044 + 0.854140i \(0.325916\pi\)
\(828\) −3.79718e12 −0.280753
\(829\) −4.77942e12 −0.351463 −0.175731 0.984438i \(-0.556229\pi\)
−0.175731 + 0.984438i \(0.556229\pi\)
\(830\) 3.12787e13 2.28769
\(831\) 3.78440e11 0.0275291
\(832\) −2.38817e13 −1.72786
\(833\) 9.61510e12 0.691913
\(834\) 8.01947e11 0.0573982
\(835\) 9.72164e12 0.692071
\(836\) 9.85531e11 0.0697817
\(837\) −8.98857e11 −0.0633033
\(838\) 7.47674e12 0.523738
\(839\) −1.56344e13 −1.08931 −0.544657 0.838659i \(-0.683340\pi\)
−0.544657 + 0.838659i \(0.683340\pi\)
\(840\) −2.03030e10 −0.00140703
\(841\) 1.36484e13 0.940804
\(842\) 1.74005e13 1.19305
\(843\) 3.23070e11 0.0220330
\(844\) 4.27766e12 0.290179
\(845\) −2.34601e13 −1.58298
\(846\) 4.41150e12 0.296087
\(847\) 1.90567e13 1.27225
\(848\) 1.26206e13 0.838107
\(849\) −8.54490e11 −0.0564446
\(850\) 3.34145e12 0.219558
\(851\) −7.17641e12 −0.469056
\(852\) −3.61317e11 −0.0234915
\(853\) 1.16938e13 0.756286 0.378143 0.925747i \(-0.376563\pi\)
0.378143 + 0.925747i \(0.376563\pi\)
\(854\) −2.00314e12 −0.128870
\(855\) 3.17482e12 0.203176
\(856\) 5.82554e11 0.0370855
\(857\) 7.96244e12 0.504234 0.252117 0.967697i \(-0.418873\pi\)
0.252117 + 0.967697i \(0.418873\pi\)
\(858\) −5.00300e11 −0.0315165
\(859\) 8.97508e12 0.562431 0.281215 0.959645i \(-0.409262\pi\)
0.281215 + 0.959645i \(0.409262\pi\)
\(860\) 7.78954e12 0.485589
\(861\) −1.28224e12 −0.0795159
\(862\) −1.67465e13 −1.03310
\(863\) 2.21958e13 1.36214 0.681071 0.732217i \(-0.261514\pi\)
0.681071 + 0.732217i \(0.261514\pi\)
\(864\) −2.06821e12 −0.126265
\(865\) −1.23738e13 −0.751503
\(866\) 4.07566e13 2.46245
\(867\) −3.48922e11 −0.0209721
\(868\) −1.69324e13 −1.01246
\(869\) 9.25395e12 0.550476
\(870\) 1.32056e12 0.0781489
\(871\) −2.38060e13 −1.40154
\(872\) 1.09940e11 0.00643920
\(873\) −1.66973e13 −0.972933
\(874\) −1.55359e12 −0.0900609
\(875\) −2.60639e13 −1.50315
\(876\) 3.98124e11 0.0228428
\(877\) −1.46163e13 −0.834334 −0.417167 0.908830i \(-0.636977\pi\)
−0.417167 + 0.908830i \(0.636977\pi\)
\(878\) −4.67214e13 −2.65333
\(879\) 9.63299e11 0.0544266
\(880\) 4.63084e12 0.260308
\(881\) 1.76227e13 0.985556 0.492778 0.870155i \(-0.335982\pi\)
0.492778 + 0.870155i \(0.335982\pi\)
\(882\) 2.42460e13 1.34906
\(883\) −7.69996e12 −0.426251 −0.213126 0.977025i \(-0.568364\pi\)
−0.213126 + 0.977025i \(0.568364\pi\)
\(884\) 2.24235e13 1.23500
\(885\) −4.91915e11 −0.0269554
\(886\) 1.28443e13 0.700259
\(887\) −2.64731e13 −1.43598 −0.717989 0.696054i \(-0.754937\pi\)
−0.717989 + 0.696054i \(0.754937\pi\)
\(888\) 3.56967e10 0.00192651
\(889\) −2.88672e13 −1.55005
\(890\) 2.71505e13 1.45052
\(891\) 5.58797e12 0.297033
\(892\) −1.60083e13 −0.846651
\(893\) 9.10500e11 0.0479124
\(894\) −1.96874e12 −0.103079
\(895\) −8.05040e12 −0.419386
\(896\) −1.37459e12 −0.0712504
\(897\) 3.97847e11 0.0205187
\(898\) 8.43130e12 0.432664
\(899\) 1.94253e13 0.991859
\(900\) 4.25048e12 0.215947
\(901\) −1.22797e13 −0.620762
\(902\) −1.07937e13 −0.542927
\(903\) 6.67705e11 0.0334187
\(904\) −6.44064e11 −0.0320753
\(905\) −1.69882e13 −0.841838
\(906\) −2.27053e12 −0.111957
\(907\) 8.94209e12 0.438739 0.219370 0.975642i \(-0.429600\pi\)
0.219370 + 0.975642i \(0.429600\pi\)
\(908\) −1.26717e13 −0.618656
\(909\) −8.83738e12 −0.429325
\(910\) −6.07809e13 −2.93820
\(911\) −3.74724e13 −1.80251 −0.901257 0.433285i \(-0.857354\pi\)
−0.901257 + 0.433285i \(0.857354\pi\)
\(912\) −2.09390e11 −0.0100226
\(913\) 1.13852e13 0.542279
\(914\) −1.75785e13 −0.833152
\(915\) 5.43719e10 0.00256436
\(916\) 2.90057e13 1.36130
\(917\) −1.87537e12 −0.0875843
\(918\) 1.97619e12 0.0918411
\(919\) −1.16571e13 −0.539103 −0.269551 0.962986i \(-0.586875\pi\)
−0.269551 + 0.962986i \(0.586875\pi\)
\(920\) 1.35909e11 0.00625464
\(921\) −4.78746e11 −0.0219248
\(922\) 1.66764e13 0.759998
\(923\) −1.90787e13 −0.865247
\(924\) −4.18987e11 −0.0189094
\(925\) 8.03312e12 0.360783
\(926\) 1.43227e13 0.640142
\(927\) 1.50608e13 0.669870
\(928\) 4.46964e13 1.97837
\(929\) −3.03689e12 −0.133770 −0.0668850 0.997761i \(-0.521306\pi\)
−0.0668850 + 0.997761i \(0.521306\pi\)
\(930\) 9.11097e11 0.0399384
\(931\) 5.00419e12 0.218303
\(932\) −1.81248e13 −0.786867
\(933\) −6.34435e11 −0.0274107
\(934\) 5.92202e13 2.54630
\(935\) −4.50574e12 −0.192803
\(936\) 9.97337e11 0.0424718
\(937\) 2.54301e13 1.07775 0.538877 0.842385i \(-0.318849\pi\)
0.538877 + 0.842385i \(0.318849\pi\)
\(938\) −3.95220e13 −1.66696
\(939\) 1.12479e12 0.0472144
\(940\) −4.51583e12 −0.188653
\(941\) −1.16765e13 −0.485469 −0.242734 0.970093i \(-0.578044\pi\)
−0.242734 + 0.970093i \(0.578044\pi\)
\(942\) −1.86658e12 −0.0772355
\(943\) 8.58333e12 0.353470
\(944\) −1.63505e13 −0.670129
\(945\) −2.70215e12 −0.110222
\(946\) 5.62066e12 0.228180
\(947\) −2.43549e13 −0.984038 −0.492019 0.870584i \(-0.663741\pi\)
−0.492019 + 0.870584i \(0.663741\pi\)
\(948\) 2.07530e12 0.0834533
\(949\) 2.10222e13 0.841355
\(950\) 1.73906e12 0.0692721
\(951\) 6.82031e10 0.00270391
\(952\) 6.56611e11 0.0259085
\(953\) −3.15922e13 −1.24069 −0.620344 0.784330i \(-0.713007\pi\)
−0.620344 + 0.784330i \(0.713007\pi\)
\(954\) −3.09652e13 −1.21034
\(955\) 2.74374e13 1.06740
\(956\) −2.34864e13 −0.909404
\(957\) 4.80675e11 0.0185246
\(958\) −4.98276e13 −1.91128
\(959\) 6.13459e13 2.34208
\(960\) 1.07617e12 0.0408941
\(961\) −1.30375e13 −0.493104
\(962\) 1.06865e14 4.02298
\(963\) 3.87280e13 1.45113
\(964\) 1.66548e13 0.621144
\(965\) 7.07500e12 0.262636
\(966\) 6.60493e11 0.0244046
\(967\) −8.21729e12 −0.302210 −0.151105 0.988518i \(-0.548283\pi\)
−0.151105 + 0.988518i \(0.548283\pi\)
\(968\) 6.34538e11 0.0232284
\(969\) 2.03733e11 0.00742343
\(970\) 3.38830e13 1.22888
\(971\) −1.56122e13 −0.563610 −0.281805 0.959472i \(-0.590933\pi\)
−0.281805 + 0.959472i \(0.590933\pi\)
\(972\) 3.77196e12 0.135541
\(973\) 3.54629e13 1.26843
\(974\) 1.27164e13 0.452740
\(975\) −4.45341e11 −0.0157823
\(976\) 1.80724e12 0.0637518
\(977\) 2.49825e13 0.877224 0.438612 0.898676i \(-0.355470\pi\)
0.438612 + 0.898676i \(0.355470\pi\)
\(978\) 7.68544e11 0.0268624
\(979\) 9.88260e12 0.343834
\(980\) −2.48194e13 −0.859557
\(981\) 7.30878e12 0.251962
\(982\) −6.25898e13 −2.14784
\(983\) −3.47691e13 −1.18769 −0.593845 0.804580i \(-0.702391\pi\)
−0.593845 + 0.804580i \(0.702391\pi\)
\(984\) −4.26950e10 −0.00145177
\(985\) −3.82574e13 −1.29495
\(986\) −4.27078e13 −1.43900
\(987\) −3.87089e11 −0.0129832
\(988\) 1.16703e13 0.389652
\(989\) −4.46963e12 −0.148555
\(990\) −1.13619e13 −0.375919
\(991\) −1.33317e13 −0.439090 −0.219545 0.975602i \(-0.570457\pi\)
−0.219545 + 0.975602i \(0.570457\pi\)
\(992\) 3.08374e13 1.01106
\(993\) 3.11487e11 0.0101664
\(994\) −3.16738e13 −1.02911
\(995\) 2.14314e13 0.693182
\(996\) 2.55326e12 0.0822107
\(997\) 2.81190e13 0.901305 0.450653 0.892699i \(-0.351191\pi\)
0.450653 + 0.892699i \(0.351191\pi\)
\(998\) −8.31867e13 −2.65440
\(999\) 4.75093e12 0.150915
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 19.10.a.b.1.2 8
3.2 odd 2 171.10.a.f.1.7 8
4.3 odd 2 304.10.a.i.1.5 8
19.18 odd 2 361.10.a.c.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.b.1.2 8 1.1 even 1 trivial
171.10.a.f.1.7 8 3.2 odd 2
304.10.a.i.1.5 8 4.3 odd 2
361.10.a.c.1.7 8 19.18 odd 2