Properties

Label 304.10.a.i.1.5
Level $304$
Weight $10$
Character 304.1
Self dual yes
Analytic conductor $156.571$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [304,10,Mod(1,304)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("304.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(304, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 304.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-7,0,3894] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(156.570894194\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 3356 x^{6} - 1330 x^{5} + 3186388 x^{4} - 1801192 x^{3} - 758043152 x^{2} + \cdots - 16080668672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(34.1433\) of defining polynomial
Character \(\chi\) \(=\) 304.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.24328 q^{3} -1240.15 q^{5} +8874.26 q^{7} -19644.0 q^{9} -14509.7 q^{11} +171819. q^{13} +7742.60 q^{15} +250400. q^{17} -130321. q^{19} -55404.5 q^{21} -370879. q^{23} -415154. q^{25} +245530. q^{27} +5.30618e6 q^{29} -3.66089e6 q^{31} +90587.9 q^{33} -1.10054e7 q^{35} -1.93497e7 q^{37} -1.07271e6 q^{39} +2.31432e7 q^{41} +1.20515e7 q^{43} +2.43615e7 q^{45} -6.98659e6 q^{47} +3.83990e7 q^{49} -1.56332e6 q^{51} -4.90402e7 q^{53} +1.79941e7 q^{55} +813630. q^{57} -6.35336e7 q^{59} -7.02244e6 q^{61} -1.74326e8 q^{63} -2.13081e8 q^{65} +1.38553e8 q^{67} +2.31550e6 q^{69} +1.11040e8 q^{71} +1.22351e8 q^{73} +2.59192e6 q^{75} -1.28763e8 q^{77} -6.37779e8 q^{79} +3.85120e8 q^{81} -7.84665e8 q^{83} -3.10534e8 q^{85} -3.31279e7 q^{87} +6.81105e8 q^{89} +1.52476e9 q^{91} +2.28560e7 q^{93} +1.61618e8 q^{95} +8.49995e8 q^{97} +2.85028e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 7 q^{3} + 3894 q^{5} + 7133 q^{7} + 102715 q^{9} - 172818 q^{11} + 109291 q^{13} - 457332 q^{15} + 583575 q^{17} - 1042568 q^{19} + 372767 q^{21} + 2292405 q^{23} + 205328 q^{25} + 15261551 q^{27}+ \cdots + 1682553420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.24328 −0.0445007 −0.0222504 0.999752i \(-0.507083\pi\)
−0.0222504 + 0.999752i \(0.507083\pi\)
\(4\) 0 0
\(5\) −1240.15 −0.887379 −0.443689 0.896181i \(-0.646331\pi\)
−0.443689 + 0.896181i \(0.646331\pi\)
\(6\) 0 0
\(7\) 8874.26 1.39698 0.698492 0.715618i \(-0.253855\pi\)
0.698492 + 0.715618i \(0.253855\pi\)
\(8\) 0 0
\(9\) −19644.0 −0.998020
\(10\) 0 0
\(11\) −14509.7 −0.298807 −0.149403 0.988776i \(-0.547735\pi\)
−0.149403 + 0.988776i \(0.547735\pi\)
\(12\) 0 0
\(13\) 171819. 1.66850 0.834248 0.551390i \(-0.185902\pi\)
0.834248 + 0.551390i \(0.185902\pi\)
\(14\) 0 0
\(15\) 7742.60 0.0394890
\(16\) 0 0
\(17\) 250400. 0.727134 0.363567 0.931568i \(-0.381559\pi\)
0.363567 + 0.931568i \(0.381559\pi\)
\(18\) 0 0
\(19\) −130321. −0.229416
\(20\) 0 0
\(21\) −55404.5 −0.0621668
\(22\) 0 0
\(23\) −370879. −0.276349 −0.138174 0.990408i \(-0.544123\pi\)
−0.138174 + 0.990408i \(0.544123\pi\)
\(24\) 0 0
\(25\) −415154. −0.212559
\(26\) 0 0
\(27\) 245530. 0.0889133
\(28\) 0 0
\(29\) 5.30618e6 1.39313 0.696564 0.717495i \(-0.254711\pi\)
0.696564 + 0.717495i \(0.254711\pi\)
\(30\) 0 0
\(31\) −3.66089e6 −0.711966 −0.355983 0.934492i \(-0.615854\pi\)
−0.355983 + 0.934492i \(0.615854\pi\)
\(32\) 0 0
\(33\) 90587.9 0.0132971
\(34\) 0 0
\(35\) −1.10054e7 −1.23965
\(36\) 0 0
\(37\) −1.93497e7 −1.69733 −0.848666 0.528929i \(-0.822594\pi\)
−0.848666 + 0.528929i \(0.822594\pi\)
\(38\) 0 0
\(39\) −1.07271e6 −0.0742493
\(40\) 0 0
\(41\) 2.31432e7 1.27907 0.639537 0.768760i \(-0.279126\pi\)
0.639537 + 0.768760i \(0.279126\pi\)
\(42\) 0 0
\(43\) 1.20515e7 0.537565 0.268783 0.963201i \(-0.413379\pi\)
0.268783 + 0.963201i \(0.413379\pi\)
\(44\) 0 0
\(45\) 2.43615e7 0.885622
\(46\) 0 0
\(47\) −6.98659e6 −0.208846 −0.104423 0.994533i \(-0.533299\pi\)
−0.104423 + 0.994533i \(0.533299\pi\)
\(48\) 0 0
\(49\) 3.83990e7 0.951562
\(50\) 0 0
\(51\) −1.56332e6 −0.0323580
\(52\) 0 0
\(53\) −4.90402e7 −0.853711 −0.426855 0.904320i \(-0.640379\pi\)
−0.426855 + 0.904320i \(0.640379\pi\)
\(54\) 0 0
\(55\) 1.79941e7 0.265155
\(56\) 0 0
\(57\) 813630. 0.0102092
\(58\) 0 0
\(59\) −6.35336e7 −0.682605 −0.341303 0.939954i \(-0.610868\pi\)
−0.341303 + 0.939954i \(0.610868\pi\)
\(60\) 0 0
\(61\) −7.02244e6 −0.0649387 −0.0324694 0.999473i \(-0.510337\pi\)
−0.0324694 + 0.999473i \(0.510337\pi\)
\(62\) 0 0
\(63\) −1.74326e8 −1.39422
\(64\) 0 0
\(65\) −2.13081e8 −1.48059
\(66\) 0 0
\(67\) 1.38553e8 0.840000 0.420000 0.907524i \(-0.362030\pi\)
0.420000 + 0.907524i \(0.362030\pi\)
\(68\) 0 0
\(69\) 2.31550e6 0.0122977
\(70\) 0 0
\(71\) 1.11040e8 0.518579 0.259290 0.965800i \(-0.416512\pi\)
0.259290 + 0.965800i \(0.416512\pi\)
\(72\) 0 0
\(73\) 1.22351e8 0.504259 0.252130 0.967693i \(-0.418869\pi\)
0.252130 + 0.967693i \(0.418869\pi\)
\(74\) 0 0
\(75\) 2.59192e6 0.00945902
\(76\) 0 0
\(77\) −1.28763e8 −0.417428
\(78\) 0 0
\(79\) −6.37779e8 −1.84225 −0.921124 0.389269i \(-0.872728\pi\)
−0.921124 + 0.389269i \(0.872728\pi\)
\(80\) 0 0
\(81\) 3.85120e8 0.994063
\(82\) 0 0
\(83\) −7.84665e8 −1.81482 −0.907409 0.420250i \(-0.861943\pi\)
−0.907409 + 0.420250i \(0.861943\pi\)
\(84\) 0 0
\(85\) −3.10534e8 −0.645243
\(86\) 0 0
\(87\) −3.31279e7 −0.0619952
\(88\) 0 0
\(89\) 6.81105e8 1.15069 0.575346 0.817910i \(-0.304868\pi\)
0.575346 + 0.817910i \(0.304868\pi\)
\(90\) 0 0
\(91\) 1.52476e9 2.33086
\(92\) 0 0
\(93\) 2.28560e7 0.0316830
\(94\) 0 0
\(95\) 1.61618e8 0.203579
\(96\) 0 0
\(97\) 8.49995e8 0.974863 0.487432 0.873161i \(-0.337934\pi\)
0.487432 + 0.873161i \(0.337934\pi\)
\(98\) 0 0
\(99\) 2.85028e8 0.298215
\(100\) 0 0
\(101\) 4.49876e8 0.430177 0.215088 0.976595i \(-0.430996\pi\)
0.215088 + 0.976595i \(0.430996\pi\)
\(102\) 0 0
\(103\) 7.66689e8 0.671199 0.335600 0.942005i \(-0.391061\pi\)
0.335600 + 0.942005i \(0.391061\pi\)
\(104\) 0 0
\(105\) 6.87099e7 0.0551655
\(106\) 0 0
\(107\) 1.97149e9 1.45401 0.727006 0.686631i \(-0.240911\pi\)
0.727006 + 0.686631i \(0.240911\pi\)
\(108\) 0 0
\(109\) −3.72061e8 −0.252462 −0.126231 0.992001i \(-0.540288\pi\)
−0.126231 + 0.992001i \(0.540288\pi\)
\(110\) 0 0
\(111\) 1.20806e8 0.0755325
\(112\) 0 0
\(113\) 2.17965e9 1.25758 0.628788 0.777576i \(-0.283551\pi\)
0.628788 + 0.777576i \(0.283551\pi\)
\(114\) 0 0
\(115\) 4.59946e8 0.245226
\(116\) 0 0
\(117\) −3.37521e9 −1.66519
\(118\) 0 0
\(119\) 2.22212e9 1.01579
\(120\) 0 0
\(121\) −2.14742e9 −0.910715
\(122\) 0 0
\(123\) −1.44489e8 −0.0569197
\(124\) 0 0
\(125\) 2.93702e9 1.07600
\(126\) 0 0
\(127\) −3.25291e9 −1.10957 −0.554785 0.831994i \(-0.687200\pi\)
−0.554785 + 0.831994i \(0.687200\pi\)
\(128\) 0 0
\(129\) −7.52406e7 −0.0239221
\(130\) 0 0
\(131\) −2.11327e8 −0.0626953 −0.0313476 0.999509i \(-0.509980\pi\)
−0.0313476 + 0.999509i \(0.509980\pi\)
\(132\) 0 0
\(133\) −1.15650e9 −0.320490
\(134\) 0 0
\(135\) −3.04493e8 −0.0788998
\(136\) 0 0
\(137\) −6.91279e9 −1.67653 −0.838264 0.545265i \(-0.816429\pi\)
−0.838264 + 0.545265i \(0.816429\pi\)
\(138\) 0 0
\(139\) 3.99615e9 0.907978 0.453989 0.891007i \(-0.350000\pi\)
0.453989 + 0.891007i \(0.350000\pi\)
\(140\) 0 0
\(141\) 4.36193e7 0.00929378
\(142\) 0 0
\(143\) −2.49303e9 −0.498558
\(144\) 0 0
\(145\) −6.58045e9 −1.23623
\(146\) 0 0
\(147\) −2.39735e8 −0.0423452
\(148\) 0 0
\(149\) 9.81038e9 1.63060 0.815301 0.579038i \(-0.196572\pi\)
0.815301 + 0.579038i \(0.196572\pi\)
\(150\) 0 0
\(151\) −1.13142e10 −1.77103 −0.885517 0.464607i \(-0.846196\pi\)
−0.885517 + 0.464607i \(0.846196\pi\)
\(152\) 0 0
\(153\) −4.91887e9 −0.725694
\(154\) 0 0
\(155\) 4.54005e9 0.631784
\(156\) 0 0
\(157\) 9.30128e9 1.22178 0.610892 0.791714i \(-0.290811\pi\)
0.610892 + 0.791714i \(0.290811\pi\)
\(158\) 0 0
\(159\) 3.06172e8 0.0379908
\(160\) 0 0
\(161\) −3.29128e9 −0.386054
\(162\) 0 0
\(163\) 3.82971e9 0.424934 0.212467 0.977168i \(-0.431850\pi\)
0.212467 + 0.977168i \(0.431850\pi\)
\(164\) 0 0
\(165\) −1.12342e8 −0.0117996
\(166\) 0 0
\(167\) 7.83909e9 0.779905 0.389952 0.920835i \(-0.372491\pi\)
0.389952 + 0.920835i \(0.372491\pi\)
\(168\) 0 0
\(169\) 1.89171e10 1.78388
\(170\) 0 0
\(171\) 2.56003e9 0.228961
\(172\) 0 0
\(173\) 9.97767e9 0.846880 0.423440 0.905924i \(-0.360823\pi\)
0.423440 + 0.905924i \(0.360823\pi\)
\(174\) 0 0
\(175\) −3.68419e9 −0.296941
\(176\) 0 0
\(177\) 3.96658e8 0.0303764
\(178\) 0 0
\(179\) −6.49148e9 −0.472612 −0.236306 0.971679i \(-0.575937\pi\)
−0.236306 + 0.971679i \(0.575937\pi\)
\(180\) 0 0
\(181\) 1.36985e10 0.948679 0.474339 0.880342i \(-0.342687\pi\)
0.474339 + 0.880342i \(0.342687\pi\)
\(182\) 0 0
\(183\) 4.38430e7 0.00288982
\(184\) 0 0
\(185\) 2.39966e10 1.50618
\(186\) 0 0
\(187\) −3.63322e9 −0.217272
\(188\) 0 0
\(189\) 2.17889e9 0.124210
\(190\) 0 0
\(191\) 2.21243e10 1.20287 0.601435 0.798921i \(-0.294596\pi\)
0.601435 + 0.798921i \(0.294596\pi\)
\(192\) 0 0
\(193\) −5.70496e9 −0.295968 −0.147984 0.988990i \(-0.547278\pi\)
−0.147984 + 0.988990i \(0.547278\pi\)
\(194\) 0 0
\(195\) 1.33032e9 0.0658872
\(196\) 0 0
\(197\) 3.08490e10 1.45929 0.729647 0.683824i \(-0.239684\pi\)
0.729647 + 0.683824i \(0.239684\pi\)
\(198\) 0 0
\(199\) 1.72813e10 0.781156 0.390578 0.920570i \(-0.372275\pi\)
0.390578 + 0.920570i \(0.372275\pi\)
\(200\) 0 0
\(201\) −8.65025e8 −0.0373806
\(202\) 0 0
\(203\) 4.70884e10 1.94618
\(204\) 0 0
\(205\) −2.87010e10 −1.13502
\(206\) 0 0
\(207\) 7.28556e9 0.275801
\(208\) 0 0
\(209\) 1.89091e9 0.0685509
\(210\) 0 0
\(211\) −8.20745e9 −0.285060 −0.142530 0.989790i \(-0.545524\pi\)
−0.142530 + 0.989790i \(0.545524\pi\)
\(212\) 0 0
\(213\) −6.93251e8 −0.0230772
\(214\) 0 0
\(215\) −1.49456e10 −0.477024
\(216\) 0 0
\(217\) −3.24877e10 −0.994605
\(218\) 0 0
\(219\) −7.63870e8 −0.0224399
\(220\) 0 0
\(221\) 4.30234e10 1.21322
\(222\) 0 0
\(223\) 3.07148e10 0.831718 0.415859 0.909429i \(-0.363481\pi\)
0.415859 + 0.909429i \(0.363481\pi\)
\(224\) 0 0
\(225\) 8.15529e9 0.212138
\(226\) 0 0
\(227\) 2.43129e10 0.607744 0.303872 0.952713i \(-0.401721\pi\)
0.303872 + 0.952713i \(0.401721\pi\)
\(228\) 0 0
\(229\) 5.56525e10 1.33729 0.668644 0.743582i \(-0.266875\pi\)
0.668644 + 0.743582i \(0.266875\pi\)
\(230\) 0 0
\(231\) 8.03901e8 0.0185758
\(232\) 0 0
\(233\) −3.47756e10 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(234\) 0 0
\(235\) 8.66442e9 0.185325
\(236\) 0 0
\(237\) 3.98183e9 0.0819814
\(238\) 0 0
\(239\) 4.50629e10 0.893364 0.446682 0.894693i \(-0.352606\pi\)
0.446682 + 0.894693i \(0.352606\pi\)
\(240\) 0 0
\(241\) 3.19551e10 0.610189 0.305094 0.952322i \(-0.401312\pi\)
0.305094 + 0.952322i \(0.401312\pi\)
\(242\) 0 0
\(243\) −7.23717e9 −0.133150
\(244\) 0 0
\(245\) −4.76204e10 −0.844396
\(246\) 0 0
\(247\) −2.23916e10 −0.382779
\(248\) 0 0
\(249\) 4.89888e9 0.0807607
\(250\) 0 0
\(251\) 4.83205e10 0.768422 0.384211 0.923245i \(-0.374474\pi\)
0.384211 + 0.923245i \(0.374474\pi\)
\(252\) 0 0
\(253\) 5.38133e9 0.0825748
\(254\) 0 0
\(255\) 1.93875e9 0.0287138
\(256\) 0 0
\(257\) 1.61379e10 0.230754 0.115377 0.993322i \(-0.463192\pi\)
0.115377 + 0.993322i \(0.463192\pi\)
\(258\) 0 0
\(259\) −1.71715e11 −2.37115
\(260\) 0 0
\(261\) −1.04235e11 −1.39037
\(262\) 0 0
\(263\) 1.13746e11 1.46601 0.733003 0.680225i \(-0.238118\pi\)
0.733003 + 0.680225i \(0.238118\pi\)
\(264\) 0 0
\(265\) 6.08172e10 0.757565
\(266\) 0 0
\(267\) −4.25233e9 −0.0512066
\(268\) 0 0
\(269\) 2.26757e10 0.264043 0.132022 0.991247i \(-0.457853\pi\)
0.132022 + 0.991247i \(0.457853\pi\)
\(270\) 0 0
\(271\) −1.44599e11 −1.62856 −0.814278 0.580475i \(-0.802867\pi\)
−0.814278 + 0.580475i \(0.802867\pi\)
\(272\) 0 0
\(273\) −9.51953e9 −0.103725
\(274\) 0 0
\(275\) 6.02374e9 0.0635140
\(276\) 0 0
\(277\) 6.06156e10 0.618622 0.309311 0.950961i \(-0.399902\pi\)
0.309311 + 0.950961i \(0.399902\pi\)
\(278\) 0 0
\(279\) 7.19146e10 0.710556
\(280\) 0 0
\(281\) 5.17469e10 0.495115 0.247557 0.968873i \(-0.420372\pi\)
0.247557 + 0.968873i \(0.420372\pi\)
\(282\) 0 0
\(283\) 1.36866e11 1.26840 0.634198 0.773170i \(-0.281330\pi\)
0.634198 + 0.773170i \(0.281330\pi\)
\(284\) 0 0
\(285\) −1.00902e9 −0.00905940
\(286\) 0 0
\(287\) 2.05379e11 1.78684
\(288\) 0 0
\(289\) −5.58877e10 −0.471276
\(290\) 0 0
\(291\) −5.30676e9 −0.0433821
\(292\) 0 0
\(293\) 1.54294e11 1.22305 0.611525 0.791225i \(-0.290556\pi\)
0.611525 + 0.791225i \(0.290556\pi\)
\(294\) 0 0
\(295\) 7.87912e10 0.605729
\(296\) 0 0
\(297\) −3.56255e9 −0.0265679
\(298\) 0 0
\(299\) −6.37240e10 −0.461087
\(300\) 0 0
\(301\) 1.06948e11 0.750970
\(302\) 0 0
\(303\) −2.80870e9 −0.0191432
\(304\) 0 0
\(305\) 8.70887e9 0.0576252
\(306\) 0 0
\(307\) 7.66818e10 0.492685 0.246343 0.969183i \(-0.420771\pi\)
0.246343 + 0.969183i \(0.420771\pi\)
\(308\) 0 0
\(309\) −4.78665e9 −0.0298689
\(310\) 0 0
\(311\) 1.01619e11 0.615960 0.307980 0.951393i \(-0.400347\pi\)
0.307980 + 0.951393i \(0.400347\pi\)
\(312\) 0 0
\(313\) 1.80159e11 1.06098 0.530490 0.847691i \(-0.322008\pi\)
0.530490 + 0.847691i \(0.322008\pi\)
\(314\) 0 0
\(315\) 2.16191e11 1.23720
\(316\) 0 0
\(317\) 1.09242e10 0.0607610 0.0303805 0.999538i \(-0.490328\pi\)
0.0303805 + 0.999538i \(0.490328\pi\)
\(318\) 0 0
\(319\) −7.69908e10 −0.416276
\(320\) 0 0
\(321\) −1.23086e10 −0.0647046
\(322\) 0 0
\(323\) −3.26324e10 −0.166816
\(324\) 0 0
\(325\) −7.13312e10 −0.354654
\(326\) 0 0
\(327\) 2.32288e9 0.0112347
\(328\) 0 0
\(329\) −6.20009e10 −0.291754
\(330\) 0 0
\(331\) −4.98916e10 −0.228455 −0.114228 0.993455i \(-0.536439\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(332\) 0 0
\(333\) 3.80106e11 1.69397
\(334\) 0 0
\(335\) −1.71826e11 −0.745398
\(336\) 0 0
\(337\) −4.09090e10 −0.172776 −0.0863882 0.996262i \(-0.527533\pi\)
−0.0863882 + 0.996262i \(0.527533\pi\)
\(338\) 0 0
\(339\) −1.36082e10 −0.0559631
\(340\) 0 0
\(341\) 5.31183e10 0.212740
\(342\) 0 0
\(343\) −1.73461e10 −0.0676672
\(344\) 0 0
\(345\) −2.87157e9 −0.0109127
\(346\) 0 0
\(347\) −2.01278e11 −0.745269 −0.372635 0.927978i \(-0.621545\pi\)
−0.372635 + 0.927978i \(0.621545\pi\)
\(348\) 0 0
\(349\) −4.71409e11 −1.70092 −0.850460 0.526040i \(-0.823676\pi\)
−0.850460 + 0.526040i \(0.823676\pi\)
\(350\) 0 0
\(351\) 4.21866e10 0.148352
\(352\) 0 0
\(353\) 2.31623e11 0.793956 0.396978 0.917828i \(-0.370059\pi\)
0.396978 + 0.917828i \(0.370059\pi\)
\(354\) 0 0
\(355\) −1.37706e11 −0.460176
\(356\) 0 0
\(357\) −1.38733e10 −0.0452036
\(358\) 0 0
\(359\) −7.53299e10 −0.239355 −0.119677 0.992813i \(-0.538186\pi\)
−0.119677 + 0.992813i \(0.538186\pi\)
\(360\) 0 0
\(361\) 1.69836e10 0.0526316
\(362\) 0 0
\(363\) 1.34069e10 0.0405275
\(364\) 0 0
\(365\) −1.51733e11 −0.447469
\(366\) 0 0
\(367\) −2.54619e11 −0.732646 −0.366323 0.930488i \(-0.619383\pi\)
−0.366323 + 0.930488i \(0.619383\pi\)
\(368\) 0 0
\(369\) −4.54625e11 −1.27654
\(370\) 0 0
\(371\) −4.35196e11 −1.19262
\(372\) 0 0
\(373\) −6.37265e11 −1.70463 −0.852316 0.523027i \(-0.824803\pi\)
−0.852316 + 0.523027i \(0.824803\pi\)
\(374\) 0 0
\(375\) −1.83366e10 −0.0478827
\(376\) 0 0
\(377\) 9.11700e11 2.32443
\(378\) 0 0
\(379\) 6.88255e11 1.71346 0.856728 0.515769i \(-0.172494\pi\)
0.856728 + 0.515769i \(0.172494\pi\)
\(380\) 0 0
\(381\) 2.03088e10 0.0493767
\(382\) 0 0
\(383\) −4.52345e11 −1.07418 −0.537088 0.843526i \(-0.680476\pi\)
−0.537088 + 0.843526i \(0.680476\pi\)
\(384\) 0 0
\(385\) 1.59685e11 0.370417
\(386\) 0 0
\(387\) −2.36739e11 −0.536501
\(388\) 0 0
\(389\) −4.61174e10 −0.102115 −0.0510577 0.998696i \(-0.516259\pi\)
−0.0510577 + 0.998696i \(0.516259\pi\)
\(390\) 0 0
\(391\) −9.28682e10 −0.200942
\(392\) 0 0
\(393\) 1.31938e9 0.00278999
\(394\) 0 0
\(395\) 7.90941e11 1.63477
\(396\) 0 0
\(397\) 7.38758e11 1.49260 0.746302 0.665607i \(-0.231827\pi\)
0.746302 + 0.665607i \(0.231827\pi\)
\(398\) 0 0
\(399\) 7.22037e9 0.0142620
\(400\) 0 0
\(401\) 7.45051e10 0.143892 0.0719460 0.997409i \(-0.477079\pi\)
0.0719460 + 0.997409i \(0.477079\pi\)
\(402\) 0 0
\(403\) −6.29009e11 −1.18791
\(404\) 0 0
\(405\) −4.77607e11 −0.882110
\(406\) 0 0
\(407\) 2.80758e11 0.507174
\(408\) 0 0
\(409\) −7.43819e10 −0.131435 −0.0657177 0.997838i \(-0.520934\pi\)
−0.0657177 + 0.997838i \(0.520934\pi\)
\(410\) 0 0
\(411\) 4.31585e10 0.0746067
\(412\) 0 0
\(413\) −5.63814e11 −0.953588
\(414\) 0 0
\(415\) 9.73102e11 1.61043
\(416\) 0 0
\(417\) −2.49491e10 −0.0404057
\(418\) 0 0
\(419\) 2.32606e11 0.368688 0.184344 0.982862i \(-0.440984\pi\)
0.184344 + 0.982862i \(0.440984\pi\)
\(420\) 0 0
\(421\) −5.41341e11 −0.839849 −0.419924 0.907559i \(-0.637943\pi\)
−0.419924 + 0.907559i \(0.637943\pi\)
\(422\) 0 0
\(423\) 1.37245e11 0.208432
\(424\) 0 0
\(425\) −1.03955e11 −0.154559
\(426\) 0 0
\(427\) −6.23190e10 −0.0907183
\(428\) 0 0
\(429\) 1.55647e10 0.0221862
\(430\) 0 0
\(431\) −5.20995e11 −0.727253 −0.363626 0.931545i \(-0.618462\pi\)
−0.363626 + 0.931545i \(0.618462\pi\)
\(432\) 0 0
\(433\) −1.26796e12 −1.73345 −0.866725 0.498786i \(-0.833779\pi\)
−0.866725 + 0.498786i \(0.833779\pi\)
\(434\) 0 0
\(435\) 4.10836e10 0.0550132
\(436\) 0 0
\(437\) 4.83334e10 0.0633987
\(438\) 0 0
\(439\) −1.45353e12 −1.86782 −0.933910 0.357508i \(-0.883627\pi\)
−0.933910 + 0.357508i \(0.883627\pi\)
\(440\) 0 0
\(441\) −7.54310e11 −0.949678
\(442\) 0 0
\(443\) 3.99595e11 0.492950 0.246475 0.969149i \(-0.420728\pi\)
0.246475 + 0.969149i \(0.420728\pi\)
\(444\) 0 0
\(445\) −8.44672e11 −1.02110
\(446\) 0 0
\(447\) −6.12490e10 −0.0725629
\(448\) 0 0
\(449\) −2.62303e11 −0.304576 −0.152288 0.988336i \(-0.548664\pi\)
−0.152288 + 0.988336i \(0.548664\pi\)
\(450\) 0 0
\(451\) −3.35800e11 −0.382196
\(452\) 0 0
\(453\) 7.06376e10 0.0788123
\(454\) 0 0
\(455\) −1.89094e12 −2.06836
\(456\) 0 0
\(457\) 5.46879e11 0.586500 0.293250 0.956036i \(-0.405263\pi\)
0.293250 + 0.956036i \(0.405263\pi\)
\(458\) 0 0
\(459\) 6.14806e10 0.0646519
\(460\) 0 0
\(461\) −5.18813e11 −0.535003 −0.267502 0.963557i \(-0.586198\pi\)
−0.267502 + 0.963557i \(0.586198\pi\)
\(462\) 0 0
\(463\) 4.45590e11 0.450630 0.225315 0.974286i \(-0.427659\pi\)
0.225315 + 0.974286i \(0.427659\pi\)
\(464\) 0 0
\(465\) −2.83448e10 −0.0281148
\(466\) 0 0
\(467\) 1.84238e12 1.79247 0.896237 0.443575i \(-0.146290\pi\)
0.896237 + 0.443575i \(0.146290\pi\)
\(468\) 0 0
\(469\) 1.22956e12 1.17347
\(470\) 0 0
\(471\) −5.80705e10 −0.0543702
\(472\) 0 0
\(473\) −1.74862e11 −0.160628
\(474\) 0 0
\(475\) 5.41033e10 0.0487643
\(476\) 0 0
\(477\) 9.63347e11 0.852020
\(478\) 0 0
\(479\) −1.55017e12 −1.34546 −0.672728 0.739890i \(-0.734877\pi\)
−0.672728 + 0.739890i \(0.734877\pi\)
\(480\) 0 0
\(481\) −3.32464e12 −2.83199
\(482\) 0 0
\(483\) 2.05484e10 0.0171797
\(484\) 0 0
\(485\) −1.05412e12 −0.865073
\(486\) 0 0
\(487\) 3.95615e11 0.318708 0.159354 0.987222i \(-0.449059\pi\)
0.159354 + 0.987222i \(0.449059\pi\)
\(488\) 0 0
\(489\) −2.39099e10 −0.0189099
\(490\) 0 0
\(491\) −1.94721e12 −1.51198 −0.755991 0.654582i \(-0.772844\pi\)
−0.755991 + 0.654582i \(0.772844\pi\)
\(492\) 0 0
\(493\) 1.32867e12 1.01299
\(494\) 0 0
\(495\) −3.53477e11 −0.264630
\(496\) 0 0
\(497\) 9.85394e11 0.724447
\(498\) 0 0
\(499\) −2.58799e12 −1.86858 −0.934288 0.356520i \(-0.883963\pi\)
−0.934288 + 0.356520i \(0.883963\pi\)
\(500\) 0 0
\(501\) −4.89416e10 −0.0347063
\(502\) 0 0
\(503\) 2.66146e12 1.85381 0.926903 0.375302i \(-0.122461\pi\)
0.926903 + 0.375302i \(0.122461\pi\)
\(504\) 0 0
\(505\) −5.57914e11 −0.381730
\(506\) 0 0
\(507\) −1.18105e11 −0.0793839
\(508\) 0 0
\(509\) 2.00453e12 1.32368 0.661840 0.749645i \(-0.269776\pi\)
0.661840 + 0.749645i \(0.269776\pi\)
\(510\) 0 0
\(511\) 1.08577e12 0.704442
\(512\) 0 0
\(513\) −3.19977e10 −0.0203981
\(514\) 0 0
\(515\) −9.50809e11 −0.595608
\(516\) 0 0
\(517\) 1.01373e11 0.0624044
\(518\) 0 0
\(519\) −6.22934e10 −0.0376868
\(520\) 0 0
\(521\) 1.29928e12 0.772562 0.386281 0.922381i \(-0.373759\pi\)
0.386281 + 0.922381i \(0.373759\pi\)
\(522\) 0 0
\(523\) −2.43324e12 −1.42209 −0.711046 0.703145i \(-0.751778\pi\)
−0.711046 + 0.703145i \(0.751778\pi\)
\(524\) 0 0
\(525\) 2.30014e10 0.0132141
\(526\) 0 0
\(527\) −9.16688e11 −0.517695
\(528\) 0 0
\(529\) −1.66360e12 −0.923631
\(530\) 0 0
\(531\) 1.24806e12 0.681253
\(532\) 0 0
\(533\) 3.97643e12 2.13413
\(534\) 0 0
\(535\) −2.44494e12 −1.29026
\(536\) 0 0
\(537\) 4.05281e10 0.0210316
\(538\) 0 0
\(539\) −5.57156e11 −0.284333
\(540\) 0 0
\(541\) 1.00558e12 0.504697 0.252349 0.967636i \(-0.418797\pi\)
0.252349 + 0.967636i \(0.418797\pi\)
\(542\) 0 0
\(543\) −8.55235e10 −0.0422169
\(544\) 0 0
\(545\) 4.61412e11 0.224029
\(546\) 0 0
\(547\) 7.27895e11 0.347637 0.173818 0.984778i \(-0.444389\pi\)
0.173818 + 0.984778i \(0.444389\pi\)
\(548\) 0 0
\(549\) 1.37949e11 0.0648101
\(550\) 0 0
\(551\) −6.91506e11 −0.319605
\(552\) 0 0
\(553\) −5.65982e12 −2.57359
\(554\) 0 0
\(555\) −1.49817e11 −0.0670260
\(556\) 0 0
\(557\) 1.62693e11 0.0716177 0.0358088 0.999359i \(-0.488599\pi\)
0.0358088 + 0.999359i \(0.488599\pi\)
\(558\) 0 0
\(559\) 2.07066e12 0.896926
\(560\) 0 0
\(561\) 2.26832e10 0.00966878
\(562\) 0 0
\(563\) −6.20629e10 −0.0260342 −0.0130171 0.999915i \(-0.504144\pi\)
−0.0130171 + 0.999915i \(0.504144\pi\)
\(564\) 0 0
\(565\) −2.70310e12 −1.11595
\(566\) 0 0
\(567\) 3.41766e12 1.38869
\(568\) 0 0
\(569\) 4.55359e11 0.182116 0.0910582 0.995846i \(-0.470975\pi\)
0.0910582 + 0.995846i \(0.470975\pi\)
\(570\) 0 0
\(571\) 4.44357e12 1.74932 0.874661 0.484735i \(-0.161084\pi\)
0.874661 + 0.484735i \(0.161084\pi\)
\(572\) 0 0
\(573\) −1.38128e11 −0.0535286
\(574\) 0 0
\(575\) 1.53972e11 0.0587404
\(576\) 0 0
\(577\) −3.55560e12 −1.33543 −0.667716 0.744416i \(-0.732728\pi\)
−0.667716 + 0.744416i \(0.732728\pi\)
\(578\) 0 0
\(579\) 3.56176e10 0.0131708
\(580\) 0 0
\(581\) −6.96332e12 −2.53527
\(582\) 0 0
\(583\) 7.11557e11 0.255094
\(584\) 0 0
\(585\) 4.18576e12 1.47766
\(586\) 0 0
\(587\) −4.95575e12 −1.72281 −0.861405 0.507918i \(-0.830415\pi\)
−0.861405 + 0.507918i \(0.830415\pi\)
\(588\) 0 0
\(589\) 4.77091e11 0.163336
\(590\) 0 0
\(591\) −1.92599e11 −0.0649397
\(592\) 0 0
\(593\) 3.26211e12 1.08331 0.541655 0.840601i \(-0.317798\pi\)
0.541655 + 0.840601i \(0.317798\pi\)
\(594\) 0 0
\(595\) −2.75576e12 −0.901394
\(596\) 0 0
\(597\) −1.07892e11 −0.0347620
\(598\) 0 0
\(599\) −3.16477e12 −1.00443 −0.502217 0.864742i \(-0.667482\pi\)
−0.502217 + 0.864742i \(0.667482\pi\)
\(600\) 0 0
\(601\) 3.23436e11 0.101124 0.0505619 0.998721i \(-0.483899\pi\)
0.0505619 + 0.998721i \(0.483899\pi\)
\(602\) 0 0
\(603\) −2.72174e12 −0.838336
\(604\) 0 0
\(605\) 2.66312e12 0.808149
\(606\) 0 0
\(607\) 2.87199e12 0.858686 0.429343 0.903141i \(-0.358745\pi\)
0.429343 + 0.903141i \(0.358745\pi\)
\(608\) 0 0
\(609\) −2.93986e11 −0.0866062
\(610\) 0 0
\(611\) −1.20043e12 −0.348458
\(612\) 0 0
\(613\) 3.75184e12 1.07318 0.536590 0.843843i \(-0.319712\pi\)
0.536590 + 0.843843i \(0.319712\pi\)
\(614\) 0 0
\(615\) 1.79188e11 0.0505093
\(616\) 0 0
\(617\) −1.23662e12 −0.343520 −0.171760 0.985139i \(-0.554945\pi\)
−0.171760 + 0.985139i \(0.554945\pi\)
\(618\) 0 0
\(619\) 5.95594e12 1.63058 0.815290 0.579053i \(-0.196577\pi\)
0.815290 + 0.579053i \(0.196577\pi\)
\(620\) 0 0
\(621\) −9.10618e10 −0.0245711
\(622\) 0 0
\(623\) 6.04430e12 1.60750
\(624\) 0 0
\(625\) −2.83150e12 −0.742260
\(626\) 0 0
\(627\) −1.18055e10 −0.00305057
\(628\) 0 0
\(629\) −4.84517e12 −1.23419
\(630\) 0 0
\(631\) −5.85099e11 −0.146926 −0.0734628 0.997298i \(-0.523405\pi\)
−0.0734628 + 0.997298i \(0.523405\pi\)
\(632\) 0 0
\(633\) 5.12414e10 0.0126854
\(634\) 0 0
\(635\) 4.03409e12 0.984609
\(636\) 0 0
\(637\) 6.59766e12 1.58768
\(638\) 0 0
\(639\) −2.18126e12 −0.517552
\(640\) 0 0
\(641\) −9.42630e11 −0.220536 −0.110268 0.993902i \(-0.535171\pi\)
−0.110268 + 0.993902i \(0.535171\pi\)
\(642\) 0 0
\(643\) 4.77642e12 1.10193 0.550963 0.834529i \(-0.314260\pi\)
0.550963 + 0.834529i \(0.314260\pi\)
\(644\) 0 0
\(645\) 9.33096e10 0.0212279
\(646\) 0 0
\(647\) −1.98087e12 −0.444414 −0.222207 0.975000i \(-0.571326\pi\)
−0.222207 + 0.975000i \(0.571326\pi\)
\(648\) 0 0
\(649\) 9.21851e11 0.203967
\(650\) 0 0
\(651\) 2.02830e11 0.0442606
\(652\) 0 0
\(653\) −7.31543e11 −0.157446 −0.0787228 0.996897i \(-0.525084\pi\)
−0.0787228 + 0.996897i \(0.525084\pi\)
\(654\) 0 0
\(655\) 2.62078e11 0.0556345
\(656\) 0 0
\(657\) −2.40346e12 −0.503261
\(658\) 0 0
\(659\) −6.80012e12 −1.40453 −0.702267 0.711914i \(-0.747829\pi\)
−0.702267 + 0.711914i \(0.747829\pi\)
\(660\) 0 0
\(661\) 1.11163e12 0.226493 0.113247 0.993567i \(-0.463875\pi\)
0.113247 + 0.993567i \(0.463875\pi\)
\(662\) 0 0
\(663\) −2.68607e11 −0.0539892
\(664\) 0 0
\(665\) 1.43424e12 0.284396
\(666\) 0 0
\(667\) −1.96795e12 −0.384989
\(668\) 0 0
\(669\) −1.91761e11 −0.0370120
\(670\) 0 0
\(671\) 1.01893e11 0.0194041
\(672\) 0 0
\(673\) 2.47185e12 0.464466 0.232233 0.972660i \(-0.425397\pi\)
0.232233 + 0.972660i \(0.425397\pi\)
\(674\) 0 0
\(675\) −1.01933e11 −0.0188993
\(676\) 0 0
\(677\) 4.80539e12 0.879183 0.439591 0.898198i \(-0.355123\pi\)
0.439591 + 0.898198i \(0.355123\pi\)
\(678\) 0 0
\(679\) 7.54308e12 1.36187
\(680\) 0 0
\(681\) −1.51792e11 −0.0270450
\(682\) 0 0
\(683\) 2.32385e12 0.408615 0.204307 0.978907i \(-0.434506\pi\)
0.204307 + 0.978907i \(0.434506\pi\)
\(684\) 0 0
\(685\) 8.57289e12 1.48771
\(686\) 0 0
\(687\) −3.47454e11 −0.0595103
\(688\) 0 0
\(689\) −8.42602e12 −1.42441
\(690\) 0 0
\(691\) −8.11211e10 −0.0135358 −0.00676788 0.999977i \(-0.502154\pi\)
−0.00676788 + 0.999977i \(0.502154\pi\)
\(692\) 0 0
\(693\) 2.52941e12 0.416601
\(694\) 0 0
\(695\) −4.95583e12 −0.805721
\(696\) 0 0
\(697\) 5.79505e12 0.930058
\(698\) 0 0
\(699\) 2.17114e11 0.0343985
\(700\) 0 0
\(701\) −3.44255e12 −0.538454 −0.269227 0.963077i \(-0.586768\pi\)
−0.269227 + 0.963077i \(0.586768\pi\)
\(702\) 0 0
\(703\) 2.52168e12 0.389395
\(704\) 0 0
\(705\) −5.40944e10 −0.00824710
\(706\) 0 0
\(707\) 3.99232e12 0.600950
\(708\) 0 0
\(709\) 4.26474e12 0.633848 0.316924 0.948451i \(-0.397350\pi\)
0.316924 + 0.948451i \(0.397350\pi\)
\(710\) 0 0
\(711\) 1.25285e13 1.83860
\(712\) 0 0
\(713\) 1.35775e12 0.196751
\(714\) 0 0
\(715\) 3.09173e12 0.442409
\(716\) 0 0
\(717\) −2.81340e11 −0.0397553
\(718\) 0 0
\(719\) −6.75064e12 −0.942031 −0.471015 0.882125i \(-0.656112\pi\)
−0.471015 + 0.882125i \(0.656112\pi\)
\(720\) 0 0
\(721\) 6.80380e12 0.937654
\(722\) 0 0
\(723\) −1.99505e11 −0.0271538
\(724\) 0 0
\(725\) −2.20288e12 −0.296122
\(726\) 0 0
\(727\) −1.03379e12 −0.137254 −0.0686272 0.997642i \(-0.521862\pi\)
−0.0686272 + 0.997642i \(0.521862\pi\)
\(728\) 0 0
\(729\) −7.53514e12 −0.988138
\(730\) 0 0
\(731\) 3.01768e12 0.390882
\(732\) 0 0
\(733\) 6.86393e12 0.878223 0.439112 0.898432i \(-0.355293\pi\)
0.439112 + 0.898432i \(0.355293\pi\)
\(734\) 0 0
\(735\) 2.97308e11 0.0375762
\(736\) 0 0
\(737\) −2.01036e12 −0.250997
\(738\) 0 0
\(739\) −4.93061e12 −0.608136 −0.304068 0.952650i \(-0.598345\pi\)
−0.304068 + 0.952650i \(0.598345\pi\)
\(740\) 0 0
\(741\) 1.39797e11 0.0170340
\(742\) 0 0
\(743\) −1.44876e12 −0.174400 −0.0871999 0.996191i \(-0.527792\pi\)
−0.0871999 + 0.996191i \(0.527792\pi\)
\(744\) 0 0
\(745\) −1.21663e13 −1.44696
\(746\) 0 0
\(747\) 1.54140e13 1.81122
\(748\) 0 0
\(749\) 1.74955e13 2.03123
\(750\) 0 0
\(751\) −1.10310e13 −1.26542 −0.632709 0.774390i \(-0.718057\pi\)
−0.632709 + 0.774390i \(0.718057\pi\)
\(752\) 0 0
\(753\) −3.01678e11 −0.0341953
\(754\) 0 0
\(755\) 1.40313e13 1.57158
\(756\) 0 0
\(757\) 6.01909e12 0.666192 0.333096 0.942893i \(-0.391907\pi\)
0.333096 + 0.942893i \(0.391907\pi\)
\(758\) 0 0
\(759\) −3.35972e10 −0.00367464
\(760\) 0 0
\(761\) 1.31729e13 1.42381 0.711904 0.702277i \(-0.247833\pi\)
0.711904 + 0.702277i \(0.247833\pi\)
\(762\) 0 0
\(763\) −3.30177e12 −0.352685
\(764\) 0 0
\(765\) 6.10013e12 0.643965
\(766\) 0 0
\(767\) −1.09163e13 −1.13892
\(768\) 0 0
\(769\) 1.18311e12 0.121999 0.0609993 0.998138i \(-0.480571\pi\)
0.0609993 + 0.998138i \(0.480571\pi\)
\(770\) 0 0
\(771\) −1.00754e11 −0.0102687
\(772\) 0 0
\(773\) 7.44943e12 0.750439 0.375220 0.926936i \(-0.377567\pi\)
0.375220 + 0.926936i \(0.377567\pi\)
\(774\) 0 0
\(775\) 1.51983e12 0.151335
\(776\) 0 0
\(777\) 1.07206e12 0.105518
\(778\) 0 0
\(779\) −3.01604e12 −0.293440
\(780\) 0 0
\(781\) −1.61115e12 −0.154955
\(782\) 0 0
\(783\) 1.30282e12 0.123868
\(784\) 0 0
\(785\) −1.15350e13 −1.08418
\(786\) 0 0
\(787\) 1.78315e13 1.65692 0.828460 0.560048i \(-0.189217\pi\)
0.828460 + 0.560048i \(0.189217\pi\)
\(788\) 0 0
\(789\) −7.10149e11 −0.0652383
\(790\) 0 0
\(791\) 1.93428e13 1.75681
\(792\) 0 0
\(793\) −1.20659e12 −0.108350
\(794\) 0 0
\(795\) −3.79699e11 −0.0337122
\(796\) 0 0
\(797\) 1.15025e13 1.00979 0.504894 0.863181i \(-0.331532\pi\)
0.504894 + 0.863181i \(0.331532\pi\)
\(798\) 0 0
\(799\) −1.74944e12 −0.151859
\(800\) 0 0
\(801\) −1.33796e13 −1.14841
\(802\) 0 0
\(803\) −1.77527e12 −0.150676
\(804\) 0 0
\(805\) 4.08168e12 0.342577
\(806\) 0 0
\(807\) −1.41571e11 −0.0117501
\(808\) 0 0
\(809\) −1.47465e13 −1.21038 −0.605188 0.796083i \(-0.706902\pi\)
−0.605188 + 0.796083i \(0.706902\pi\)
\(810\) 0 0
\(811\) 1.72663e13 1.40154 0.700770 0.713387i \(-0.252840\pi\)
0.700770 + 0.713387i \(0.252840\pi\)
\(812\) 0 0
\(813\) 9.02771e11 0.0724719
\(814\) 0 0
\(815\) −4.74941e12 −0.377077
\(816\) 0 0
\(817\) −1.57056e12 −0.123326
\(818\) 0 0
\(819\) −2.99525e13 −2.32624
\(820\) 0 0
\(821\) 3.86659e11 0.0297019 0.0148510 0.999890i \(-0.495273\pi\)
0.0148510 + 0.999890i \(0.495273\pi\)
\(822\) 0 0
\(823\) −1.82542e13 −1.38696 −0.693478 0.720478i \(-0.743922\pi\)
−0.693478 + 0.720478i \(0.743922\pi\)
\(824\) 0 0
\(825\) −3.76079e10 −0.00282642
\(826\) 0 0
\(827\) −1.39909e13 −1.04009 −0.520044 0.854140i \(-0.674084\pi\)
−0.520044 + 0.854140i \(0.674084\pi\)
\(828\) 0 0
\(829\) −4.77942e12 −0.351463 −0.175731 0.984438i \(-0.556229\pi\)
−0.175731 + 0.984438i \(0.556229\pi\)
\(830\) 0 0
\(831\) −3.78440e11 −0.0275291
\(832\) 0 0
\(833\) 9.61510e12 0.691913
\(834\) 0 0
\(835\) −9.72164e12 −0.692071
\(836\) 0 0
\(837\) −8.98857e11 −0.0633033
\(838\) 0 0
\(839\) 1.56344e13 1.08931 0.544657 0.838659i \(-0.316660\pi\)
0.544657 + 0.838659i \(0.316660\pi\)
\(840\) 0 0
\(841\) 1.36484e13 0.940804
\(842\) 0 0
\(843\) −3.23070e11 −0.0220330
\(844\) 0 0
\(845\) −2.34601e13 −1.58298
\(846\) 0 0
\(847\) −1.90567e13 −1.27225
\(848\) 0 0
\(849\) −8.54490e11 −0.0564446
\(850\) 0 0
\(851\) 7.17641e12 0.469056
\(852\) 0 0
\(853\) 1.16938e13 0.756286 0.378143 0.925747i \(-0.376563\pi\)
0.378143 + 0.925747i \(0.376563\pi\)
\(854\) 0 0
\(855\) −3.17482e12 −0.203176
\(856\) 0 0
\(857\) 7.96244e12 0.504234 0.252117 0.967697i \(-0.418873\pi\)
0.252117 + 0.967697i \(0.418873\pi\)
\(858\) 0 0
\(859\) −8.97508e12 −0.562431 −0.281215 0.959645i \(-0.590738\pi\)
−0.281215 + 0.959645i \(0.590738\pi\)
\(860\) 0 0
\(861\) −1.28224e12 −0.0795159
\(862\) 0 0
\(863\) −2.21958e13 −1.36214 −0.681071 0.732217i \(-0.738486\pi\)
−0.681071 + 0.732217i \(0.738486\pi\)
\(864\) 0 0
\(865\) −1.23738e13 −0.751503
\(866\) 0 0
\(867\) 3.48922e11 0.0209721
\(868\) 0 0
\(869\) 9.25395e12 0.550476
\(870\) 0 0
\(871\) 2.38060e13 1.40154
\(872\) 0 0
\(873\) −1.66973e13 −0.972933
\(874\) 0 0
\(875\) 2.60639e13 1.50315
\(876\) 0 0
\(877\) −1.46163e13 −0.834334 −0.417167 0.908830i \(-0.636977\pi\)
−0.417167 + 0.908830i \(0.636977\pi\)
\(878\) 0 0
\(879\) −9.63299e11 −0.0544266
\(880\) 0 0
\(881\) 1.76227e13 0.985556 0.492778 0.870155i \(-0.335982\pi\)
0.492778 + 0.870155i \(0.335982\pi\)
\(882\) 0 0
\(883\) 7.69996e12 0.426251 0.213126 0.977025i \(-0.431636\pi\)
0.213126 + 0.977025i \(0.431636\pi\)
\(884\) 0 0
\(885\) −4.91915e11 −0.0269554
\(886\) 0 0
\(887\) 2.64731e13 1.43598 0.717989 0.696054i \(-0.245063\pi\)
0.717989 + 0.696054i \(0.245063\pi\)
\(888\) 0 0
\(889\) −2.88672e13 −1.55005
\(890\) 0 0
\(891\) −5.58797e12 −0.297033
\(892\) 0 0
\(893\) 9.10500e11 0.0479124
\(894\) 0 0
\(895\) 8.05040e12 0.419386
\(896\) 0 0
\(897\) 3.97847e11 0.0205187
\(898\) 0 0
\(899\) −1.94253e13 −0.991859
\(900\) 0 0
\(901\) −1.22797e13 −0.620762
\(902\) 0 0
\(903\) −6.67705e11 −0.0334187
\(904\) 0 0
\(905\) −1.69882e13 −0.841838
\(906\) 0 0
\(907\) −8.94209e12 −0.438739 −0.219370 0.975642i \(-0.570400\pi\)
−0.219370 + 0.975642i \(0.570400\pi\)
\(908\) 0 0
\(909\) −8.83738e12 −0.429325
\(910\) 0 0
\(911\) 3.74724e13 1.80251 0.901257 0.433285i \(-0.142646\pi\)
0.901257 + 0.433285i \(0.142646\pi\)
\(912\) 0 0
\(913\) 1.13852e13 0.542279
\(914\) 0 0
\(915\) −5.43719e10 −0.00256436
\(916\) 0 0
\(917\) −1.87537e12 −0.0875843
\(918\) 0 0
\(919\) 1.16571e13 0.539103 0.269551 0.962986i \(-0.413125\pi\)
0.269551 + 0.962986i \(0.413125\pi\)
\(920\) 0 0
\(921\) −4.78746e11 −0.0219248
\(922\) 0 0
\(923\) 1.90787e13 0.865247
\(924\) 0 0
\(925\) 8.03312e12 0.360783
\(926\) 0 0
\(927\) −1.50608e13 −0.669870
\(928\) 0 0
\(929\) −3.03689e12 −0.133770 −0.0668850 0.997761i \(-0.521306\pi\)
−0.0668850 + 0.997761i \(0.521306\pi\)
\(930\) 0 0
\(931\) −5.00419e12 −0.218303
\(932\) 0 0
\(933\) −6.34435e11 −0.0274107
\(934\) 0 0
\(935\) 4.50574e12 0.192803
\(936\) 0 0
\(937\) 2.54301e13 1.07775 0.538877 0.842385i \(-0.318849\pi\)
0.538877 + 0.842385i \(0.318849\pi\)
\(938\) 0 0
\(939\) −1.12479e12 −0.0472144
\(940\) 0 0
\(941\) −1.16765e13 −0.485469 −0.242734 0.970093i \(-0.578044\pi\)
−0.242734 + 0.970093i \(0.578044\pi\)
\(942\) 0 0
\(943\) −8.58333e12 −0.353470
\(944\) 0 0
\(945\) −2.70215e12 −0.110222
\(946\) 0 0
\(947\) 2.43549e13 0.984038 0.492019 0.870584i \(-0.336259\pi\)
0.492019 + 0.870584i \(0.336259\pi\)
\(948\) 0 0
\(949\) 2.10222e13 0.841355
\(950\) 0 0
\(951\) −6.82031e10 −0.00270391
\(952\) 0 0
\(953\) −3.15922e13 −1.24069 −0.620344 0.784330i \(-0.713007\pi\)
−0.620344 + 0.784330i \(0.713007\pi\)
\(954\) 0 0
\(955\) −2.74374e13 −1.06740
\(956\) 0 0
\(957\) 4.80675e11 0.0185246
\(958\) 0 0
\(959\) −6.13459e13 −2.34208
\(960\) 0 0
\(961\) −1.30375e13 −0.493104
\(962\) 0 0
\(963\) −3.87280e13 −1.45113
\(964\) 0 0
\(965\) 7.07500e12 0.262636
\(966\) 0 0
\(967\) 8.21729e12 0.302210 0.151105 0.988518i \(-0.451717\pi\)
0.151105 + 0.988518i \(0.451717\pi\)
\(968\) 0 0
\(969\) 2.03733e11 0.00742343
\(970\) 0 0
\(971\) 1.56122e13 0.563610 0.281805 0.959472i \(-0.409067\pi\)
0.281805 + 0.959472i \(0.409067\pi\)
\(972\) 0 0
\(973\) 3.54629e13 1.26843
\(974\) 0 0
\(975\) 4.45341e11 0.0157823
\(976\) 0 0
\(977\) 2.49825e13 0.877224 0.438612 0.898676i \(-0.355470\pi\)
0.438612 + 0.898676i \(0.355470\pi\)
\(978\) 0 0
\(979\) −9.88260e12 −0.343834
\(980\) 0 0
\(981\) 7.30878e12 0.251962
\(982\) 0 0
\(983\) 3.47691e13 1.18769 0.593845 0.804580i \(-0.297609\pi\)
0.593845 + 0.804580i \(0.297609\pi\)
\(984\) 0 0
\(985\) −3.82574e13 −1.29495
\(986\) 0 0
\(987\) 3.87089e11 0.0129832
\(988\) 0 0
\(989\) −4.46963e12 −0.148555
\(990\) 0 0
\(991\) 1.33317e13 0.439090 0.219545 0.975602i \(-0.429543\pi\)
0.219545 + 0.975602i \(0.429543\pi\)
\(992\) 0 0
\(993\) 3.11487e11 0.0101664
\(994\) 0 0
\(995\) −2.14314e13 −0.693182
\(996\) 0 0
\(997\) 2.81190e13 0.901305 0.450653 0.892699i \(-0.351191\pi\)
0.450653 + 0.892699i \(0.351191\pi\)
\(998\) 0 0
\(999\) −4.75093e12 −0.150915
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.10.a.i.1.5 8
4.3 odd 2 19.10.a.b.1.2 8
12.11 even 2 171.10.a.f.1.7 8
76.75 even 2 361.10.a.c.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.b.1.2 8 4.3 odd 2
171.10.a.f.1.7 8 12.11 even 2
304.10.a.i.1.5 8 1.1 even 1 trivial
361.10.a.c.1.7 8 76.75 even 2