Properties

Label 1890.2.r.b.89.16
Level $1890$
Weight $2$
Character 1890.89
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(89,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.16
Character \(\chi\) \(=\) 1890.89
Dual form 1890.2.r.b.1529.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.00280 - 1.99860i) q^{5} +(-2.55747 + 0.677764i) q^{7} -1.00000 q^{8} +(2.23224 - 0.130844i) q^{10} +3.58743i q^{11} +(-2.03087 - 3.51756i) q^{13} +(-1.86569 - 1.87595i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(4.57132 - 2.63925i) q^{17} +(3.13968 + 1.81269i) q^{19} +(1.22943 + 1.86775i) q^{20} +(-3.10680 + 1.79371i) q^{22} +4.79723 q^{23} +(-2.98877 - 4.00840i) q^{25} +(2.03087 - 3.51756i) q^{26} +(0.691773 - 2.55371i) q^{28} +(6.99680 + 4.03961i) q^{29} +(-3.05326 - 1.76280i) q^{31} +(0.500000 - 0.866025i) q^{32} +(4.57132 + 2.63925i) q^{34} +(-1.21006 + 5.79101i) q^{35} +(0.879847 + 0.507980i) q^{37} +3.62539i q^{38} +(-1.00280 + 1.99860i) q^{40} +(-4.80160 - 8.31661i) q^{41} +(4.43909 + 2.56291i) q^{43} +(-3.10680 - 1.79371i) q^{44} +(2.39862 + 4.15452i) q^{46} +(9.96048 - 5.75069i) q^{47} +(6.08127 - 3.46672i) q^{49} +(1.97699 - 4.59255i) q^{50} +4.06173 q^{52} +(5.71305 + 9.89529i) q^{53} +(7.16981 + 3.59749i) q^{55} +(2.55747 - 0.677764i) q^{56} +8.07921i q^{58} +(-3.51911 + 6.09528i) q^{59} +(9.71945 - 5.61153i) q^{61} -3.52560i q^{62} +1.00000 q^{64} +(-9.06675 + 0.531452i) q^{65} +(6.05819 + 3.49770i) q^{67} +5.27850i q^{68} +(-5.62019 + 1.84756i) q^{70} +0.828681i q^{71} +(-3.51263 - 6.08405i) q^{73} +1.01596i q^{74} +(-3.13968 + 1.81269i) q^{76} +(-2.43143 - 9.17472i) q^{77} +(-0.0149934 - 0.0259693i) q^{79} +(-2.23224 + 0.130844i) q^{80} +(4.80160 - 8.31661i) q^{82} +(-6.89727 - 3.98214i) q^{83} +(-0.690658 - 11.7829i) q^{85} +5.12582i q^{86} -3.58743i q^{88} +(-0.625013 + 1.08255i) q^{89} +(7.57795 + 7.61961i) q^{91} +(-2.39862 + 4.15452i) q^{92} +(9.96048 + 5.75069i) q^{94} +(6.77133 - 4.45717i) q^{95} +(4.69619 - 8.13404i) q^{97} +(6.04290 + 3.53318i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{2} - 24 q^{4} - 48 q^{8} - 3 q^{14} - 24 q^{16} + 6 q^{22} + 6 q^{23} - 3 q^{28} + 3 q^{29} + 24 q^{32} - 18 q^{35} - 3 q^{41} + 6 q^{44} + 3 q^{46} - 6 q^{49} + 18 q^{50} + 42 q^{55} - 9 q^{61}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.00280 1.99860i 0.448468 0.893799i
\(6\) 0 0
\(7\) −2.55747 + 0.677764i −0.966632 + 0.256171i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.23224 0.130844i 0.705895 0.0413764i
\(11\) 3.58743i 1.08165i 0.841135 + 0.540825i \(0.181888\pi\)
−0.841135 + 0.540825i \(0.818112\pi\)
\(12\) 0 0
\(13\) −2.03087 3.51756i −0.563261 0.975597i −0.997209 0.0746590i \(-0.976213\pi\)
0.433948 0.900938i \(-0.357120\pi\)
\(14\) −1.86569 1.87595i −0.498628 0.501369i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.57132 2.63925i 1.10871 0.640112i 0.170213 0.985407i \(-0.445555\pi\)
0.938494 + 0.345295i \(0.112221\pi\)
\(18\) 0 0
\(19\) 3.13968 + 1.81269i 0.720292 + 0.415861i 0.814860 0.579658i \(-0.196814\pi\)
−0.0945683 + 0.995518i \(0.530147\pi\)
\(20\) 1.22943 + 1.86775i 0.274909 + 0.417642i
\(21\) 0 0
\(22\) −3.10680 + 1.79371i −0.662372 + 0.382421i
\(23\) 4.79723 1.00029 0.500146 0.865941i \(-0.333280\pi\)
0.500146 + 0.865941i \(0.333280\pi\)
\(24\) 0 0
\(25\) −2.98877 4.00840i −0.597753 0.801680i
\(26\) 2.03087 3.51756i 0.398286 0.689851i
\(27\) 0 0
\(28\) 0.691773 2.55371i 0.130733 0.482606i
\(29\) 6.99680 + 4.03961i 1.29927 + 0.750136i 0.980279 0.197620i \(-0.0633213\pi\)
0.318995 + 0.947756i \(0.396655\pi\)
\(30\) 0 0
\(31\) −3.05326 1.76280i −0.548381 0.316608i 0.200088 0.979778i \(-0.435877\pi\)
−0.748469 + 0.663170i \(0.769211\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 4.57132 + 2.63925i 0.783974 + 0.452628i
\(35\) −1.21006 + 5.79101i −0.204538 + 0.978859i
\(36\) 0 0
\(37\) 0.879847 + 0.507980i 0.144646 + 0.0835114i 0.570576 0.821245i \(-0.306720\pi\)
−0.425930 + 0.904756i \(0.640053\pi\)
\(38\) 3.62539i 0.588116i
\(39\) 0 0
\(40\) −1.00280 + 1.99860i −0.158557 + 0.316006i
\(41\) −4.80160 8.31661i −0.749883 1.29884i −0.947878 0.318633i \(-0.896776\pi\)
0.197995 0.980203i \(-0.436557\pi\)
\(42\) 0 0
\(43\) 4.43909 + 2.56291i 0.676955 + 0.390840i 0.798707 0.601720i \(-0.205518\pi\)
−0.121752 + 0.992561i \(0.538851\pi\)
\(44\) −3.10680 1.79371i −0.468368 0.270412i
\(45\) 0 0
\(46\) 2.39862 + 4.15452i 0.353657 + 0.612551i
\(47\) 9.96048 5.75069i 1.45289 0.838824i 0.454242 0.890879i \(-0.349910\pi\)
0.998644 + 0.0520545i \(0.0165770\pi\)
\(48\) 0 0
\(49\) 6.08127 3.46672i 0.868753 0.495245i
\(50\) 1.97699 4.59255i 0.279589 0.649484i
\(51\) 0 0
\(52\) 4.06173 0.563261
\(53\) 5.71305 + 9.89529i 0.784747 + 1.35922i 0.929150 + 0.369703i \(0.120541\pi\)
−0.144403 + 0.989519i \(0.546126\pi\)
\(54\) 0 0
\(55\) 7.16981 + 3.59749i 0.966777 + 0.485085i
\(56\) 2.55747 0.677764i 0.341756 0.0905700i
\(57\) 0 0
\(58\) 8.07921i 1.06085i
\(59\) −3.51911 + 6.09528i −0.458150 + 0.793538i −0.998863 0.0476683i \(-0.984821\pi\)
0.540714 + 0.841207i \(0.318154\pi\)
\(60\) 0 0
\(61\) 9.71945 5.61153i 1.24445 0.718482i 0.274451 0.961601i \(-0.411504\pi\)
0.969997 + 0.243119i \(0.0781704\pi\)
\(62\) 3.52560i 0.447751i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −9.06675 + 0.531452i −1.12459 + 0.0659185i
\(66\) 0 0
\(67\) 6.05819 + 3.49770i 0.740126 + 0.427312i 0.822115 0.569321i \(-0.192794\pi\)
−0.0819892 + 0.996633i \(0.526127\pi\)
\(68\) 5.27850i 0.640112i
\(69\) 0 0
\(70\) −5.62019 + 1.84756i −0.671741 + 0.220825i
\(71\) 0.828681i 0.0983464i 0.998790 + 0.0491732i \(0.0156586\pi\)
−0.998790 + 0.0491732i \(0.984341\pi\)
\(72\) 0 0
\(73\) −3.51263 6.08405i −0.411122 0.712084i 0.583891 0.811832i \(-0.301530\pi\)
−0.995013 + 0.0997484i \(0.968196\pi\)
\(74\) 1.01596i 0.118103i
\(75\) 0 0
\(76\) −3.13968 + 1.81269i −0.360146 + 0.207930i
\(77\) −2.43143 9.17472i −0.277087 1.04556i
\(78\) 0 0
\(79\) −0.0149934 0.0259693i −0.00168689 0.00292177i 0.865181 0.501460i \(-0.167204\pi\)
−0.866868 + 0.498538i \(0.833870\pi\)
\(80\) −2.23224 + 0.130844i −0.249572 + 0.0146288i
\(81\) 0 0
\(82\) 4.80160 8.31661i 0.530248 0.918416i
\(83\) −6.89727 3.98214i −0.757074 0.437097i 0.0711705 0.997464i \(-0.477327\pi\)
−0.828244 + 0.560368i \(0.810660\pi\)
\(84\) 0 0
\(85\) −0.690658 11.7829i −0.0749124 1.27803i
\(86\) 5.12582i 0.552731i
\(87\) 0 0
\(88\) 3.58743i 0.382421i
\(89\) −0.625013 + 1.08255i −0.0662512 + 0.114750i −0.897248 0.441526i \(-0.854437\pi\)
0.830997 + 0.556277i \(0.187771\pi\)
\(90\) 0 0
\(91\) 7.57795 + 7.61961i 0.794385 + 0.798752i
\(92\) −2.39862 + 4.15452i −0.250073 + 0.433139i
\(93\) 0 0
\(94\) 9.96048 + 5.75069i 1.02735 + 0.593138i
\(95\) 6.77133 4.45717i 0.694723 0.457296i
\(96\) 0 0
\(97\) 4.69619 8.13404i 0.476826 0.825887i −0.522821 0.852442i \(-0.675121\pi\)
0.999647 + 0.0265556i \(0.00845391\pi\)
\(98\) 6.04290 + 3.53318i 0.610425 + 0.356905i
\(99\) 0 0
\(100\) 4.96576 0.584148i 0.496576 0.0584148i
\(101\) 10.8924 1.08383 0.541916 0.840433i \(-0.317699\pi\)
0.541916 + 0.840433i \(0.317699\pi\)
\(102\) 0 0
\(103\) −0.584230 −0.0575659 −0.0287830 0.999586i \(-0.509163\pi\)
−0.0287830 + 0.999586i \(0.509163\pi\)
\(104\) 2.03087 + 3.51756i 0.199143 + 0.344926i
\(105\) 0 0
\(106\) −5.71305 + 9.89529i −0.554900 + 0.961115i
\(107\) 1.34287 2.32592i 0.129820 0.224855i −0.793787 0.608196i \(-0.791893\pi\)
0.923607 + 0.383341i \(0.125227\pi\)
\(108\) 0 0
\(109\) −0.618180 1.07072i −0.0592109 0.102556i 0.834901 0.550401i \(-0.185525\pi\)
−0.894111 + 0.447845i \(0.852192\pi\)
\(110\) 0.469392 + 8.00798i 0.0447547 + 0.763531i
\(111\) 0 0
\(112\) 1.86569 + 1.87595i 0.176292 + 0.177261i
\(113\) −5.41347 9.37640i −0.509256 0.882058i −0.999943 0.0107214i \(-0.996587\pi\)
0.490686 0.871336i \(-0.336746\pi\)
\(114\) 0 0
\(115\) 4.81068 9.58772i 0.448599 0.894060i
\(116\) −6.99680 + 4.03961i −0.649637 + 0.375068i
\(117\) 0 0
\(118\) −7.03823 −0.647921
\(119\) −9.90220 + 9.84807i −0.907733 + 0.902771i
\(120\) 0 0
\(121\) −1.86962 −0.169965
\(122\) 9.71945 + 5.61153i 0.879958 + 0.508044i
\(123\) 0 0
\(124\) 3.05326 1.76280i 0.274191 0.158304i
\(125\) −11.0083 + 1.95369i −0.984614 + 0.174744i
\(126\) 0 0
\(127\) 4.95940i 0.440076i 0.975491 + 0.220038i \(0.0706181\pi\)
−0.975491 + 0.220038i \(0.929382\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −4.99363 7.58631i −0.437970 0.665364i
\(131\) 9.28206 0.810977 0.405489 0.914100i \(-0.367101\pi\)
0.405489 + 0.914100i \(0.367101\pi\)
\(132\) 0 0
\(133\) −9.25820 2.50795i −0.802788 0.217466i
\(134\) 6.99540i 0.604310i
\(135\) 0 0
\(136\) −4.57132 + 2.63925i −0.391987 + 0.226314i
\(137\) 0.00612456 0.000523257 0.000261628 1.00000i \(-0.499917\pi\)
0.000261628 1.00000i \(0.499917\pi\)
\(138\) 0 0
\(139\) 7.32549 4.22938i 0.621340 0.358731i −0.156050 0.987749i \(-0.549876\pi\)
0.777391 + 0.629018i \(0.216543\pi\)
\(140\) −4.41013 3.94345i −0.372724 0.333282i
\(141\) 0 0
\(142\) −0.717659 + 0.414341i −0.0602246 + 0.0347707i
\(143\) 12.6190 7.28558i 1.05525 0.609251i
\(144\) 0 0
\(145\) 15.0900 9.93284i 1.25315 0.824878i
\(146\) 3.51263 6.08405i 0.290707 0.503519i
\(147\) 0 0
\(148\) −0.879847 + 0.507980i −0.0723230 + 0.0417557i
\(149\) 17.3271i 1.41949i 0.704460 + 0.709744i \(0.251189\pi\)
−0.704460 + 0.709744i \(0.748811\pi\)
\(150\) 0 0
\(151\) −5.64408 −0.459308 −0.229654 0.973272i \(-0.573760\pi\)
−0.229654 + 0.973272i \(0.573760\pi\)
\(152\) −3.13968 1.81269i −0.254662 0.147029i
\(153\) 0 0
\(154\) 6.72983 6.69304i 0.542305 0.539340i
\(155\) −6.58494 + 4.33448i −0.528915 + 0.348154i
\(156\) 0 0
\(157\) 3.24346 5.61784i 0.258857 0.448353i −0.707079 0.707134i \(-0.749988\pi\)
0.965936 + 0.258782i \(0.0833210\pi\)
\(158\) 0.0149934 0.0259693i 0.00119281 0.00206601i
\(159\) 0 0
\(160\) −1.22943 1.86775i −0.0971951 0.147659i
\(161\) −12.2688 + 3.25139i −0.966914 + 0.256245i
\(162\) 0 0
\(163\) −4.53833 2.62021i −0.355469 0.205230i 0.311622 0.950206i \(-0.399128\pi\)
−0.667092 + 0.744976i \(0.732461\pi\)
\(164\) 9.60319 0.749883
\(165\) 0 0
\(166\) 7.96428i 0.618148i
\(167\) −18.8867 + 10.9043i −1.46150 + 0.843797i −0.999081 0.0428649i \(-0.986351\pi\)
−0.462418 + 0.886662i \(0.653018\pi\)
\(168\) 0 0
\(169\) −1.74884 + 3.02908i −0.134526 + 0.233006i
\(170\) 9.85893 6.48956i 0.756145 0.497726i
\(171\) 0 0
\(172\) −4.43909 + 2.56291i −0.338477 + 0.195420i
\(173\) −18.7792 + 10.8422i −1.42775 + 0.824314i −0.996943 0.0781289i \(-0.975105\pi\)
−0.430810 + 0.902443i \(0.641772\pi\)
\(174\) 0 0
\(175\) 10.3604 + 8.22567i 0.783174 + 0.621802i
\(176\) 3.10680 1.79371i 0.234184 0.135206i
\(177\) 0 0
\(178\) −1.25003 −0.0936934
\(179\) 15.1142 8.72620i 1.12969 0.652227i 0.185833 0.982581i \(-0.440502\pi\)
0.943857 + 0.330355i \(0.107168\pi\)
\(180\) 0 0
\(181\) 24.0491i 1.78755i 0.448513 + 0.893776i \(0.351954\pi\)
−0.448513 + 0.893776i \(0.648046\pi\)
\(182\) −2.80980 + 10.3725i −0.208276 + 0.768861i
\(183\) 0 0
\(184\) −4.79723 −0.353657
\(185\) 1.89756 1.24905i 0.139511 0.0918323i
\(186\) 0 0
\(187\) 9.46811 + 16.3993i 0.692377 + 1.19923i
\(188\) 11.5014i 0.838824i
\(189\) 0 0
\(190\) 7.24569 + 3.63556i 0.525657 + 0.263751i
\(191\) 2.79411 1.61318i 0.202175 0.116726i −0.395495 0.918468i \(-0.629427\pi\)
0.597670 + 0.801743i \(0.296093\pi\)
\(192\) 0 0
\(193\) −20.9812 12.1135i −1.51026 0.871951i −0.999928 0.0119754i \(-0.996188\pi\)
−0.510335 0.859976i \(-0.670479\pi\)
\(194\) 9.39238 0.674334
\(195\) 0 0
\(196\) −0.0383723 + 6.99989i −0.00274088 + 0.499992i
\(197\) 6.89656 0.491359 0.245680 0.969351i \(-0.420989\pi\)
0.245680 + 0.969351i \(0.420989\pi\)
\(198\) 0 0
\(199\) −14.5256 + 8.38638i −1.02969 + 0.594494i −0.916897 0.399124i \(-0.869314\pi\)
−0.112797 + 0.993618i \(0.535981\pi\)
\(200\) 2.98877 + 4.00840i 0.211338 + 0.283437i
\(201\) 0 0
\(202\) 5.44619 + 9.43308i 0.383193 + 0.663709i
\(203\) −20.6320 5.58898i −1.44808 0.392270i
\(204\) 0 0
\(205\) −21.4366 + 1.25652i −1.49720 + 0.0877589i
\(206\) −0.292115 0.505958i −0.0203526 0.0352518i
\(207\) 0 0
\(208\) −2.03087 + 3.51756i −0.140815 + 0.243899i
\(209\) −6.50291 + 11.2634i −0.449815 + 0.779103i
\(210\) 0 0
\(211\) 2.37689 + 4.11690i 0.163632 + 0.283419i 0.936169 0.351551i \(-0.114346\pi\)
−0.772537 + 0.634970i \(0.781012\pi\)
\(212\) −11.4261 −0.784747
\(213\) 0 0
\(214\) 2.68574 0.183593
\(215\) 9.57376 6.30185i 0.652925 0.429782i
\(216\) 0 0
\(217\) 9.00336 + 2.43891i 0.611188 + 0.165564i
\(218\) 0.618180 1.07072i 0.0418684 0.0725182i
\(219\) 0 0
\(220\) −6.70042 + 4.41050i −0.451742 + 0.297356i
\(221\) −18.5675 10.7199i −1.24898 0.721101i
\(222\) 0 0
\(223\) −8.37432 + 14.5048i −0.560786 + 0.971310i 0.436642 + 0.899635i \(0.356168\pi\)
−0.997428 + 0.0716748i \(0.977166\pi\)
\(224\) −0.691773 + 2.55371i −0.0462210 + 0.170627i
\(225\) 0 0
\(226\) 5.41347 9.37640i 0.360099 0.623709i
\(227\) 6.34736i 0.421289i 0.977563 + 0.210645i \(0.0675563\pi\)
−0.977563 + 0.210645i \(0.932444\pi\)
\(228\) 0 0
\(229\) 4.37539i 0.289134i 0.989495 + 0.144567i \(0.0461789\pi\)
−0.989495 + 0.144567i \(0.953821\pi\)
\(230\) 10.7086 0.627687i 0.706101 0.0413884i
\(231\) 0 0
\(232\) −6.99680 4.03961i −0.459363 0.265213i
\(233\) −12.2423 + 21.2043i −0.802021 + 1.38914i 0.116263 + 0.993218i \(0.462908\pi\)
−0.918284 + 0.395922i \(0.870425\pi\)
\(234\) 0 0
\(235\) −1.50488 25.6738i −0.0981676 1.67477i
\(236\) −3.51911 6.09528i −0.229075 0.396769i
\(237\) 0 0
\(238\) −13.4798 3.65152i −0.873764 0.236693i
\(239\) −2.10722 + 1.21660i −0.136305 + 0.0786956i −0.566602 0.823992i \(-0.691742\pi\)
0.430297 + 0.902687i \(0.358409\pi\)
\(240\) 0 0
\(241\) 2.10402i 0.135532i −0.997701 0.0677659i \(-0.978413\pi\)
0.997701 0.0677659i \(-0.0215871\pi\)
\(242\) −0.934810 1.61914i −0.0600918 0.104082i
\(243\) 0 0
\(244\) 11.2231i 0.718482i
\(245\) −0.830235 15.6304i −0.0530418 0.998592i
\(246\) 0 0
\(247\) 14.7254i 0.936953i
\(248\) 3.05326 + 1.76280i 0.193882 + 0.111938i
\(249\) 0 0
\(250\) −7.19611 8.55664i −0.455122 0.541169i
\(251\) 19.3343 1.22037 0.610184 0.792260i \(-0.291096\pi\)
0.610184 + 0.792260i \(0.291096\pi\)
\(252\) 0 0
\(253\) 17.2097i 1.08197i
\(254\) −4.29497 + 2.47970i −0.269490 + 0.155590i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 25.9602i 1.61935i −0.586876 0.809677i \(-0.699643\pi\)
0.586876 0.809677i \(-0.300357\pi\)
\(258\) 0 0
\(259\) −2.59447 0.702814i −0.161213 0.0436707i
\(260\) 4.07312 8.11776i 0.252604 0.503442i
\(261\) 0 0
\(262\) 4.64103 + 8.03850i 0.286724 + 0.496620i
\(263\) 7.78218 0.479870 0.239935 0.970789i \(-0.422874\pi\)
0.239935 + 0.970789i \(0.422874\pi\)
\(264\) 0 0
\(265\) 25.5057 1.49503i 1.56681 0.0918390i
\(266\) −2.45716 9.27181i −0.150658 0.568491i
\(267\) 0 0
\(268\) −6.05819 + 3.49770i −0.370063 + 0.213656i
\(269\) −9.76085 16.9063i −0.595129 1.03079i −0.993529 0.113582i \(-0.963767\pi\)
0.398399 0.917212i \(-0.369566\pi\)
\(270\) 0 0
\(271\) −0.125260 0.0723187i −0.00760898 0.00439305i 0.496191 0.868214i \(-0.334732\pi\)
−0.503800 + 0.863821i \(0.668065\pi\)
\(272\) −4.57132 2.63925i −0.277177 0.160028i
\(273\) 0 0
\(274\) 0.00306228 + 0.00530403i 0.000184999 + 0.000320428i
\(275\) 14.3798 10.7220i 0.867137 0.646560i
\(276\) 0 0
\(277\) 25.6634i 1.54196i −0.636858 0.770981i \(-0.719766\pi\)
0.636858 0.770981i \(-0.280234\pi\)
\(278\) 7.32549 + 4.22938i 0.439354 + 0.253661i
\(279\) 0 0
\(280\) 1.21006 5.79101i 0.0723151 0.346079i
\(281\) 16.2907 + 9.40542i 0.971819 + 0.561080i 0.899790 0.436322i \(-0.143719\pi\)
0.0720288 + 0.997403i \(0.477053\pi\)
\(282\) 0 0
\(283\) 15.1983 26.3242i 0.903444 1.56481i 0.0804519 0.996758i \(-0.474364\pi\)
0.822992 0.568053i \(-0.192303\pi\)
\(284\) −0.717659 0.414341i −0.0425852 0.0245866i
\(285\) 0 0
\(286\) 12.6190 + 7.28558i 0.746177 + 0.430806i
\(287\) 17.9166 + 18.0151i 1.05758 + 1.06340i
\(288\) 0 0
\(289\) 5.43128 9.40726i 0.319487 0.553368i
\(290\) 16.1471 + 8.10187i 0.948189 + 0.475758i
\(291\) 0 0
\(292\) 7.02525 0.411122
\(293\) −24.1090 + 13.9193i −1.40846 + 0.813176i −0.995240 0.0974541i \(-0.968930\pi\)
−0.413222 + 0.910630i \(0.635597\pi\)
\(294\) 0 0
\(295\) 8.65302 + 13.1457i 0.503799 + 0.765370i
\(296\) −0.879847 0.507980i −0.0511401 0.0295257i
\(297\) 0 0
\(298\) −15.0057 + 8.66353i −0.869255 + 0.501865i
\(299\) −9.74254 16.8746i −0.563426 0.975882i
\(300\) 0 0
\(301\) −13.0899 3.54590i −0.754488 0.204382i
\(302\) −2.82204 4.88791i −0.162390 0.281268i
\(303\) 0 0
\(304\) 3.62539i 0.207930i
\(305\) −1.46846 25.0525i −0.0840840 1.43450i
\(306\) 0 0
\(307\) −29.1963 −1.66632 −0.833162 0.553030i \(-0.813472\pi\)
−0.833162 + 0.553030i \(0.813472\pi\)
\(308\) 9.16125 + 2.48168i 0.522011 + 0.141407i
\(309\) 0 0
\(310\) −7.04624 3.53548i −0.400200 0.200802i
\(311\) 0.769918 1.33354i 0.0436580 0.0756179i −0.843371 0.537332i \(-0.819432\pi\)
0.887029 + 0.461714i \(0.152765\pi\)
\(312\) 0 0
\(313\) 4.50101 + 7.79598i 0.254412 + 0.440655i 0.964736 0.263221i \(-0.0847847\pi\)
−0.710324 + 0.703875i \(0.751451\pi\)
\(314\) 6.48693 0.366078
\(315\) 0 0
\(316\) 0.0299868 0.00168689
\(317\) 8.62883 + 14.9456i 0.484644 + 0.839427i 0.999844 0.0176421i \(-0.00561596\pi\)
−0.515201 + 0.857070i \(0.672283\pi\)
\(318\) 0 0
\(319\) −14.4918 + 25.1005i −0.811384 + 1.40536i
\(320\) 1.00280 1.99860i 0.0560585 0.111725i
\(321\) 0 0
\(322\) −8.95016 8.99936i −0.498773 0.501515i
\(323\) 19.1366 1.06479
\(324\) 0 0
\(325\) −8.03002 + 18.6537i −0.445425 + 1.03472i
\(326\) 5.24041i 0.290240i
\(327\) 0 0
\(328\) 4.80160 + 8.31661i 0.265124 + 0.459208i
\(329\) −21.5760 + 21.4580i −1.18952 + 1.18302i
\(330\) 0 0
\(331\) −14.5091 25.1305i −0.797492 1.38130i −0.921244 0.388984i \(-0.872826\pi\)
0.123752 0.992313i \(-0.460507\pi\)
\(332\) 6.89727 3.98214i 0.378537 0.218548i
\(333\) 0 0
\(334\) −18.8867 10.9043i −1.03344 0.596655i
\(335\) 13.0657 8.60037i 0.713854 0.469888i
\(336\) 0 0
\(337\) 0.776124 0.448095i 0.0422782 0.0244093i −0.478712 0.877972i \(-0.658896\pi\)
0.520990 + 0.853563i \(0.325563\pi\)
\(338\) −3.49768 −0.190249
\(339\) 0 0
\(340\) 10.5496 + 5.29330i 0.572132 + 0.287070i
\(341\) 6.32391 10.9533i 0.342459 0.593156i
\(342\) 0 0
\(343\) −13.2030 + 12.9877i −0.712897 + 0.701269i
\(344\) −4.43909 2.56291i −0.239340 0.138183i
\(345\) 0 0
\(346\) −18.7792 10.8422i −1.00957 0.582878i
\(347\) 17.1746 29.7473i 0.921982 1.59692i 0.125637 0.992076i \(-0.459902\pi\)
0.796345 0.604843i \(-0.206764\pi\)
\(348\) 0 0
\(349\) 1.95233 + 1.12718i 0.104506 + 0.0603366i 0.551342 0.834279i \(-0.314116\pi\)
−0.446836 + 0.894616i \(0.647449\pi\)
\(350\) −1.94343 + 13.0852i −0.103881 + 0.699435i
\(351\) 0 0
\(352\) 3.10680 + 1.79371i 0.165593 + 0.0956052i
\(353\) 5.87884i 0.312899i 0.987686 + 0.156450i \(0.0500049\pi\)
−0.987686 + 0.156450i \(0.949995\pi\)
\(354\) 0 0
\(355\) 1.65620 + 0.831005i 0.0879019 + 0.0441052i
\(356\) −0.625013 1.08255i −0.0331256 0.0573752i
\(357\) 0 0
\(358\) 15.1142 + 8.72620i 0.798811 + 0.461194i
\(359\) −5.91330 3.41404i −0.312092 0.180186i 0.335770 0.941944i \(-0.391003\pi\)
−0.647862 + 0.761758i \(0.724337\pi\)
\(360\) 0 0
\(361\) −2.92828 5.07193i −0.154120 0.266944i
\(362\) −20.8271 + 12.0245i −1.09465 + 0.631995i
\(363\) 0 0
\(364\) −10.3878 + 2.75290i −0.544466 + 0.144291i
\(365\) −15.6820 + 0.919209i −0.820835 + 0.0481136i
\(366\) 0 0
\(367\) −0.568928 −0.0296978 −0.0148489 0.999890i \(-0.504727\pi\)
−0.0148489 + 0.999890i \(0.504727\pi\)
\(368\) −2.39862 4.15452i −0.125036 0.216570i
\(369\) 0 0
\(370\) 2.03049 + 1.01881i 0.105560 + 0.0529654i
\(371\) −21.3176 21.4348i −1.10675 1.11284i
\(372\) 0 0
\(373\) 7.60195i 0.393614i −0.980442 0.196807i \(-0.936943\pi\)
0.980442 0.196807i \(-0.0630573\pi\)
\(374\) −9.46811 + 16.3993i −0.489584 + 0.847985i
\(375\) 0 0
\(376\) −9.96048 + 5.75069i −0.513673 + 0.296569i
\(377\) 32.8156i 1.69009i
\(378\) 0 0
\(379\) −37.9897 −1.95140 −0.975700 0.219109i \(-0.929685\pi\)
−0.975700 + 0.219109i \(0.929685\pi\)
\(380\) 0.474359 + 8.09273i 0.0243341 + 0.415148i
\(381\) 0 0
\(382\) 2.79411 + 1.61318i 0.142959 + 0.0825375i
\(383\) 12.0422i 0.615329i 0.951495 + 0.307665i \(0.0995475\pi\)
−0.951495 + 0.307665i \(0.900452\pi\)
\(384\) 0 0
\(385\) −20.7748 4.34101i −1.05878 0.221239i
\(386\) 24.2271i 1.23312i
\(387\) 0 0
\(388\) 4.69619 + 8.13404i 0.238413 + 0.412943i
\(389\) 11.4685i 0.581474i −0.956803 0.290737i \(-0.906100\pi\)
0.956803 0.290737i \(-0.0939005\pi\)
\(390\) 0 0
\(391\) 21.9297 12.6611i 1.10903 0.640299i
\(392\) −6.08127 + 3.46672i −0.307151 + 0.175096i
\(393\) 0 0
\(394\) 3.44828 + 5.97260i 0.173722 + 0.300895i
\(395\) −0.0669375 + 0.00392358i −0.00336799 + 0.000197416i
\(396\) 0 0
\(397\) 1.89421 3.28087i 0.0950678 0.164662i −0.814569 0.580067i \(-0.803027\pi\)
0.909637 + 0.415404i \(0.136360\pi\)
\(398\) −14.5256 8.38638i −0.728104 0.420371i
\(399\) 0 0
\(400\) −1.97699 + 4.59255i −0.0988497 + 0.229627i
\(401\) 11.5838i 0.578470i 0.957258 + 0.289235i \(0.0934009\pi\)
−0.957258 + 0.289235i \(0.906599\pi\)
\(402\) 0 0
\(403\) 14.3200i 0.713332i
\(404\) −5.44619 + 9.43308i −0.270958 + 0.469313i
\(405\) 0 0
\(406\) −5.47580 20.6623i −0.271759 1.02545i
\(407\) −1.82234 + 3.15639i −0.0903301 + 0.156456i
\(408\) 0 0
\(409\) 26.2151 + 15.1353i 1.29625 + 0.748393i 0.979755 0.200200i \(-0.0641591\pi\)
0.316500 + 0.948593i \(0.397492\pi\)
\(410\) −11.8065 17.9364i −0.583080 0.885815i
\(411\) 0 0
\(412\) 0.292115 0.505958i 0.0143915 0.0249268i
\(413\) 4.86886 17.9736i 0.239581 0.884424i
\(414\) 0 0
\(415\) −14.8753 + 9.79154i −0.730200 + 0.480648i
\(416\) −4.06173 −0.199143
\(417\) 0 0
\(418\) −13.0058 −0.636135
\(419\) −10.7319 18.5882i −0.524287 0.908091i −0.999600 0.0282749i \(-0.990999\pi\)
0.475313 0.879817i \(-0.342335\pi\)
\(420\) 0 0
\(421\) −12.8685 + 22.2889i −0.627173 + 1.08630i 0.360943 + 0.932588i \(0.382455\pi\)
−0.988116 + 0.153708i \(0.950878\pi\)
\(422\) −2.37689 + 4.11690i −0.115705 + 0.200408i
\(423\) 0 0
\(424\) −5.71305 9.89529i −0.277450 0.480558i
\(425\) −24.2418 10.4356i −1.17590 0.506199i
\(426\) 0 0
\(427\) −21.0539 + 20.9388i −1.01887 + 1.01330i
\(428\) 1.34287 + 2.32592i 0.0649101 + 0.112428i
\(429\) 0 0
\(430\) 10.2444 + 5.14020i 0.494031 + 0.247882i
\(431\) −1.05463 + 0.608890i −0.0507997 + 0.0293292i −0.525185 0.850988i \(-0.676004\pi\)
0.474385 + 0.880317i \(0.342670\pi\)
\(432\) 0 0
\(433\) −6.29897 −0.302709 −0.151355 0.988480i \(-0.548364\pi\)
−0.151355 + 0.988480i \(0.548364\pi\)
\(434\) 2.38952 + 9.01660i 0.114701 + 0.432811i
\(435\) 0 0
\(436\) 1.23636 0.0592109
\(437\) 15.0618 + 8.69591i 0.720502 + 0.415982i
\(438\) 0 0
\(439\) 31.5109 18.1928i 1.50393 0.868296i 0.503944 0.863736i \(-0.331882\pi\)
0.999990 0.00456010i \(-0.00145153\pi\)
\(440\) −7.16981 3.59749i −0.341807 0.171503i
\(441\) 0 0
\(442\) 21.4399i 1.01979i
\(443\) −5.77669 10.0055i −0.274459 0.475376i 0.695540 0.718488i \(-0.255165\pi\)
−0.969998 + 0.243111i \(0.921832\pi\)
\(444\) 0 0
\(445\) 1.53682 + 2.33474i 0.0728523 + 0.110677i
\(446\) −16.7486 −0.793072
\(447\) 0 0
\(448\) −2.55747 + 0.677764i −0.120829 + 0.0320213i
\(449\) 8.35607i 0.394347i −0.980369 0.197174i \(-0.936824\pi\)
0.980369 0.197174i \(-0.0631763\pi\)
\(450\) 0 0
\(451\) 29.8352 17.2254i 1.40489 0.811111i
\(452\) 10.8269 0.509256
\(453\) 0 0
\(454\) −5.49698 + 3.17368i −0.257986 + 0.148948i
\(455\) 22.8277 7.50428i 1.07018 0.351806i
\(456\) 0 0
\(457\) −3.26626 + 1.88578i −0.152789 + 0.0882129i −0.574445 0.818543i \(-0.694782\pi\)
0.421656 + 0.906756i \(0.361449\pi\)
\(458\) −3.78920 + 2.18769i −0.177058 + 0.102224i
\(459\) 0 0
\(460\) 5.89787 + 8.96004i 0.274990 + 0.417764i
\(461\) −1.39131 + 2.40982i −0.0647998 + 0.112237i −0.896605 0.442831i \(-0.853974\pi\)
0.831805 + 0.555067i \(0.187308\pi\)
\(462\) 0 0
\(463\) −9.52910 + 5.50163i −0.442855 + 0.255682i −0.704808 0.709398i \(-0.748967\pi\)
0.261953 + 0.965081i \(0.415633\pi\)
\(464\) 8.07921i 0.375068i
\(465\) 0 0
\(466\) −24.4846 −1.13423
\(467\) −16.4814 9.51552i −0.762667 0.440326i 0.0675856 0.997713i \(-0.478470\pi\)
−0.830252 + 0.557388i \(0.811804\pi\)
\(468\) 0 0
\(469\) −17.8642 4.83923i −0.824894 0.223455i
\(470\) 21.4817 14.1402i 0.990878 0.652237i
\(471\) 0 0
\(472\) 3.51911 6.09528i 0.161980 0.280558i
\(473\) −9.19425 + 15.9249i −0.422752 + 0.732228i
\(474\) 0 0
\(475\) −2.11776 18.0028i −0.0971696 0.826026i
\(476\) −3.57758 13.4996i −0.163978 0.618753i
\(477\) 0 0
\(478\) −2.10722 1.21660i −0.0963820 0.0556462i
\(479\) −0.292336 −0.0133572 −0.00667858 0.999978i \(-0.502126\pi\)
−0.00667858 + 0.999978i \(0.502126\pi\)
\(480\) 0 0
\(481\) 4.12656i 0.188155i
\(482\) 1.82213 1.05201i 0.0829960 0.0479177i
\(483\) 0 0
\(484\) 0.934810 1.61914i 0.0424913 0.0735972i
\(485\) −11.5473 17.5426i −0.524336 0.796570i
\(486\) 0 0
\(487\) 17.4211 10.0581i 0.789425 0.455775i −0.0503353 0.998732i \(-0.516029\pi\)
0.839760 + 0.542958i \(0.182696\pi\)
\(488\) −9.71945 + 5.61153i −0.439979 + 0.254022i
\(489\) 0 0
\(490\) 13.1212 8.53423i 0.592757 0.385537i
\(491\) 0.00977625 0.00564432i 0.000441196 0.000254725i −0.499779 0.866153i \(-0.666586\pi\)
0.500221 + 0.865898i \(0.333252\pi\)
\(492\) 0 0
\(493\) 42.6461 1.92069
\(494\) 12.7525 7.36268i 0.573764 0.331263i
\(495\) 0 0
\(496\) 3.52560i 0.158304i
\(497\) −0.561650 2.11933i −0.0251935 0.0950647i
\(498\) 0 0
\(499\) 10.8608 0.486194 0.243097 0.970002i \(-0.421837\pi\)
0.243097 + 0.970002i \(0.421837\pi\)
\(500\) 3.81221 10.5103i 0.170487 0.470036i
\(501\) 0 0
\(502\) 9.66713 + 16.7440i 0.431465 + 0.747320i
\(503\) 32.7910i 1.46208i 0.682335 + 0.731040i \(0.260965\pi\)
−0.682335 + 0.731040i \(0.739035\pi\)
\(504\) 0 0
\(505\) 10.9229 21.7695i 0.486064 0.968728i
\(506\) −14.9040 + 8.60485i −0.662566 + 0.382532i
\(507\) 0 0
\(508\) −4.29497 2.47970i −0.190558 0.110019i
\(509\) 11.8056 0.523273 0.261637 0.965166i \(-0.415738\pi\)
0.261637 + 0.965166i \(0.415738\pi\)
\(510\) 0 0
\(511\) 13.1070 + 13.1790i 0.579818 + 0.583005i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 22.4822 12.9801i 0.991647 0.572528i
\(515\) −0.585869 + 1.16764i −0.0258165 + 0.0514524i
\(516\) 0 0
\(517\) 20.6302 + 35.7325i 0.907313 + 1.57151i
\(518\) −0.688581 2.59828i −0.0302545 0.114162i
\(519\) 0 0
\(520\) 9.06675 0.531452i 0.397603 0.0233057i
\(521\) 8.58074 + 14.8623i 0.375929 + 0.651128i 0.990466 0.137760i \(-0.0439904\pi\)
−0.614537 + 0.788888i \(0.710657\pi\)
\(522\) 0 0
\(523\) −19.0538 + 33.0022i −0.833166 + 1.44309i 0.0623491 + 0.998054i \(0.480141\pi\)
−0.895515 + 0.445031i \(0.853193\pi\)
\(524\) −4.64103 + 8.03850i −0.202744 + 0.351163i
\(525\) 0 0
\(526\) 3.89109 + 6.73957i 0.169660 + 0.293859i
\(527\) −18.6099 −0.810659
\(528\) 0 0
\(529\) 0.0134258 0.000583730
\(530\) 14.0476 + 21.3411i 0.610189 + 0.926998i
\(531\) 0 0
\(532\) 6.80105 6.76387i 0.294863 0.293251i
\(533\) −19.5028 + 33.7799i −0.844760 + 1.46317i
\(534\) 0 0
\(535\) −3.30194 5.01630i −0.142755 0.216873i
\(536\) −6.05819 3.49770i −0.261674 0.151078i
\(537\) 0 0
\(538\) 9.76085 16.9063i 0.420820 0.728882i
\(539\) 12.4366 + 21.8161i 0.535682 + 0.939686i
\(540\) 0 0
\(541\) 11.5592 20.0210i 0.496967 0.860772i −0.503027 0.864271i \(-0.667780\pi\)
0.999994 + 0.00349884i \(0.00111372\pi\)
\(542\) 0.144637i 0.00621271i
\(543\) 0 0
\(544\) 5.27850i 0.226314i
\(545\) −2.75985 + 0.161770i −0.118219 + 0.00692945i
\(546\) 0 0
\(547\) 0.301039 + 0.173805i 0.0128715 + 0.00743136i 0.506422 0.862286i \(-0.330968\pi\)
−0.493550 + 0.869717i \(0.664301\pi\)
\(548\) −0.00306228 + 0.00530403i −0.000130814 + 0.000226577i
\(549\) 0 0
\(550\) 16.4754 + 7.09232i 0.702514 + 0.302417i
\(551\) 14.6451 + 25.3661i 0.623904 + 1.08063i
\(552\) 0 0
\(553\) 0.0559461 + 0.0562536i 0.00237907 + 0.00239215i
\(554\) 22.2251 12.8317i 0.944255 0.545166i
\(555\) 0 0
\(556\) 8.45875i 0.358731i
\(557\) −22.4182 38.8295i −0.949891 1.64526i −0.745649 0.666339i \(-0.767860\pi\)
−0.204242 0.978920i \(-0.565473\pi\)
\(558\) 0 0
\(559\) 20.8197i 0.880580i
\(560\) 5.62019 1.84756i 0.237496 0.0780735i
\(561\) 0 0
\(562\) 18.8108i 0.793487i
\(563\) 21.3503 + 12.3266i 0.899808 + 0.519504i 0.877138 0.480239i \(-0.159450\pi\)
0.0226699 + 0.999743i \(0.492783\pi\)
\(564\) 0 0
\(565\) −24.1683 + 1.41663i −1.01677 + 0.0595983i
\(566\) 30.3966 1.27766
\(567\) 0 0
\(568\) 0.828681i 0.0347707i
\(569\) 32.5085 18.7688i 1.36283 0.786829i 0.372829 0.927900i \(-0.378388\pi\)
0.989999 + 0.141071i \(0.0450546\pi\)
\(570\) 0 0
\(571\) 4.68412 8.11314i 0.196024 0.339524i −0.751211 0.660062i \(-0.770530\pi\)
0.947236 + 0.320537i \(0.103864\pi\)
\(572\) 14.5712i 0.609251i
\(573\) 0 0
\(574\) −6.64323 + 24.5238i −0.277283 + 1.02360i
\(575\) −14.3378 19.2292i −0.597928 0.801914i
\(576\) 0 0
\(577\) −3.63671 6.29897i −0.151398 0.262230i 0.780343 0.625351i \(-0.215044\pi\)
−0.931742 + 0.363122i \(0.881711\pi\)
\(578\) 10.8626 0.451823
\(579\) 0 0
\(580\) 1.05711 + 18.0347i 0.0438942 + 0.748851i
\(581\) 20.3385 + 5.50947i 0.843783 + 0.228571i
\(582\) 0 0
\(583\) −35.4986 + 20.4951i −1.47020 + 0.848821i
\(584\) 3.51263 + 6.08405i 0.145353 + 0.251760i
\(585\) 0 0
\(586\) −24.1090 13.9193i −0.995933 0.575002i
\(587\) 2.08437 + 1.20341i 0.0860313 + 0.0496702i 0.542398 0.840121i \(-0.317516\pi\)
−0.456367 + 0.889792i \(0.650850\pi\)
\(588\) 0 0
\(589\) −6.39083 11.0692i −0.263330 0.456100i
\(590\) −7.05797 + 14.0666i −0.290572 + 0.579112i
\(591\) 0 0
\(592\) 1.01596i 0.0417557i
\(593\) 33.2409 + 19.1916i 1.36504 + 0.788106i 0.990290 0.139019i \(-0.0443950\pi\)
0.374751 + 0.927126i \(0.377728\pi\)
\(594\) 0 0
\(595\) 9.75233 + 29.6662i 0.399807 + 1.21619i
\(596\) −15.0057 8.66353i −0.614656 0.354872i
\(597\) 0 0
\(598\) 9.74254 16.8746i 0.398402 0.690053i
\(599\) −15.8468 9.14917i −0.647484 0.373825i 0.140008 0.990150i \(-0.455287\pi\)
−0.787491 + 0.616326i \(0.788621\pi\)
\(600\) 0 0
\(601\) −20.5159 11.8449i −0.836862 0.483163i 0.0193342 0.999813i \(-0.493845\pi\)
−0.856196 + 0.516650i \(0.827179\pi\)
\(602\) −3.47409 13.1091i −0.141594 0.534288i
\(603\) 0 0
\(604\) 2.82204 4.88791i 0.114827 0.198886i
\(605\) −1.87486 + 3.73661i −0.0762240 + 0.151915i
\(606\) 0 0
\(607\) 2.40225 0.0975043 0.0487522 0.998811i \(-0.484476\pi\)
0.0487522 + 0.998811i \(0.484476\pi\)
\(608\) 3.13968 1.81269i 0.127331 0.0735145i
\(609\) 0 0
\(610\) 20.9619 13.7980i 0.848722 0.558664i
\(611\) −40.4568 23.3578i −1.63671 0.944954i
\(612\) 0 0
\(613\) 32.4221 18.7189i 1.30951 0.756049i 0.327500 0.944851i \(-0.393794\pi\)
0.982015 + 0.188803i \(0.0604606\pi\)
\(614\) −14.5982 25.2848i −0.589134 1.02041i
\(615\) 0 0
\(616\) 2.43143 + 9.17472i 0.0979650 + 0.369660i
\(617\) 19.7702 + 34.2430i 0.795918 + 1.37857i 0.922255 + 0.386582i \(0.126345\pi\)
−0.126337 + 0.991987i \(0.540322\pi\)
\(618\) 0 0
\(619\) 5.49230i 0.220754i −0.993890 0.110377i \(-0.964794\pi\)
0.993890 0.110377i \(-0.0352059\pi\)
\(620\) −0.461302 7.86997i −0.0185263 0.316065i
\(621\) 0 0
\(622\) 1.53984 0.0617418
\(623\) 0.864734 3.19221i 0.0346448 0.127893i
\(624\) 0 0
\(625\) −7.13455 + 23.9603i −0.285382 + 0.958414i
\(626\) −4.50101 + 7.79598i −0.179896 + 0.311590i
\(627\) 0 0
\(628\) 3.24346 + 5.61784i 0.129428 + 0.224176i
\(629\) 5.36275 0.213827
\(630\) 0 0
\(631\) −9.72111 −0.386991 −0.193496 0.981101i \(-0.561983\pi\)
−0.193496 + 0.981101i \(0.561983\pi\)
\(632\) 0.0149934 + 0.0259693i 0.000596405 + 0.00103300i
\(633\) 0 0
\(634\) −8.62883 + 14.9456i −0.342695 + 0.593565i
\(635\) 9.91184 + 4.97331i 0.393339 + 0.197360i
\(636\) 0 0
\(637\) −24.5447 14.3508i −0.972495 0.568601i
\(638\) −28.9836 −1.14747
\(639\) 0 0
\(640\) 2.23224 0.130844i 0.0882369 0.00517205i
\(641\) 32.2864i 1.27524i 0.770352 + 0.637619i \(0.220080\pi\)
−0.770352 + 0.637619i \(0.779920\pi\)
\(642\) 0 0
\(643\) 14.1941 + 24.5848i 0.559759 + 0.969532i 0.997516 + 0.0704382i \(0.0224398\pi\)
−0.437757 + 0.899093i \(0.644227\pi\)
\(644\) 3.31859 12.2508i 0.130771 0.482747i
\(645\) 0 0
\(646\) 9.56831 + 16.5728i 0.376460 + 0.652048i
\(647\) 3.35941 1.93956i 0.132072 0.0762519i −0.432508 0.901630i \(-0.642371\pi\)
0.564580 + 0.825378i \(0.309038\pi\)
\(648\) 0 0
\(649\) −21.8664 12.6246i −0.858330 0.495557i
\(650\) −20.1696 + 2.37265i −0.791117 + 0.0930631i
\(651\) 0 0
\(652\) 4.53833 2.62021i 0.177735 0.102615i
\(653\) −21.1893 −0.829203 −0.414602 0.910003i \(-0.636079\pi\)
−0.414602 + 0.910003i \(0.636079\pi\)
\(654\) 0 0
\(655\) 9.30809 18.5511i 0.363697 0.724850i
\(656\) −4.80160 + 8.31661i −0.187471 + 0.324709i
\(657\) 0 0
\(658\) −29.3712 7.95634i −1.14501 0.310170i
\(659\) −3.78622 2.18598i −0.147490 0.0851535i 0.424439 0.905457i \(-0.360471\pi\)
−0.571929 + 0.820303i \(0.693805\pi\)
\(660\) 0 0
\(661\) −18.8326 10.8730i −0.732502 0.422910i 0.0868348 0.996223i \(-0.472325\pi\)
−0.819337 + 0.573313i \(0.805658\pi\)
\(662\) 14.5091 25.1305i 0.563912 0.976725i
\(663\) 0 0
\(664\) 6.89727 + 3.98214i 0.267666 + 0.154537i
\(665\) −14.2965 + 15.9884i −0.554396 + 0.620004i
\(666\) 0 0
\(667\) 33.5653 + 19.3789i 1.29965 + 0.750355i
\(668\) 21.8085i 0.843797i
\(669\) 0 0
\(670\) 13.9810 + 7.01502i 0.540132 + 0.271014i
\(671\) 20.1309 + 34.8678i 0.777146 + 1.34606i
\(672\) 0 0
\(673\) −33.8278 19.5305i −1.30397 0.752845i −0.322884 0.946439i \(-0.604652\pi\)
−0.981082 + 0.193594i \(0.937986\pi\)
\(674\) 0.776124 + 0.448095i 0.0298952 + 0.0172600i
\(675\) 0 0
\(676\) −1.74884 3.02908i −0.0672632 0.116503i
\(677\) −9.30687 + 5.37333i −0.357692 + 0.206514i −0.668068 0.744100i \(-0.732878\pi\)
0.310376 + 0.950614i \(0.399545\pi\)
\(678\) 0 0
\(679\) −6.49739 + 23.9854i −0.249347 + 0.920477i
\(680\) 0.690658 + 11.7829i 0.0264855 + 0.451852i
\(681\) 0 0
\(682\) 12.6478 0.484310
\(683\) 6.84384 + 11.8539i 0.261872 + 0.453576i 0.966739 0.255763i \(-0.0823267\pi\)
−0.704867 + 0.709339i \(0.748993\pi\)
\(684\) 0 0
\(685\) 0.00614174 0.0122405i 0.000234664 0.000467686i
\(686\) −17.8492 4.94033i −0.681485 0.188623i
\(687\) 0 0
\(688\) 5.12582i 0.195420i
\(689\) 23.2049 40.1920i 0.884035 1.53119i
\(690\) 0 0
\(691\) 24.3356 14.0502i 0.925769 0.534493i 0.0402982 0.999188i \(-0.487169\pi\)
0.885471 + 0.464695i \(0.153836\pi\)
\(692\) 21.6843i 0.824314i
\(693\) 0 0
\(694\) 34.3492 1.30388
\(695\) −1.10677 18.8819i −0.0419823 0.716233i
\(696\) 0 0
\(697\) −43.8992 25.3452i −1.66280 0.960019i
\(698\) 2.25436i 0.0853288i
\(699\) 0 0
\(700\) −12.3039 + 4.85955i −0.465042 + 0.183674i
\(701\) 47.4955i 1.79388i 0.442151 + 0.896941i \(0.354216\pi\)
−0.442151 + 0.896941i \(0.645784\pi\)
\(702\) 0 0
\(703\) 1.84163 + 3.18979i 0.0694582 + 0.120305i
\(704\) 3.58743i 0.135206i
\(705\) 0 0
\(706\) −5.09123 + 2.93942i −0.191611 + 0.110627i
\(707\) −27.8569 + 7.38246i −1.04767 + 0.277646i
\(708\) 0 0
\(709\) 16.2728 + 28.1853i 0.611137 + 1.05852i 0.991049 + 0.133498i \(0.0426209\pi\)
−0.379912 + 0.925023i \(0.624046\pi\)
\(710\) 0.108428 + 1.84981i 0.00406922 + 0.0694222i
\(711\) 0 0
\(712\) 0.625013 1.08255i 0.0234233 0.0405704i
\(713\) −14.6472 8.45655i −0.548541 0.316700i
\(714\) 0 0
\(715\) −1.90654 32.5263i −0.0713007 1.21641i
\(716\) 17.4524i 0.652227i
\(717\) 0 0
\(718\) 6.82808i 0.254822i
\(719\) 1.35013 2.33850i 0.0503515 0.0872114i −0.839751 0.542971i \(-0.817299\pi\)
0.890103 + 0.455760i \(0.150633\pi\)
\(720\) 0 0
\(721\) 1.49415 0.395970i 0.0556450 0.0147467i
\(722\) 2.92828 5.07193i 0.108979 0.188758i
\(723\) 0 0
\(724\) −20.8271 12.0245i −0.774033 0.446888i
\(725\) −4.71945 40.1194i −0.175276 1.49000i
\(726\) 0 0
\(727\) −13.0226 + 22.5558i −0.482982 + 0.836549i −0.999809 0.0195409i \(-0.993780\pi\)
0.516827 + 0.856090i \(0.327113\pi\)
\(728\) −7.57795 7.61961i −0.280858 0.282401i
\(729\) 0 0
\(730\) −8.63707 13.1214i −0.319672 0.485646i
\(731\) 27.0566 1.00073
\(732\) 0 0
\(733\) −19.4544 −0.718564 −0.359282 0.933229i \(-0.616978\pi\)
−0.359282 + 0.933229i \(0.616978\pi\)
\(734\) −0.284464 0.492706i −0.0104998 0.0181861i
\(735\) 0 0
\(736\) 2.39862 4.15452i 0.0884141 0.153138i
\(737\) −12.5477 + 21.7333i −0.462202 + 0.800557i
\(738\) 0 0
\(739\) 5.50909 + 9.54203i 0.202655 + 0.351009i 0.949383 0.314120i \(-0.101710\pi\)
−0.746728 + 0.665130i \(0.768376\pi\)
\(740\) 0.132932 + 2.26786i 0.00488667 + 0.0833683i
\(741\) 0 0
\(742\) 7.90426 29.1790i 0.290175 1.07119i
\(743\) 7.57857 + 13.1265i 0.278031 + 0.481563i 0.970895 0.239504i \(-0.0769850\pi\)
−0.692865 + 0.721068i \(0.743652\pi\)
\(744\) 0 0
\(745\) 34.6298 + 17.3756i 1.26874 + 0.636594i
\(746\) 6.58348 3.80098i 0.241039 0.139164i
\(747\) 0 0
\(748\) −18.9362 −0.692377
\(749\) −1.85792 + 6.85861i −0.0678870 + 0.250608i
\(750\) 0 0
\(751\) 15.5951 0.569072 0.284536 0.958665i \(-0.408160\pi\)
0.284536 + 0.958665i \(0.408160\pi\)
\(752\) −9.96048 5.75069i −0.363221 0.209706i
\(753\) 0 0
\(754\) 28.4192 16.4078i 1.03496 0.597537i
\(755\) −5.65990 + 11.2802i −0.205985 + 0.410529i
\(756\) 0 0
\(757\) 2.00202i 0.0727648i 0.999338 + 0.0363824i \(0.0115834\pi\)
−0.999338 + 0.0363824i \(0.988417\pi\)
\(758\) −18.9949 32.9001i −0.689924 1.19498i
\(759\) 0 0
\(760\) −6.77133 + 4.45717i −0.245622 + 0.161679i
\(761\) 16.9221 0.613424 0.306712 0.951802i \(-0.400771\pi\)
0.306712 + 0.951802i \(0.400771\pi\)
\(762\) 0 0
\(763\) 2.30667 + 2.31935i 0.0835070 + 0.0839660i
\(764\) 3.22636i 0.116726i
\(765\) 0 0
\(766\) −10.4289 + 6.02112i −0.376811 + 0.217552i
\(767\) 28.5874 1.03223
\(768\) 0 0
\(769\) −10.5316 + 6.08042i −0.379779 + 0.219265i −0.677722 0.735318i \(-0.737033\pi\)
0.297943 + 0.954584i \(0.403699\pi\)
\(770\) −6.62797 20.1620i −0.238856 0.726588i
\(771\) 0 0
\(772\) 20.9812 12.1135i 0.755132 0.435975i
\(773\) −19.6768 + 11.3604i −0.707726 + 0.408606i −0.810219 0.586128i \(-0.800652\pi\)
0.102492 + 0.994734i \(0.467318\pi\)
\(774\) 0 0
\(775\) 2.05947 + 17.5073i 0.0739783 + 0.628880i
\(776\) −4.69619 + 8.13404i −0.168583 + 0.291995i
\(777\) 0 0
\(778\) 9.93198 5.73423i 0.356079 0.205582i
\(779\) 34.8153i 1.24739i
\(780\) 0 0
\(781\) −2.97283 −0.106376
\(782\) 21.9297 + 12.6611i 0.784203 + 0.452760i
\(783\) 0 0
\(784\) −6.04290 3.53318i −0.215818 0.126185i
\(785\) −7.97524 12.1160i −0.284648 0.432437i
\(786\) 0 0
\(787\) −14.1585 + 24.5232i −0.504695 + 0.874157i 0.495291 + 0.868727i \(0.335062\pi\)
−0.999985 + 0.00542948i \(0.998272\pi\)
\(788\) −3.44828 + 5.97260i −0.122840 + 0.212765i
\(789\) 0 0
\(790\) −0.0368667 0.0560078i −0.00131166 0.00199267i
\(791\) 20.1997 + 20.3108i 0.718220 + 0.722168i
\(792\) 0 0
\(793\) −39.4778 22.7925i −1.40190 0.809387i
\(794\) 3.78842 0.134446
\(795\) 0 0
\(796\) 16.7728i 0.594494i
\(797\) −2.25578 + 1.30238i −0.0799040 + 0.0461326i −0.539420 0.842037i \(-0.681356\pi\)
0.459516 + 0.888170i \(0.348023\pi\)
\(798\) 0 0
\(799\) 30.3550 52.5764i 1.07388 1.86002i
\(800\) −4.96576 + 0.584148i −0.175566 + 0.0206527i
\(801\) 0 0
\(802\) −10.0319 + 5.79192i −0.354239 + 0.204520i
\(803\) 21.8261 12.6013i 0.770225 0.444690i
\(804\) 0 0
\(805\) −5.80496 + 27.7808i −0.204598 + 0.979144i
\(806\) −12.4015 + 7.16002i −0.436825 + 0.252201i
\(807\) 0 0
\(808\) −10.8924 −0.383193
\(809\) −21.2398 + 12.2628i −0.746751 + 0.431137i −0.824519 0.565835i \(-0.808554\pi\)
0.0777677 + 0.996972i \(0.475221\pi\)
\(810\) 0 0
\(811\) 9.73361i 0.341793i −0.985289 0.170897i \(-0.945334\pi\)
0.985289 0.170897i \(-0.0546664\pi\)
\(812\) 15.1562 15.0733i 0.531878 0.528971i
\(813\) 0 0
\(814\) −3.64468 −0.127746
\(815\) −9.78779 + 6.44273i −0.342851 + 0.225679i
\(816\) 0 0
\(817\) 9.29155 + 16.0934i 0.325070 + 0.563038i
\(818\) 30.2706i 1.05839i
\(819\) 0 0
\(820\) 9.63012 19.1929i 0.336298 0.670245i
\(821\) 1.76920 1.02145i 0.0617456 0.0356488i −0.468809 0.883299i \(-0.655317\pi\)
0.530555 + 0.847651i \(0.321984\pi\)
\(822\) 0 0
\(823\) −11.3113 6.53059i −0.394287 0.227642i 0.289729 0.957109i \(-0.406435\pi\)
−0.684016 + 0.729467i \(0.739768\pi\)
\(824\) 0.584230 0.0203526
\(825\) 0 0
\(826\) 18.0000 4.77026i 0.626301 0.165978i
\(827\) 18.5995 0.646767 0.323384 0.946268i \(-0.395180\pi\)
0.323384 + 0.946268i \(0.395180\pi\)
\(828\) 0 0
\(829\) −26.4337 + 15.2615i −0.918080 + 0.530053i −0.883022 0.469332i \(-0.844495\pi\)
−0.0350576 + 0.999385i \(0.511161\pi\)
\(830\) −15.9174 7.98661i −0.552500 0.277219i
\(831\) 0 0
\(832\) −2.03087 3.51756i −0.0704076 0.121950i
\(833\) 18.6499 31.8975i 0.646180 1.10518i
\(834\) 0 0
\(835\) 2.85350 + 48.6818i 0.0987496 + 1.68470i
\(836\) −6.50291 11.2634i −0.224908 0.389552i
\(837\) 0 0
\(838\) 10.7319 18.5882i 0.370727 0.642118i
\(839\) −6.88932 + 11.9327i −0.237846 + 0.411961i −0.960096 0.279671i \(-0.909775\pi\)
0.722250 + 0.691632i \(0.243108\pi\)
\(840\) 0 0
\(841\) 18.1368 + 31.4139i 0.625408 + 1.08324i
\(842\) −25.7370 −0.886957
\(843\) 0 0
\(844\) −4.75379 −0.163632
\(845\) 4.30017 + 6.53281i 0.147930 + 0.224735i
\(846\) 0 0
\(847\) 4.78149 1.26716i 0.164294 0.0435401i
\(848\) 5.71305 9.89529i 0.196187 0.339806i
\(849\) 0 0
\(850\) −3.08342 26.2118i −0.105761 0.899056i
\(851\) 4.22083 + 2.43690i 0.144688 + 0.0835358i
\(852\) 0 0
\(853\) 2.66904 4.62291i 0.0913862 0.158286i −0.816708 0.577051i \(-0.804204\pi\)
0.908095 + 0.418765i \(0.137537\pi\)
\(854\) −28.6605 7.76380i −0.980741 0.265672i
\(855\) 0 0
\(856\) −1.34287 + 2.32592i −0.0458984 + 0.0794983i
\(857\) 37.1702i 1.26971i 0.772631 + 0.634856i \(0.218940\pi\)
−0.772631 + 0.634856i \(0.781060\pi\)
\(858\) 0 0
\(859\) 38.9189i 1.32790i 0.747778 + 0.663949i \(0.231121\pi\)
−0.747778 + 0.663949i \(0.768879\pi\)
\(860\) 0.670681 + 11.4420i 0.0228700 + 0.390170i
\(861\) 0 0
\(862\) −1.05463 0.608890i −0.0359208 0.0207389i
\(863\) −2.48936 + 4.31171i −0.0847390 + 0.146772i −0.905280 0.424816i \(-0.860339\pi\)
0.820541 + 0.571588i \(0.193672\pi\)
\(864\) 0 0
\(865\) 2.83725 + 48.4045i 0.0964695 + 1.64580i
\(866\) −3.14949 5.45507i −0.107024 0.185371i
\(867\) 0 0
\(868\) −6.61384 + 6.57769i −0.224488 + 0.223261i
\(869\) 0.0931629 0.0537876i 0.00316034 0.00182462i
\(870\) 0 0
\(871\) 28.4134i 0.962753i
\(872\) 0.618180 + 1.07072i 0.0209342 + 0.0362591i
\(873\) 0 0
\(874\) 17.3918i 0.588287i
\(875\) 26.8293 12.4575i 0.906995 0.421142i
\(876\) 0 0
\(877\) 45.8645i 1.54873i −0.632737 0.774367i \(-0.718068\pi\)
0.632737 0.774367i \(-0.281932\pi\)
\(878\) 31.5109 + 18.1928i 1.06344 + 0.613978i
\(879\) 0 0
\(880\) −0.469392 8.00798i −0.0158232 0.269949i
\(881\) 4.17555 0.140678 0.0703390 0.997523i \(-0.477592\pi\)
0.0703390 + 0.997523i \(0.477592\pi\)
\(882\) 0 0
\(883\) 9.11973i 0.306903i 0.988156 + 0.153452i \(0.0490390\pi\)
−0.988156 + 0.153452i \(0.950961\pi\)
\(884\) 18.5675 10.7199i 0.624492 0.360550i
\(885\) 0 0
\(886\) 5.77669 10.0055i 0.194072 0.336142i
\(887\) 7.55966i 0.253828i −0.991914 0.126914i \(-0.959493\pi\)
0.991914 0.126914i \(-0.0405073\pi\)
\(888\) 0 0
\(889\) −3.36130 12.6835i −0.112734 0.425391i
\(890\) −1.25353 + 2.49830i −0.0420185 + 0.0837430i
\(891\) 0 0
\(892\) −8.37432 14.5048i −0.280393 0.485655i
\(893\) 41.6970 1.39534
\(894\) 0 0
\(895\) −2.28353 38.9579i −0.0763301 1.30222i
\(896\) −1.86569 1.87595i −0.0623285 0.0626711i
\(897\) 0 0
\(898\) 7.23657 4.17804i 0.241488 0.139423i
\(899\) −14.2420 24.6679i −0.474998 0.822721i
\(900\) 0 0
\(901\) 52.2323 + 30.1563i 1.74011 + 1.00465i
\(902\) 29.8352 + 17.2254i 0.993404 + 0.573542i
\(903\) 0 0
\(904\) 5.41347 + 9.37640i 0.180049 + 0.311854i
\(905\) 48.0643 + 24.1165i 1.59771 + 0.801660i
\(906\) 0 0
\(907\) 16.8607i 0.559852i 0.960022 + 0.279926i \(0.0903099\pi\)
−0.960022 + 0.279926i \(0.909690\pi\)
\(908\) −5.49698 3.17368i −0.182424 0.105322i
\(909\) 0 0
\(910\) 17.9128 + 16.0172i 0.593802 + 0.530966i
\(911\) 4.64902 + 2.68411i 0.154029 + 0.0889286i 0.575033 0.818130i \(-0.304989\pi\)
−0.421005 + 0.907059i \(0.638322\pi\)
\(912\) 0 0
\(913\) 14.2856 24.7434i 0.472785 0.818888i
\(914\) −3.26626 1.88578i −0.108038 0.0623759i
\(915\) 0 0
\(916\) −3.78920 2.18769i −0.125199 0.0722834i
\(917\) −23.7386 + 6.29104i −0.783916 + 0.207748i
\(918\) 0 0
\(919\) −8.65286 + 14.9872i −0.285432 + 0.494382i −0.972714 0.232009i \(-0.925470\pi\)
0.687282 + 0.726390i \(0.258804\pi\)
\(920\) −4.81068 + 9.58772i −0.158604 + 0.316098i
\(921\) 0 0
\(922\) −2.78262 −0.0916408
\(923\) 2.91494 1.68294i 0.0959464 0.0553947i
\(924\) 0 0
\(925\) −0.593471 5.04501i −0.0195132 0.165879i
\(926\) −9.52910 5.50163i −0.313146 0.180795i
\(927\) 0 0
\(928\) 6.99680 4.03961i 0.229681 0.132607i
\(929\) −5.35042 9.26720i −0.175542 0.304047i 0.764807 0.644260i \(-0.222834\pi\)
−0.940349 + 0.340213i \(0.889501\pi\)
\(930\) 0 0
\(931\) 25.3773 + 0.139114i 0.831709 + 0.00455929i
\(932\) −12.2423 21.2043i −0.401010 0.694570i
\(933\) 0 0
\(934\) 19.0310i 0.622715i
\(935\) 42.2701 2.47768i 1.38238 0.0810289i
\(936\) 0 0
\(937\) 12.8760 0.420639 0.210320 0.977633i \(-0.432550\pi\)
0.210320 + 0.977633i \(0.432550\pi\)
\(938\) −4.74123 17.8905i −0.154807 0.584145i
\(939\) 0 0
\(940\) 22.9866 + 11.5336i 0.749740 + 0.376186i
\(941\) 16.8924 29.2584i 0.550675 0.953797i −0.447551 0.894258i \(-0.647704\pi\)
0.998226 0.0595386i \(-0.0189629\pi\)
\(942\) 0 0
\(943\) −23.0344 39.8967i −0.750102 1.29921i
\(944\) 7.03823 0.229075
\(945\) 0 0
\(946\) −18.3885 −0.597862
\(947\) −10.5933 18.3481i −0.344236 0.596235i 0.640978 0.767559i \(-0.278529\pi\)
−0.985215 + 0.171324i \(0.945195\pi\)
\(948\) 0 0
\(949\) −14.2674 + 24.7118i −0.463138 + 0.802178i
\(950\) 14.5320 10.8354i 0.471481 0.351548i
\(951\) 0 0
\(952\) 9.90220 9.84807i 0.320932 0.319178i
\(953\) 15.9394 0.516328 0.258164 0.966101i \(-0.416883\pi\)
0.258164 + 0.966101i \(0.416883\pi\)
\(954\) 0 0
\(955\) −0.422149 7.20200i −0.0136604 0.233051i
\(956\) 2.43321i 0.0786956i
\(957\) 0 0
\(958\) −0.146168 0.253170i −0.00472247 0.00817956i
\(959\) −0.0156634 + 0.00415101i −0.000505797 + 0.000134043i
\(960\) 0 0
\(961\) −9.28508 16.0822i −0.299519 0.518782i
\(962\) 3.57371 2.06328i 0.115221 0.0665228i
\(963\) 0 0
\(964\) 1.82213 + 1.05201i 0.0586870 + 0.0338830i
\(965\) −45.2501 + 29.7855i −1.45665 + 0.958830i
\(966\) 0 0
\(967\) 48.1802 27.8169i 1.54937 0.894530i 0.551182 0.834385i \(-0.314177\pi\)
0.998190 0.0601450i \(-0.0191563\pi\)
\(968\) 1.86962 0.0600918
\(969\) 0 0
\(970\) 9.41872 18.7716i 0.302417 0.602719i
\(971\) −28.9188 + 50.0888i −0.928047 + 1.60743i −0.141462 + 0.989944i \(0.545180\pi\)
−0.786586 + 0.617481i \(0.788153\pi\)
\(972\) 0 0
\(973\) −15.8682 + 15.7814i −0.508711 + 0.505930i
\(974\) 17.4211 + 10.0581i 0.558208 + 0.322281i
\(975\) 0 0
\(976\) −9.71945 5.61153i −0.311112 0.179621i
\(977\) −19.5402 + 33.8446i −0.625146 + 1.08278i 0.363366 + 0.931646i \(0.381627\pi\)
−0.988513 + 0.151139i \(0.951706\pi\)
\(978\) 0 0
\(979\) −3.88358 2.24219i −0.124120 0.0716606i
\(980\) 13.9515 + 7.09622i 0.445664 + 0.226680i
\(981\) 0 0
\(982\) 0.00977625 + 0.00564432i 0.000311973 + 0.000180118i
\(983\) 15.9657i 0.509228i 0.967043 + 0.254614i \(0.0819485\pi\)
−0.967043 + 0.254614i \(0.918052\pi\)
\(984\) 0 0
\(985\) 6.91590 13.7834i 0.220359 0.439177i
\(986\) 21.3231 + 36.9326i 0.679065 + 1.17617i
\(987\) 0 0
\(988\) 12.7525 + 7.36268i 0.405712 + 0.234238i
\(989\) 21.2953 + 12.2949i 0.677153 + 0.390954i
\(990\) 0 0
\(991\) 16.1342 + 27.9452i 0.512519 + 0.887709i 0.999895 + 0.0145163i \(0.00462085\pi\)
−0.487376 + 0.873192i \(0.662046\pi\)
\(992\) −3.05326 + 1.76280i −0.0969410 + 0.0559689i
\(993\) 0 0
\(994\) 1.55456 1.54607i 0.0493078 0.0490382i
\(995\) 2.19461 + 37.4407i 0.0695737 + 1.18695i
\(996\) 0 0
\(997\) −39.7139 −1.25775 −0.628877 0.777505i \(-0.716485\pi\)
−0.628877 + 0.777505i \(0.716485\pi\)
\(998\) 5.43038 + 9.40569i 0.171896 + 0.297732i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.r.b.89.16 48
3.2 odd 2 630.2.r.a.299.17 yes 48
5.4 even 2 1890.2.r.a.89.16 48
7.3 odd 6 1890.2.bi.a.899.8 48
9.4 even 3 630.2.bi.a.509.1 yes 48
9.5 odd 6 1890.2.bi.b.719.24 48
15.14 odd 2 630.2.r.b.299.8 yes 48
21.17 even 6 630.2.bi.b.479.24 yes 48
35.24 odd 6 1890.2.bi.b.899.24 48
45.4 even 6 630.2.bi.b.509.24 yes 48
45.14 odd 6 1890.2.bi.a.719.8 48
63.31 odd 6 630.2.r.b.59.8 yes 48
63.59 even 6 1890.2.r.a.1529.16 48
105.59 even 6 630.2.bi.a.479.1 yes 48
315.59 even 6 inner 1890.2.r.b.1529.16 48
315.94 odd 6 630.2.r.a.59.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.17 48 315.94 odd 6
630.2.r.a.299.17 yes 48 3.2 odd 2
630.2.r.b.59.8 yes 48 63.31 odd 6
630.2.r.b.299.8 yes 48 15.14 odd 2
630.2.bi.a.479.1 yes 48 105.59 even 6
630.2.bi.a.509.1 yes 48 9.4 even 3
630.2.bi.b.479.24 yes 48 21.17 even 6
630.2.bi.b.509.24 yes 48 45.4 even 6
1890.2.r.a.89.16 48 5.4 even 2
1890.2.r.a.1529.16 48 63.59 even 6
1890.2.r.b.89.16 48 1.1 even 1 trivial
1890.2.r.b.1529.16 48 315.59 even 6 inner
1890.2.bi.a.719.8 48 45.14 odd 6
1890.2.bi.a.899.8 48 7.3 odd 6
1890.2.bi.b.719.24 48 9.5 odd 6
1890.2.bi.b.899.24 48 35.24 odd 6