Properties

Label 1890.2.bi.a.899.8
Level $1890$
Weight $2$
Character 1890.899
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(719,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.719"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 899.8
Character \(\chi\) \(=\) 1890.899
Dual form 1890.2.bi.a.719.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-1.22943 - 1.86775i) q^{5} +(-0.691773 - 2.55371i) q^{7} -1.00000 q^{8} +(1.22943 + 1.86775i) q^{10} +(3.10680 - 1.79371i) q^{11} +(2.03087 + 3.51756i) q^{13} +(0.691773 + 2.55371i) q^{14} +1.00000 q^{16} +(4.57132 + 2.63925i) q^{17} +(3.13968 - 1.81269i) q^{19} +(-1.22943 - 1.86775i) q^{20} +(-3.10680 + 1.79371i) q^{22} +(-2.39862 + 4.15452i) q^{23} +(-1.97699 + 4.59255i) q^{25} +(-2.03087 - 3.51756i) q^{26} +(-0.691773 - 2.55371i) q^{28} +(6.99680 + 4.03961i) q^{29} -3.52560i q^{31} -1.00000 q^{32} +(-4.57132 - 2.63925i) q^{34} +(-3.91921 + 4.43168i) q^{35} +(-0.879847 + 0.507980i) q^{37} +(-3.13968 + 1.81269i) q^{38} +(1.22943 + 1.86775i) q^{40} +(4.80160 + 8.31661i) q^{41} +(4.43909 + 2.56291i) q^{43} +(3.10680 - 1.79371i) q^{44} +(2.39862 - 4.15452i) q^{46} -11.5014i q^{47} +(-6.04290 + 3.53318i) q^{49} +(1.97699 - 4.59255i) q^{50} +(2.03087 + 3.51756i) q^{52} +(5.71305 - 9.89529i) q^{53} +(-7.16981 - 3.59749i) q^{55} +(0.691773 + 2.55371i) q^{56} +(-6.99680 - 4.03961i) q^{58} -7.03823 q^{59} -11.2231i q^{61} +3.52560i q^{62} +1.00000 q^{64} +(4.07312 - 8.11776i) q^{65} -6.99540i q^{67} +(4.57132 + 2.63925i) q^{68} +(3.91921 - 4.43168i) q^{70} +0.828681i q^{71} +(3.51263 - 6.08405i) q^{73} +(0.879847 - 0.507980i) q^{74} +(3.13968 - 1.81269i) q^{76} +(-6.72983 - 6.69304i) q^{77} +0.0299868 q^{79} +(-1.22943 - 1.86775i) q^{80} +(-4.80160 - 8.31661i) q^{82} +(6.89727 + 3.98214i) q^{83} +(-0.690658 - 11.7829i) q^{85} +(-4.43909 - 2.56291i) q^{86} +(-3.10680 + 1.79371i) q^{88} +(0.625013 + 1.08255i) q^{89} +(7.57795 - 7.61961i) q^{91} +(-2.39862 + 4.15452i) q^{92} +11.5014i q^{94} +(-7.24569 - 3.63556i) q^{95} +(-4.69619 + 8.13404i) q^{97} +(6.04290 - 3.53318i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{2} + 48 q^{4} + 3 q^{7} - 48 q^{8} - 6 q^{11} - 3 q^{14} + 48 q^{16} + 6 q^{22} - 3 q^{23} - 18 q^{25} + 3 q^{28} + 3 q^{29} - 48 q^{32} + 12 q^{35} + 3 q^{41} - 6 q^{44} + 3 q^{46} + 3 q^{49}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.22943 1.86775i −0.549819 0.835284i
\(6\) 0 0
\(7\) −0.691773 2.55371i −0.261466 0.965213i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.22943 + 1.86775i 0.388781 + 0.590635i
\(11\) 3.10680 1.79371i 0.936736 0.540825i 0.0478002 0.998857i \(-0.484779\pi\)
0.888936 + 0.458032i \(0.151446\pi\)
\(12\) 0 0
\(13\) 2.03087 + 3.51756i 0.563261 + 0.975597i 0.997209 + 0.0746590i \(0.0237868\pi\)
−0.433948 + 0.900938i \(0.642880\pi\)
\(14\) 0.691773 + 2.55371i 0.184884 + 0.682509i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.57132 + 2.63925i 1.10871 + 0.640112i 0.938494 0.345295i \(-0.112221\pi\)
0.170213 + 0.985407i \(0.445555\pi\)
\(18\) 0 0
\(19\) 3.13968 1.81269i 0.720292 0.415861i −0.0945683 0.995518i \(-0.530147\pi\)
0.814860 + 0.579658i \(0.196814\pi\)
\(20\) −1.22943 1.86775i −0.274909 0.417642i
\(21\) 0 0
\(22\) −3.10680 + 1.79371i −0.662372 + 0.382421i
\(23\) −2.39862 + 4.15452i −0.500146 + 0.866278i 0.499854 + 0.866110i \(0.333387\pi\)
−1.00000 0.000168492i \(0.999946\pi\)
\(24\) 0 0
\(25\) −1.97699 + 4.59255i −0.395399 + 0.918510i
\(26\) −2.03087 3.51756i −0.398286 0.689851i
\(27\) 0 0
\(28\) −0.691773 2.55371i −0.130733 0.482606i
\(29\) 6.99680 + 4.03961i 1.29927 + 0.750136i 0.980279 0.197620i \(-0.0633213\pi\)
0.318995 + 0.947756i \(0.396655\pi\)
\(30\) 0 0
\(31\) 3.52560i 0.633216i −0.948556 0.316608i \(-0.897456\pi\)
0.948556 0.316608i \(-0.102544\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.57132 2.63925i −0.783974 0.452628i
\(35\) −3.91921 + 4.43168i −0.662468 + 0.749090i
\(36\) 0 0
\(37\) −0.879847 + 0.507980i −0.144646 + 0.0835114i −0.570576 0.821245i \(-0.693280\pi\)
0.425930 + 0.904756i \(0.359947\pi\)
\(38\) −3.13968 + 1.81269i −0.509323 + 0.294058i
\(39\) 0 0
\(40\) 1.22943 + 1.86775i 0.194390 + 0.295317i
\(41\) 4.80160 + 8.31661i 0.749883 + 1.29884i 0.947878 + 0.318633i \(0.103224\pi\)
−0.197995 + 0.980203i \(0.563443\pi\)
\(42\) 0 0
\(43\) 4.43909 + 2.56291i 0.676955 + 0.390840i 0.798707 0.601720i \(-0.205518\pi\)
−0.121752 + 0.992561i \(0.538851\pi\)
\(44\) 3.10680 1.79371i 0.468368 0.270412i
\(45\) 0 0
\(46\) 2.39862 4.15452i 0.353657 0.612551i
\(47\) 11.5014i 1.67765i −0.544403 0.838824i \(-0.683244\pi\)
0.544403 0.838824i \(-0.316756\pi\)
\(48\) 0 0
\(49\) −6.04290 + 3.53318i −0.863272 + 0.504740i
\(50\) 1.97699 4.59255i 0.279589 0.649484i
\(51\) 0 0
\(52\) 2.03087 + 3.51756i 0.281631 + 0.487798i
\(53\) 5.71305 9.89529i 0.784747 1.35922i −0.144403 0.989519i \(-0.546126\pi\)
0.929150 0.369703i \(-0.120541\pi\)
\(54\) 0 0
\(55\) −7.16981 3.59749i −0.966777 0.485085i
\(56\) 0.691773 + 2.55371i 0.0924420 + 0.341254i
\(57\) 0 0
\(58\) −6.99680 4.03961i −0.918725 0.530426i
\(59\) −7.03823 −0.916299 −0.458150 0.888875i \(-0.651488\pi\)
−0.458150 + 0.888875i \(0.651488\pi\)
\(60\) 0 0
\(61\) 11.2231i 1.43696i −0.695545 0.718482i \(-0.744837\pi\)
0.695545 0.718482i \(-0.255163\pi\)
\(62\) 3.52560i 0.447751i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.07312 8.11776i 0.505209 1.00688i
\(66\) 0 0
\(67\) 6.99540i 0.854624i −0.904104 0.427312i \(-0.859461\pi\)
0.904104 0.427312i \(-0.140539\pi\)
\(68\) 4.57132 + 2.63925i 0.554353 + 0.320056i
\(69\) 0 0
\(70\) 3.91921 4.43168i 0.468436 0.529687i
\(71\) 0.828681i 0.0983464i 0.998790 + 0.0491732i \(0.0156586\pi\)
−0.998790 + 0.0491732i \(0.984341\pi\)
\(72\) 0 0
\(73\) 3.51263 6.08405i 0.411122 0.712084i −0.583891 0.811832i \(-0.698470\pi\)
0.995013 + 0.0997484i \(0.0318038\pi\)
\(74\) 0.879847 0.507980i 0.102280 0.0590515i
\(75\) 0 0
\(76\) 3.13968 1.81269i 0.360146 0.207930i
\(77\) −6.72983 6.69304i −0.766935 0.762742i
\(78\) 0 0
\(79\) 0.0299868 0.00337377 0.00168689 0.999999i \(-0.499463\pi\)
0.00168689 + 0.999999i \(0.499463\pi\)
\(80\) −1.22943 1.86775i −0.137455 0.208821i
\(81\) 0 0
\(82\) −4.80160 8.31661i −0.530248 0.918416i
\(83\) 6.89727 + 3.98214i 0.757074 + 0.437097i 0.828244 0.560368i \(-0.189340\pi\)
−0.0711705 + 0.997464i \(0.522673\pi\)
\(84\) 0 0
\(85\) −0.690658 11.7829i −0.0749124 1.27803i
\(86\) −4.43909 2.56291i −0.478679 0.276366i
\(87\) 0 0
\(88\) −3.10680 + 1.79371i −0.331186 + 0.191210i
\(89\) 0.625013 + 1.08255i 0.0662512 + 0.114750i 0.897248 0.441526i \(-0.145563\pi\)
−0.830997 + 0.556277i \(0.812229\pi\)
\(90\) 0 0
\(91\) 7.57795 7.61961i 0.794385 0.798752i
\(92\) −2.39862 + 4.15452i −0.250073 + 0.433139i
\(93\) 0 0
\(94\) 11.5014i 1.18628i
\(95\) −7.24569 3.63556i −0.743392 0.373000i
\(96\) 0 0
\(97\) −4.69619 + 8.13404i −0.476826 + 0.825887i −0.999647 0.0265556i \(-0.991546\pi\)
0.522821 + 0.852442i \(0.324879\pi\)
\(98\) 6.04290 3.53318i 0.610425 0.356905i
\(99\) 0 0
\(100\) −1.97699 + 4.59255i −0.197699 + 0.459255i
\(101\) 5.44619 + 9.43308i 0.541916 + 0.938626i 0.998794 + 0.0490969i \(0.0156343\pi\)
−0.456878 + 0.889529i \(0.651032\pi\)
\(102\) 0 0
\(103\) −0.292115 + 0.505958i −0.0287830 + 0.0498536i −0.880058 0.474866i \(-0.842496\pi\)
0.851275 + 0.524720i \(0.175830\pi\)
\(104\) −2.03087 3.51756i −0.199143 0.344926i
\(105\) 0 0
\(106\) −5.71305 + 9.89529i −0.554900 + 0.961115i
\(107\) 1.34287 + 2.32592i 0.129820 + 0.224855i 0.923607 0.383341i \(-0.125227\pi\)
−0.793787 + 0.608196i \(0.791893\pi\)
\(108\) 0 0
\(109\) −0.618180 + 1.07072i −0.0592109 + 0.102556i −0.894111 0.447845i \(-0.852192\pi\)
0.834901 + 0.550401i \(0.185525\pi\)
\(110\) 7.16981 + 3.59749i 0.683615 + 0.343007i
\(111\) 0 0
\(112\) −0.691773 2.55371i −0.0653664 0.241303i
\(113\) −5.41347 9.37640i −0.509256 0.882058i −0.999943 0.0107214i \(-0.996587\pi\)
0.490686 0.871336i \(-0.336746\pi\)
\(114\) 0 0
\(115\) 10.7086 0.627687i 0.998578 0.0585321i
\(116\) 6.99680 + 4.03961i 0.649637 + 0.375068i
\(117\) 0 0
\(118\) 7.03823 0.647921
\(119\) 3.57758 13.4996i 0.327956 1.23751i
\(120\) 0 0
\(121\) 0.934810 1.61914i 0.0849827 0.147194i
\(122\) 11.2231i 1.01609i
\(123\) 0 0
\(124\) 3.52560i 0.316608i
\(125\) 11.0083 1.95369i 0.984614 0.174744i
\(126\) 0 0
\(127\) 4.95940i 0.440076i 0.975491 + 0.220038i \(0.0706181\pi\)
−0.975491 + 0.220038i \(0.929382\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −4.07312 + 8.11776i −0.357237 + 0.711975i
\(131\) 4.64103 8.03850i 0.405489 0.702327i −0.588890 0.808213i \(-0.700435\pi\)
0.994378 + 0.105887i \(0.0337681\pi\)
\(132\) 0 0
\(133\) −6.80105 6.76387i −0.589725 0.586502i
\(134\) 6.99540i 0.604310i
\(135\) 0 0
\(136\) −4.57132 2.63925i −0.391987 0.226314i
\(137\) −0.00306228 0.00530403i −0.000261628 0.000453154i 0.865895 0.500227i \(-0.166750\pi\)
−0.866156 + 0.499773i \(0.833417\pi\)
\(138\) 0 0
\(139\) −7.32549 + 4.22938i −0.621340 + 0.358731i −0.777391 0.629018i \(-0.783457\pi\)
0.156050 + 0.987749i \(0.450124\pi\)
\(140\) −3.91921 + 4.43168i −0.331234 + 0.374545i
\(141\) 0 0
\(142\) 0.828681i 0.0695414i
\(143\) 12.6190 + 7.28558i 1.05525 + 0.609251i
\(144\) 0 0
\(145\) −1.05711 18.0347i −0.0877885 1.49770i
\(146\) −3.51263 + 6.08405i −0.290707 + 0.503519i
\(147\) 0 0
\(148\) −0.879847 + 0.507980i −0.0723230 + 0.0417557i
\(149\) −15.0057 8.66353i −1.22931 0.709744i −0.262426 0.964952i \(-0.584523\pi\)
−0.966886 + 0.255208i \(0.917856\pi\)
\(150\) 0 0
\(151\) 2.82204 + 4.88791i 0.229654 + 0.397773i 0.957706 0.287750i \(-0.0929071\pi\)
−0.728051 + 0.685523i \(0.759574\pi\)
\(152\) −3.13968 + 1.81269i −0.254662 + 0.147029i
\(153\) 0 0
\(154\) 6.72983 + 6.69304i 0.542305 + 0.539340i
\(155\) −6.58494 + 4.33448i −0.528915 + 0.348154i
\(156\) 0 0
\(157\) 6.48693 0.517713 0.258857 0.965916i \(-0.416654\pi\)
0.258857 + 0.965916i \(0.416654\pi\)
\(158\) −0.0299868 −0.00238562
\(159\) 0 0
\(160\) 1.22943 + 1.86775i 0.0971951 + 0.147659i
\(161\) 12.2688 + 3.25139i 0.966914 + 0.256245i
\(162\) 0 0
\(163\) 4.53833 2.62021i 0.355469 0.205230i −0.311622 0.950206i \(-0.600872\pi\)
0.667092 + 0.744976i \(0.267539\pi\)
\(164\) 4.80160 + 8.31661i 0.374942 + 0.649418i
\(165\) 0 0
\(166\) −6.89727 3.98214i −0.535332 0.309074i
\(167\) 18.8867 10.9043i 1.46150 0.843797i 0.462418 0.886662i \(-0.346982\pi\)
0.999081 + 0.0428649i \(0.0136485\pi\)
\(168\) 0 0
\(169\) −1.74884 + 3.02908i −0.134526 + 0.233006i
\(170\) 0.690658 + 11.7829i 0.0529710 + 0.903704i
\(171\) 0 0
\(172\) 4.43909 + 2.56291i 0.338477 + 0.195420i
\(173\) 21.6843i 1.64863i 0.566133 + 0.824314i \(0.308439\pi\)
−0.566133 + 0.824314i \(0.691561\pi\)
\(174\) 0 0
\(175\) 13.0957 + 1.87167i 0.989940 + 0.141485i
\(176\) 3.10680 1.79371i 0.234184 0.135206i
\(177\) 0 0
\(178\) −0.625013 1.08255i −0.0468467 0.0811408i
\(179\) −15.1142 8.72620i −1.12969 0.652227i −0.185833 0.982581i \(-0.559498\pi\)
−0.943857 + 0.330355i \(0.892832\pi\)
\(180\) 0 0
\(181\) 24.0491i 1.78755i −0.448513 0.893776i \(-0.648046\pi\)
0.448513 0.893776i \(-0.351954\pi\)
\(182\) −7.57795 + 7.61961i −0.561715 + 0.564803i
\(183\) 0 0
\(184\) 2.39862 4.15452i 0.176828 0.306276i
\(185\) 2.03049 + 1.01881i 0.149285 + 0.0749044i
\(186\) 0 0
\(187\) 18.9362 1.38475
\(188\) 11.5014i 0.838824i
\(189\) 0 0
\(190\) 7.24569 + 3.63556i 0.525657 + 0.263751i
\(191\) 3.22636i 0.233451i 0.993164 + 0.116726i \(0.0372398\pi\)
−0.993164 + 0.116726i \(0.962760\pi\)
\(192\) 0 0
\(193\) 24.2271i 1.74390i 0.489593 + 0.871951i \(0.337145\pi\)
−0.489593 + 0.871951i \(0.662855\pi\)
\(194\) 4.69619 8.13404i 0.337167 0.583990i
\(195\) 0 0
\(196\) −6.04290 + 3.53318i −0.431636 + 0.252370i
\(197\) 6.89656 0.491359 0.245680 0.969351i \(-0.420989\pi\)
0.245680 + 0.969351i \(0.420989\pi\)
\(198\) 0 0
\(199\) −14.5256 8.38638i −1.02969 0.594494i −0.112797 0.993618i \(-0.535981\pi\)
−0.916897 + 0.399124i \(0.869314\pi\)
\(200\) 1.97699 4.59255i 0.139795 0.324742i
\(201\) 0 0
\(202\) −5.44619 9.43308i −0.383193 0.663709i
\(203\) 5.47580 20.6623i 0.384326 1.45021i
\(204\) 0 0
\(205\) 9.63012 19.1929i 0.672597 1.34049i
\(206\) 0.292115 0.505958i 0.0203526 0.0352518i
\(207\) 0 0
\(208\) 2.03087 + 3.51756i 0.140815 + 0.243899i
\(209\) 6.50291 11.2634i 0.449815 0.779103i
\(210\) 0 0
\(211\) 2.37689 + 4.11690i 0.163632 + 0.283419i 0.936169 0.351551i \(-0.114346\pi\)
−0.772537 + 0.634970i \(0.781012\pi\)
\(212\) 5.71305 9.89529i 0.392374 0.679611i
\(213\) 0 0
\(214\) −1.34287 2.32592i −0.0917967 0.158997i
\(215\) −0.670681 11.4420i −0.0457400 0.780341i
\(216\) 0 0
\(217\) −9.00336 + 2.43891i −0.611188 + 0.165564i
\(218\) 0.618180 1.07072i 0.0418684 0.0725182i
\(219\) 0 0
\(220\) −7.16981 3.59749i −0.483389 0.242542i
\(221\) 21.4399i 1.44220i
\(222\) 0 0
\(223\) 8.37432 14.5048i 0.560786 0.971310i −0.436642 0.899635i \(-0.643832\pi\)
0.997428 0.0716748i \(-0.0228344\pi\)
\(224\) 0.691773 + 2.55371i 0.0462210 + 0.170627i
\(225\) 0 0
\(226\) 5.41347 + 9.37640i 0.360099 + 0.623709i
\(227\) −5.49698 + 3.17368i −0.364847 + 0.210645i −0.671205 0.741272i \(-0.734223\pi\)
0.306358 + 0.951916i \(0.400890\pi\)
\(228\) 0 0
\(229\) 3.78920 + 2.18769i 0.250397 + 0.144567i 0.619946 0.784644i \(-0.287154\pi\)
−0.369549 + 0.929211i \(0.620488\pi\)
\(230\) −10.7086 + 0.627687i −0.706101 + 0.0413884i
\(231\) 0 0
\(232\) −6.99680 4.03961i −0.459363 0.265213i
\(233\) −12.2423 21.2043i −0.802021 1.38914i −0.918284 0.395922i \(-0.870425\pi\)
0.116263 0.993218i \(-0.462908\pi\)
\(234\) 0 0
\(235\) −21.4817 + 14.1402i −1.40131 + 0.922402i
\(236\) −7.03823 −0.458150
\(237\) 0 0
\(238\) −3.57758 + 13.4996i −0.231900 + 0.875048i
\(239\) −2.10722 + 1.21660i −0.136305 + 0.0786956i −0.566602 0.823992i \(-0.691742\pi\)
0.430297 + 0.902687i \(0.358409\pi\)
\(240\) 0 0
\(241\) 1.82213 1.05201i 0.117374 0.0677659i −0.440164 0.897918i \(-0.645080\pi\)
0.557538 + 0.830152i \(0.311746\pi\)
\(242\) −0.934810 + 1.61914i −0.0600918 + 0.104082i
\(243\) 0 0
\(244\) 11.2231i 0.718482i
\(245\) 14.0284 + 6.94283i 0.896244 + 0.443561i
\(246\) 0 0
\(247\) 12.7525 + 7.36268i 0.811425 + 0.468476i
\(248\) 3.52560i 0.223876i
\(249\) 0 0
\(250\) −11.0083 + 1.95369i −0.696227 + 0.123562i
\(251\) −19.3343 −1.22037 −0.610184 0.792260i \(-0.708904\pi\)
−0.610184 + 0.792260i \(0.708904\pi\)
\(252\) 0 0
\(253\) 17.2097i 1.08197i
\(254\) 4.95940i 0.311181i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.4822 12.9801i −1.40240 0.809677i −0.407762 0.913088i \(-0.633691\pi\)
−0.994639 + 0.103412i \(0.967024\pi\)
\(258\) 0 0
\(259\) 1.90589 + 1.89547i 0.118426 + 0.117779i
\(260\) 4.07312 8.11776i 0.252604 0.503442i
\(261\) 0 0
\(262\) −4.64103 + 8.03850i −0.286724 + 0.496620i
\(263\) −3.89109 6.73957i −0.239935 0.415579i 0.720760 0.693184i \(-0.243793\pi\)
−0.960695 + 0.277605i \(0.910459\pi\)
\(264\) 0 0
\(265\) −25.5057 + 1.49503i −1.56681 + 0.0918390i
\(266\) 6.80105 + 6.76387i 0.416999 + 0.414719i
\(267\) 0 0
\(268\) 6.99540i 0.427312i
\(269\) 9.76085 16.9063i 0.595129 1.03079i −0.398399 0.917212i \(-0.630434\pi\)
0.993529 0.113582i \(-0.0362325\pi\)
\(270\) 0 0
\(271\) −0.125260 + 0.0723187i −0.00760898 + 0.00439305i −0.503800 0.863821i \(-0.668065\pi\)
0.496191 + 0.868214i \(0.334732\pi\)
\(272\) 4.57132 + 2.63925i 0.277177 + 0.160028i
\(273\) 0 0
\(274\) 0.00306228 + 0.00530403i 0.000184999 + 0.000320428i
\(275\) 2.09559 + 17.8143i 0.126369 + 1.07424i
\(276\) 0 0
\(277\) −22.2251 + 12.8317i −1.33538 + 0.770981i −0.986118 0.166044i \(-0.946900\pi\)
−0.349260 + 0.937026i \(0.613567\pi\)
\(278\) 7.32549 4.22938i 0.439354 0.253661i
\(279\) 0 0
\(280\) 3.91921 4.43168i 0.234218 0.264843i
\(281\) 16.2907 + 9.40542i 0.971819 + 0.561080i 0.899790 0.436322i \(-0.143719\pi\)
0.0720288 + 0.997403i \(0.477053\pi\)
\(282\) 0 0
\(283\) 30.3966 1.80689 0.903444 0.428706i \(-0.141030\pi\)
0.903444 + 0.428706i \(0.141030\pi\)
\(284\) 0.828681i 0.0491732i
\(285\) 0 0
\(286\) −12.6190 7.28558i −0.746177 0.430806i
\(287\) 17.9166 18.0151i 1.05758 1.06340i
\(288\) 0 0
\(289\) 5.43128 + 9.40726i 0.319487 + 0.553368i
\(290\) 1.05711 + 18.0347i 0.0620758 + 1.05903i
\(291\) 0 0
\(292\) 3.51263 6.08405i 0.205561 0.356042i
\(293\) 24.1090 13.9193i 1.40846 0.813176i 0.413222 0.910630i \(-0.364403\pi\)
0.995240 + 0.0974541i \(0.0310699\pi\)
\(294\) 0 0
\(295\) 8.65302 + 13.1457i 0.503799 + 0.765370i
\(296\) 0.879847 0.507980i 0.0511401 0.0295257i
\(297\) 0 0
\(298\) 15.0057 + 8.66353i 0.869255 + 0.501865i
\(299\) −19.4851 −1.12685
\(300\) 0 0
\(301\) 3.47409 13.1091i 0.200243 0.755597i
\(302\) −2.82204 4.88791i −0.162390 0.281268i
\(303\) 0 0
\(304\) 3.13968 1.81269i 0.180073 0.103965i
\(305\) −20.9619 + 13.7980i −1.20027 + 0.790070i
\(306\) 0 0
\(307\) 29.1963 1.66632 0.833162 0.553030i \(-0.186528\pi\)
0.833162 + 0.553030i \(0.186528\pi\)
\(308\) −6.72983 6.69304i −0.383468 0.381371i
\(309\) 0 0
\(310\) 6.58494 4.33448i 0.373999 0.246182i
\(311\) 1.53984 0.0873161 0.0436580 0.999047i \(-0.486099\pi\)
0.0436580 + 0.999047i \(0.486099\pi\)
\(312\) 0 0
\(313\) 9.00202 0.508824 0.254412 0.967096i \(-0.418118\pi\)
0.254412 + 0.967096i \(0.418118\pi\)
\(314\) −6.48693 −0.366078
\(315\) 0 0
\(316\) 0.0299868 0.00168689
\(317\) −17.2577 −0.969287 −0.484644 0.874712i \(-0.661051\pi\)
−0.484644 + 0.874712i \(0.661051\pi\)
\(318\) 0 0
\(319\) 28.9836 1.62277
\(320\) −1.22943 1.86775i −0.0687273 0.104410i
\(321\) 0 0
\(322\) −12.2688 3.25139i −0.683711 0.181193i
\(323\) 19.1366 1.06479
\(324\) 0 0
\(325\) −20.1696 + 2.37265i −1.11881 + 0.131611i
\(326\) −4.53833 + 2.62021i −0.251355 + 0.145120i
\(327\) 0 0
\(328\) −4.80160 8.31661i −0.265124 0.459208i
\(329\) −29.3712 + 7.95634i −1.61929 + 0.438647i
\(330\) 0 0
\(331\) 29.0182 1.59498 0.797492 0.603329i \(-0.206159\pi\)
0.797492 + 0.603329i \(0.206159\pi\)
\(332\) 6.89727 + 3.98214i 0.378537 + 0.218548i
\(333\) 0 0
\(334\) −18.8867 + 10.9043i −1.03344 + 0.596655i
\(335\) −13.0657 + 8.60037i −0.713854 + 0.469888i
\(336\) 0 0
\(337\) 0.776124 0.448095i 0.0422782 0.0244093i −0.478712 0.877972i \(-0.658896\pi\)
0.520990 + 0.853563i \(0.325563\pi\)
\(338\) 1.74884 3.02908i 0.0951245 0.164760i
\(339\) 0 0
\(340\) −0.690658 11.7829i −0.0374562 0.639015i
\(341\) −6.32391 10.9533i −0.342459 0.593156i
\(342\) 0 0
\(343\) 13.2030 + 12.9877i 0.712897 + 0.701269i
\(344\) −4.43909 2.56291i −0.239340 0.138183i
\(345\) 0 0
\(346\) 21.6843i 1.16576i
\(347\) −34.3492 −1.84396 −0.921982 0.387233i \(-0.873431\pi\)
−0.921982 + 0.387233i \(0.873431\pi\)
\(348\) 0 0
\(349\) −1.95233 1.12718i −0.104506 0.0603366i 0.446836 0.894616i \(-0.352551\pi\)
−0.551342 + 0.834279i \(0.685884\pi\)
\(350\) −13.0957 1.87167i −0.699994 0.100045i
\(351\) 0 0
\(352\) −3.10680 + 1.79371i −0.165593 + 0.0956052i
\(353\) −5.09123 + 2.93942i −0.270979 + 0.156450i −0.629332 0.777136i \(-0.716672\pi\)
0.358354 + 0.933586i \(0.383338\pi\)
\(354\) 0 0
\(355\) 1.54777 1.01881i 0.0821472 0.0540727i
\(356\) 0.625013 + 1.08255i 0.0331256 + 0.0573752i
\(357\) 0 0
\(358\) 15.1142 + 8.72620i 0.798811 + 0.461194i
\(359\) 5.91330 3.41404i 0.312092 0.180186i −0.335770 0.941944i \(-0.608997\pi\)
0.647862 + 0.761758i \(0.275663\pi\)
\(360\) 0 0
\(361\) −2.92828 + 5.07193i −0.154120 + 0.266944i
\(362\) 24.0491i 1.26399i
\(363\) 0 0
\(364\) 7.57795 7.61961i 0.397193 0.399376i
\(365\) −15.6820 + 0.919209i −0.820835 + 0.0481136i
\(366\) 0 0
\(367\) −0.284464 0.492706i −0.0148489 0.0257190i 0.858505 0.512804i \(-0.171393\pi\)
−0.873354 + 0.487085i \(0.838060\pi\)
\(368\) −2.39862 + 4.15452i −0.125036 + 0.216570i
\(369\) 0 0
\(370\) −2.03049 1.01881i −0.105560 0.0529654i
\(371\) −29.2219 7.74419i −1.51712 0.402058i
\(372\) 0 0
\(373\) 6.58348 + 3.80098i 0.340880 + 0.196807i 0.660661 0.750684i \(-0.270276\pi\)
−0.319781 + 0.947491i \(0.603609\pi\)
\(374\) −18.9362 −0.979169
\(375\) 0 0
\(376\) 11.5014i 0.593138i
\(377\) 32.8156i 1.69009i
\(378\) 0 0
\(379\) −37.9897 −1.95140 −0.975700 0.219109i \(-0.929685\pi\)
−0.975700 + 0.219109i \(0.929685\pi\)
\(380\) −7.24569 3.63556i −0.371696 0.186500i
\(381\) 0 0
\(382\) 3.22636i 0.165075i
\(383\) 10.4289 + 6.02112i 0.532891 + 0.307665i 0.742193 0.670186i \(-0.233786\pi\)
−0.209302 + 0.977851i \(0.567119\pi\)
\(384\) 0 0
\(385\) −4.22707 + 20.7983i −0.215431 + 1.05998i
\(386\) 24.2271i 1.23312i
\(387\) 0 0
\(388\) −4.69619 + 8.13404i −0.238413 + 0.412943i
\(389\) −9.93198 + 5.73423i −0.503571 + 0.290737i −0.730187 0.683247i \(-0.760567\pi\)
0.226616 + 0.973984i \(0.427234\pi\)
\(390\) 0 0
\(391\) −21.9297 + 12.6611i −1.10903 + 0.640299i
\(392\) 6.04290 3.53318i 0.305213 0.178452i
\(393\) 0 0
\(394\) −6.89656 −0.347444
\(395\) −0.0368667 0.0560078i −0.00185496 0.00281806i
\(396\) 0 0
\(397\) −1.89421 3.28087i −0.0950678 0.164662i 0.814569 0.580067i \(-0.196973\pi\)
−0.909637 + 0.415404i \(0.863640\pi\)
\(398\) 14.5256 + 8.38638i 0.728104 + 0.420371i
\(399\) 0 0
\(400\) −1.97699 + 4.59255i −0.0988497 + 0.229627i
\(401\) −10.0319 5.79192i −0.500970 0.289235i 0.228144 0.973627i \(-0.426734\pi\)
−0.729114 + 0.684392i \(0.760068\pi\)
\(402\) 0 0
\(403\) 12.4015 7.16002i 0.617764 0.356666i
\(404\) 5.44619 + 9.43308i 0.270958 + 0.469313i
\(405\) 0 0
\(406\) −5.47580 + 20.6623i −0.271759 + 1.02545i
\(407\) −1.82234 + 3.15639i −0.0903301 + 0.156456i
\(408\) 0 0
\(409\) 30.2706i 1.49679i 0.663256 + 0.748393i \(0.269174\pi\)
−0.663256 + 0.748393i \(0.730826\pi\)
\(410\) −9.63012 + 19.1929i −0.475598 + 0.947869i
\(411\) 0 0
\(412\) −0.292115 + 0.505958i −0.0143915 + 0.0249268i
\(413\) 4.86886 + 17.9736i 0.239581 + 0.884424i
\(414\) 0 0
\(415\) −1.04207 17.7782i −0.0511534 0.872695i
\(416\) −2.03087 3.51756i −0.0995715 0.172463i
\(417\) 0 0
\(418\) −6.50291 + 11.2634i −0.318067 + 0.550909i
\(419\) 10.7319 + 18.5882i 0.524287 + 0.908091i 0.999600 + 0.0282749i \(0.00900138\pi\)
−0.475313 + 0.879817i \(0.657665\pi\)
\(420\) 0 0
\(421\) −12.8685 + 22.2889i −0.627173 + 1.08630i 0.360943 + 0.932588i \(0.382455\pi\)
−0.988116 + 0.153708i \(0.950878\pi\)
\(422\) −2.37689 4.11690i −0.115705 0.200408i
\(423\) 0 0
\(424\) −5.71305 + 9.89529i −0.277450 + 0.480558i
\(425\) −21.1583 + 15.7762i −1.02633 + 0.765258i
\(426\) 0 0
\(427\) −28.6605 + 7.76380i −1.38698 + 0.375717i
\(428\) 1.34287 + 2.32592i 0.0649101 + 0.112428i
\(429\) 0 0
\(430\) 0.670681 + 11.4420i 0.0323431 + 0.551784i
\(431\) 1.05463 + 0.608890i 0.0507997 + 0.0293292i 0.525185 0.850988i \(-0.323996\pi\)
−0.474385 + 0.880317i \(0.657330\pi\)
\(432\) 0 0
\(433\) 6.29897 0.302709 0.151355 0.988480i \(-0.451636\pi\)
0.151355 + 0.988480i \(0.451636\pi\)
\(434\) 9.00336 2.43891i 0.432175 0.117072i
\(435\) 0 0
\(436\) −0.618180 + 1.07072i −0.0296054 + 0.0512781i
\(437\) 17.3918i 0.831964i
\(438\) 0 0
\(439\) 36.3857i 1.73659i −0.496046 0.868296i \(-0.665215\pi\)
0.496046 0.868296i \(-0.334785\pi\)
\(440\) 7.16981 + 3.59749i 0.341807 + 0.171503i
\(441\) 0 0
\(442\) 21.4399i 1.01979i
\(443\) 11.5534 0.548917 0.274459 0.961599i \(-0.411501\pi\)
0.274459 + 0.961599i \(0.411501\pi\)
\(444\) 0 0
\(445\) 1.25353 2.49830i 0.0594231 0.118431i
\(446\) −8.37432 + 14.5048i −0.396536 + 0.686820i
\(447\) 0 0
\(448\) −0.691773 2.55371i −0.0326832 0.120652i
\(449\) 8.35607i 0.394347i −0.980369 0.197174i \(-0.936824\pi\)
0.980369 0.197174i \(-0.0631763\pi\)
\(450\) 0 0
\(451\) 29.8352 + 17.2254i 1.40489 + 0.811111i
\(452\) −5.41347 9.37640i −0.254628 0.441029i
\(453\) 0 0
\(454\) 5.49698 3.17368i 0.257986 0.148948i
\(455\) −23.5481 4.78594i −1.10395 0.224369i
\(456\) 0 0
\(457\) 3.77155i 0.176426i −0.996102 0.0882129i \(-0.971884\pi\)
0.996102 0.0882129i \(-0.0281156\pi\)
\(458\) −3.78920 2.18769i −0.177058 0.102224i
\(459\) 0 0
\(460\) 10.7086 0.627687i 0.499289 0.0292661i
\(461\) 1.39131 2.40982i 0.0647998 0.112237i −0.831805 0.555067i \(-0.812692\pi\)
0.896605 + 0.442831i \(0.146026\pi\)
\(462\) 0 0
\(463\) −9.52910 + 5.50163i −0.442855 + 0.255682i −0.704808 0.709398i \(-0.748967\pi\)
0.261953 + 0.965081i \(0.415633\pi\)
\(464\) 6.99680 + 4.03961i 0.324818 + 0.187534i
\(465\) 0 0
\(466\) 12.2423 + 21.2043i 0.567114 + 0.982271i
\(467\) −16.4814 + 9.51552i −0.762667 + 0.440326i −0.830252 0.557388i \(-0.811804\pi\)
0.0675856 + 0.997713i \(0.478470\pi\)
\(468\) 0 0
\(469\) −17.8642 + 4.83923i −0.824894 + 0.223455i
\(470\) 21.4817 14.1402i 0.990878 0.652237i
\(471\) 0 0
\(472\) 7.03823 0.323961
\(473\) 18.3885 0.845504
\(474\) 0 0
\(475\) 2.11776 + 18.0028i 0.0971696 + 0.826026i
\(476\) 3.57758 13.4996i 0.163978 0.618753i
\(477\) 0 0
\(478\) 2.10722 1.21660i 0.0963820 0.0556462i
\(479\) −0.146168 0.253170i −0.00667858 0.0115676i 0.862667 0.505773i \(-0.168793\pi\)
−0.869345 + 0.494205i \(0.835459\pi\)
\(480\) 0 0
\(481\) −3.57371 2.06328i −0.162947 0.0940775i
\(482\) −1.82213 + 1.05201i −0.0829960 + 0.0479177i
\(483\) 0 0
\(484\) 0.934810 1.61914i 0.0424913 0.0735972i
\(485\) 20.9660 1.22893i 0.952018 0.0558030i
\(486\) 0 0
\(487\) −17.4211 10.0581i −0.789425 0.455775i 0.0503353 0.998732i \(-0.483971\pi\)
−0.839760 + 0.542958i \(0.817304\pi\)
\(488\) 11.2231i 0.508044i
\(489\) 0 0
\(490\) −14.0284 6.94283i −0.633740 0.313645i
\(491\) 0.00977625 0.00564432i 0.000441196 0.000254725i −0.499779 0.866153i \(-0.666586\pi\)
0.500221 + 0.865898i \(0.333252\pi\)
\(492\) 0 0
\(493\) 21.3231 + 36.9326i 0.960343 + 1.66336i
\(494\) −12.7525 7.36268i −0.573764 0.331263i
\(495\) 0 0
\(496\) 3.52560i 0.158304i
\(497\) 2.11621 0.573259i 0.0949252 0.0257142i
\(498\) 0 0
\(499\) −5.43038 + 9.40569i −0.243097 + 0.421057i −0.961595 0.274473i \(-0.911497\pi\)
0.718498 + 0.695529i \(0.244830\pi\)
\(500\) 11.0083 1.95369i 0.492307 0.0873718i
\(501\) 0 0
\(502\) 19.3343 0.862930
\(503\) 32.7910i 1.46208i −0.682335 0.731040i \(-0.739035\pi\)
0.682335 0.731040i \(-0.260965\pi\)
\(504\) 0 0
\(505\) 10.9229 21.7695i 0.486064 0.968728i
\(506\) 17.2097i 0.765065i
\(507\) 0 0
\(508\) 4.95940i 0.220038i
\(509\) 5.90279 10.2239i 0.261637 0.453168i −0.705040 0.709167i \(-0.749071\pi\)
0.966677 + 0.255999i \(0.0824045\pi\)
\(510\) 0 0
\(511\) −17.9668 4.76146i −0.794806 0.210635i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 22.4822 + 12.9801i 0.991647 + 0.572528i
\(515\) 1.30414 0.0764428i 0.0574673 0.00336847i
\(516\) 0 0
\(517\) −20.6302 35.7325i −0.907313 1.57151i
\(518\) −1.90589 1.89547i −0.0837400 0.0832822i
\(519\) 0 0
\(520\) −4.07312 + 8.11776i −0.178618 + 0.355987i
\(521\) −8.58074 + 14.8623i −0.375929 + 0.651128i −0.990466 0.137760i \(-0.956010\pi\)
0.614537 + 0.788888i \(0.289343\pi\)
\(522\) 0 0
\(523\) 19.0538 + 33.0022i 0.833166 + 1.44309i 0.895515 + 0.445031i \(0.146807\pi\)
−0.0623491 + 0.998054i \(0.519859\pi\)
\(524\) 4.64103 8.03850i 0.202744 0.351163i
\(525\) 0 0
\(526\) 3.89109 + 6.73957i 0.169660 + 0.293859i
\(527\) 9.30493 16.1166i 0.405329 0.702051i
\(528\) 0 0
\(529\) −0.00671290 0.0116271i −0.000291865 0.000505525i
\(530\) 25.5057 1.49503i 1.10790 0.0649400i
\(531\) 0 0
\(532\) −6.80105 6.76387i −0.294863 0.293251i
\(533\) −19.5028 + 33.7799i −0.844760 + 1.46317i
\(534\) 0 0
\(535\) 2.69327 5.36771i 0.116440 0.232066i
\(536\) 6.99540i 0.302155i
\(537\) 0 0
\(538\) −9.76085 + 16.9063i −0.420820 + 0.728882i
\(539\) −12.4366 + 21.8161i −0.535682 + 0.939686i
\(540\) 0 0
\(541\) 11.5592 + 20.0210i 0.496967 + 0.860772i 0.999994 0.00349884i \(-0.00111372\pi\)
−0.503027 + 0.864271i \(0.667780\pi\)
\(542\) 0.125260 0.0723187i 0.00538036 0.00310635i
\(543\) 0 0
\(544\) −4.57132 2.63925i −0.195994 0.113157i
\(545\) 2.75985 0.161770i 0.118219 0.00692945i
\(546\) 0 0
\(547\) 0.301039 + 0.173805i 0.0128715 + 0.00743136i 0.506422 0.862286i \(-0.330968\pi\)
−0.493550 + 0.869717i \(0.664301\pi\)
\(548\) −0.00306228 0.00530403i −0.000130814 0.000226577i
\(549\) 0 0
\(550\) −2.09559 17.8143i −0.0893561 0.759604i
\(551\) 29.2903 1.24781
\(552\) 0 0
\(553\) −0.0207440 0.0765776i −0.000882126 0.00325641i
\(554\) 22.2251 12.8317i 0.944255 0.545166i
\(555\) 0 0
\(556\) −7.32549 + 4.22938i −0.310670 + 0.179365i
\(557\) −22.4182 + 38.8295i −0.949891 + 1.64526i −0.204242 + 0.978920i \(0.565473\pi\)
−0.745649 + 0.666339i \(0.767860\pi\)
\(558\) 0 0
\(559\) 20.8197i 0.880580i
\(560\) −3.91921 + 4.43168i −0.165617 + 0.187273i
\(561\) 0 0
\(562\) −16.2907 9.40542i −0.687180 0.396744i
\(563\) 24.6532i 1.03901i 0.854468 + 0.519504i \(0.173883\pi\)
−0.854468 + 0.519504i \(0.826117\pi\)
\(564\) 0 0
\(565\) −10.8573 + 21.6387i −0.456770 + 0.910345i
\(566\) −30.3966 −1.27766
\(567\) 0 0
\(568\) 0.828681i 0.0347707i
\(569\) 37.5376i 1.57366i 0.617171 + 0.786829i \(0.288279\pi\)
−0.617171 + 0.786829i \(0.711721\pi\)
\(570\) 0 0
\(571\) −9.36824 −0.392049 −0.196024 0.980599i \(-0.562803\pi\)
−0.196024 + 0.980599i \(0.562803\pi\)
\(572\) 12.6190 + 7.28558i 0.527627 + 0.304626i
\(573\) 0 0
\(574\) −17.9166 + 18.0151i −0.747825 + 0.751936i
\(575\) −14.3378 19.2292i −0.597928 0.801914i
\(576\) 0 0
\(577\) 3.63671 6.29897i 0.151398 0.262230i −0.780343 0.625351i \(-0.784956\pi\)
0.931742 + 0.363122i \(0.118289\pi\)
\(578\) −5.43128 9.40726i −0.225912 0.391290i
\(579\) 0 0
\(580\) −1.05711 18.0347i −0.0438942 0.748851i
\(581\) 5.39790 20.3684i 0.223943 0.845023i
\(582\) 0 0
\(583\) 40.9903i 1.69764i
\(584\) −3.51263 + 6.08405i −0.145353 + 0.251760i
\(585\) 0 0
\(586\) −24.1090 + 13.9193i −0.995933 + 0.575002i
\(587\) −2.08437 1.20341i −0.0860313 0.0496702i 0.456367 0.889792i \(-0.349150\pi\)
−0.542398 + 0.840121i \(0.682484\pi\)
\(588\) 0 0
\(589\) −6.39083 11.0692i −0.263330 0.456100i
\(590\) −8.65302 13.1457i −0.356239 0.541198i
\(591\) 0 0
\(592\) −0.879847 + 0.507980i −0.0361615 + 0.0208779i
\(593\) 33.2409 19.1916i 1.36504 0.788106i 0.374751 0.927126i \(-0.377728\pi\)
0.990290 + 0.139019i \(0.0443950\pi\)
\(594\) 0 0
\(595\) −29.6123 + 9.91481i −1.21398 + 0.406467i
\(596\) −15.0057 8.66353i −0.614656 0.354872i
\(597\) 0 0
\(598\) 19.4851 0.796804
\(599\) 18.2983i 0.747650i 0.927499 + 0.373825i \(0.121954\pi\)
−0.927499 + 0.373825i \(0.878046\pi\)
\(600\) 0 0
\(601\) 20.5159 + 11.8449i 0.836862 + 0.483163i 0.856196 0.516650i \(-0.172821\pi\)
−0.0193342 + 0.999813i \(0.506155\pi\)
\(602\) −3.47409 + 13.1091i −0.141594 + 0.534288i
\(603\) 0 0
\(604\) 2.82204 + 4.88791i 0.114827 + 0.198886i
\(605\) −4.17343 + 0.244628i −0.169674 + 0.00994553i
\(606\) 0 0
\(607\) 1.20113 2.08041i 0.0487522 0.0844412i −0.840620 0.541626i \(-0.817809\pi\)
0.889372 + 0.457185i \(0.151142\pi\)
\(608\) −3.13968 + 1.81269i −0.127331 + 0.0735145i
\(609\) 0 0
\(610\) 20.9619 13.7980i 0.848722 0.558664i
\(611\) 40.4568 23.3578i 1.63671 0.944954i
\(612\) 0 0
\(613\) −32.4221 18.7189i −1.30951 0.756049i −0.327500 0.944851i \(-0.606206\pi\)
−0.982015 + 0.188803i \(0.939539\pi\)
\(614\) −29.1963 −1.17827
\(615\) 0 0
\(616\) 6.72983 + 6.69304i 0.271152 + 0.269670i
\(617\) 19.7702 + 34.2430i 0.795918 + 1.37857i 0.922255 + 0.386582i \(0.126345\pi\)
−0.126337 + 0.991987i \(0.540322\pi\)
\(618\) 0 0
\(619\) 4.75647 2.74615i 0.191179 0.110377i −0.401356 0.915922i \(-0.631461\pi\)
0.592534 + 0.805545i \(0.298127\pi\)
\(620\) −6.58494 + 4.33448i −0.264458 + 0.174077i
\(621\) 0 0
\(622\) −1.53984 −0.0617418
\(623\) 2.33216 2.34498i 0.0934362 0.0939498i
\(624\) 0 0
\(625\) −17.1830 18.1589i −0.687320 0.726355i
\(626\) −9.00202 −0.359793
\(627\) 0 0
\(628\) 6.48693 0.258857
\(629\) −5.36275 −0.213827
\(630\) 0 0
\(631\) −9.72111 −0.386991 −0.193496 0.981101i \(-0.561983\pi\)
−0.193496 + 0.981101i \(0.561983\pi\)
\(632\) −0.0299868 −0.00119281
\(633\) 0 0
\(634\) 17.2577 0.685390
\(635\) 9.26293 6.09725i 0.367588 0.241962i
\(636\) 0 0
\(637\) −24.7005 14.0809i −0.978670 0.557905i
\(638\) −28.9836 −1.14747
\(639\) 0 0
\(640\) 1.22943 + 1.86775i 0.0485976 + 0.0738294i
\(641\) 27.9609 16.1432i 1.10439 0.637619i 0.167018 0.985954i \(-0.446586\pi\)
0.937370 + 0.348335i \(0.113253\pi\)
\(642\) 0 0
\(643\) −14.1941 24.5848i −0.559759 0.969532i −0.997516 0.0704382i \(-0.977560\pi\)
0.437757 0.899093i \(-0.355773\pi\)
\(644\) 12.2688 + 3.25139i 0.483457 + 0.128123i
\(645\) 0 0
\(646\) −19.1366 −0.752920
\(647\) 3.35941 + 1.93956i 0.132072 + 0.0762519i 0.564580 0.825378i \(-0.309038\pi\)
−0.432508 + 0.901630i \(0.642371\pi\)
\(648\) 0 0
\(649\) −21.8664 + 12.6246i −0.858330 + 0.495557i
\(650\) 20.1696 2.37265i 0.791117 0.0930631i
\(651\) 0 0
\(652\) 4.53833 2.62021i 0.177735 0.102615i
\(653\) 10.5947 18.3505i 0.414602 0.718111i −0.580785 0.814057i \(-0.697254\pi\)
0.995387 + 0.0959461i \(0.0305876\pi\)
\(654\) 0 0
\(655\) −20.7197 + 1.21450i −0.809587 + 0.0474543i
\(656\) 4.80160 + 8.31661i 0.187471 + 0.324709i
\(657\) 0 0
\(658\) 29.3712 7.95634i 1.14501 0.310170i
\(659\) −3.78622 2.18598i −0.147490 0.0851535i 0.424439 0.905457i \(-0.360471\pi\)
−0.571929 + 0.820303i \(0.693805\pi\)
\(660\) 0 0
\(661\) 21.7460i 0.845820i −0.906172 0.422910i \(-0.861009\pi\)
0.906172 0.422910i \(-0.138991\pi\)
\(662\) −29.0182 −1.12782
\(663\) 0 0
\(664\) −6.89727 3.98214i −0.267666 0.154537i
\(665\) −4.27180 + 21.0184i −0.165653 + 0.815058i
\(666\) 0 0
\(667\) −33.5653 + 19.3789i −1.29965 + 0.750355i
\(668\) 18.8867 10.9043i 0.730750 0.421898i
\(669\) 0 0
\(670\) 13.0657 8.60037i 0.504771 0.332261i
\(671\) −20.1309 34.8678i −0.777146 1.34606i
\(672\) 0 0
\(673\) −33.8278 19.5305i −1.30397 0.752845i −0.322884 0.946439i \(-0.604652\pi\)
−0.981082 + 0.193594i \(0.937986\pi\)
\(674\) −0.776124 + 0.448095i −0.0298952 + 0.0172600i
\(675\) 0 0
\(676\) −1.74884 + 3.02908i −0.0672632 + 0.116503i
\(677\) 10.7467i 0.413027i 0.978444 + 0.206514i \(0.0662118\pi\)
−0.978444 + 0.206514i \(0.933788\pi\)
\(678\) 0 0
\(679\) 24.0207 + 6.36581i 0.921830 + 0.244298i
\(680\) 0.690658 + 11.7829i 0.0264855 + 0.451852i
\(681\) 0 0
\(682\) 6.32391 + 10.9533i 0.242155 + 0.419425i
\(683\) 6.84384 11.8539i 0.261872 0.453576i −0.704867 0.709339i \(-0.748993\pi\)
0.966739 + 0.255763i \(0.0823267\pi\)
\(684\) 0 0
\(685\) −0.00614174 + 0.0122405i −0.000234664 + 0.000467686i
\(686\) −13.2030 12.9877i −0.504094 0.495872i
\(687\) 0 0
\(688\) 4.43909 + 2.56291i 0.169239 + 0.0977100i
\(689\) 46.4098 1.76807
\(690\) 0 0
\(691\) 28.1003i 1.06899i −0.845173 0.534493i \(-0.820503\pi\)
0.845173 0.534493i \(-0.179497\pi\)
\(692\) 21.6843i 0.824314i
\(693\) 0 0
\(694\) 34.3492 1.30388
\(695\) 16.9056 + 8.48247i 0.641267 + 0.321759i
\(696\) 0 0
\(697\) 50.6904i 1.92004i
\(698\) 1.95233 + 1.12718i 0.0738969 + 0.0426644i
\(699\) 0 0
\(700\) 13.0957 + 1.87167i 0.494970 + 0.0707426i
\(701\) 47.4955i 1.79388i 0.442151 + 0.896941i \(0.354216\pi\)
−0.442151 + 0.896941i \(0.645784\pi\)
\(702\) 0 0
\(703\) −1.84163 + 3.18979i −0.0694582 + 0.120305i
\(704\) 3.10680 1.79371i 0.117092 0.0676031i
\(705\) 0 0
\(706\) 5.09123 2.93942i 0.191611 0.110627i
\(707\) 20.3218 20.4336i 0.764282 0.768483i
\(708\) 0 0
\(709\) −32.5456 −1.22227 −0.611137 0.791525i \(-0.709288\pi\)
−0.611137 + 0.791525i \(0.709288\pi\)
\(710\) −1.54777 + 1.01881i −0.0580868 + 0.0382352i
\(711\) 0 0
\(712\) −0.625013 1.08255i −0.0234233 0.0405704i
\(713\) 14.6472 + 8.45655i 0.548541 + 0.316700i
\(714\) 0 0
\(715\) −1.90654 32.5263i −0.0713007 1.21641i
\(716\) −15.1142 8.72620i −0.564845 0.326113i
\(717\) 0 0
\(718\) −5.91330 + 3.41404i −0.220682 + 0.127411i
\(719\) −1.35013 2.33850i −0.0503515 0.0872114i 0.839751 0.542971i \(-0.182701\pi\)
−0.890103 + 0.455760i \(0.849367\pi\)
\(720\) 0 0
\(721\) 1.49415 + 0.395970i 0.0556450 + 0.0147467i
\(722\) 2.92828 5.07193i 0.108979 0.188758i
\(723\) 0 0
\(724\) 24.0491i 0.893776i
\(725\) −32.3847 + 24.1469i −1.20274 + 0.896793i
\(726\) 0 0
\(727\) 13.0226 22.5558i 0.482982 0.836549i −0.516827 0.856090i \(-0.672887\pi\)
0.999809 + 0.0195409i \(0.00622045\pi\)
\(728\) −7.57795 + 7.61961i −0.280858 + 0.282401i
\(729\) 0 0
\(730\) 15.6820 0.919209i 0.580418 0.0340214i
\(731\) 13.5283 + 23.4317i 0.500363 + 0.866654i
\(732\) 0 0
\(733\) −9.72720 + 16.8480i −0.359282 + 0.622295i −0.987841 0.155467i \(-0.950312\pi\)
0.628559 + 0.777762i \(0.283645\pi\)
\(734\) 0.284464 + 0.492706i 0.0104998 + 0.0181861i
\(735\) 0 0
\(736\) 2.39862 4.15452i 0.0884141 0.153138i
\(737\) −12.5477 21.7333i −0.462202 0.800557i
\(738\) 0 0
\(739\) 5.50909 9.54203i 0.202655 0.351009i −0.746728 0.665130i \(-0.768376\pi\)
0.949383 + 0.314120i \(0.101710\pi\)
\(740\) 2.03049 + 1.01881i 0.0746424 + 0.0374522i
\(741\) 0 0
\(742\) 29.2219 + 7.74419i 1.07277 + 0.284298i
\(743\) 7.57857 + 13.1265i 0.278031 + 0.481563i 0.970895 0.239504i \(-0.0769850\pi\)
−0.692865 + 0.721068i \(0.743652\pi\)
\(744\) 0 0
\(745\) 2.26713 + 38.6781i 0.0830613 + 1.41706i
\(746\) −6.58348 3.80098i −0.241039 0.139164i
\(747\) 0 0
\(748\) 18.9362 0.692377
\(749\) 5.01077 5.03831i 0.183090 0.184096i
\(750\) 0 0
\(751\) −7.79754 + 13.5057i −0.284536 + 0.492831i −0.972497 0.232917i \(-0.925173\pi\)
0.687960 + 0.725748i \(0.258506\pi\)
\(752\) 11.5014i 0.419412i
\(753\) 0 0
\(754\) 32.8156i 1.19507i
\(755\) 5.65990 11.2802i 0.205985 0.410529i
\(756\) 0 0
\(757\) 2.00202i 0.0727648i 0.999338 + 0.0363824i \(0.0115834\pi\)
−0.999338 + 0.0363824i \(0.988417\pi\)
\(758\) 37.9897 1.37985
\(759\) 0 0
\(760\) 7.24569 + 3.63556i 0.262829 + 0.131875i
\(761\) 8.46103 14.6549i 0.306712 0.531241i −0.670929 0.741522i \(-0.734104\pi\)
0.977641 + 0.210281i \(0.0674378\pi\)
\(762\) 0 0
\(763\) 3.16195 + 0.837960i 0.114470 + 0.0303362i
\(764\) 3.22636i 0.116726i
\(765\) 0 0
\(766\) −10.4289 6.02112i −0.376811 0.217552i
\(767\) −14.2937 24.7574i −0.516116 0.893939i
\(768\) 0 0
\(769\) 10.5316 6.08042i 0.379779 0.219265i −0.297943 0.954584i \(-0.596301\pi\)
0.677722 + 0.735318i \(0.262967\pi\)
\(770\) 4.22707 20.7983i 0.152333 0.749518i
\(771\) 0 0
\(772\) 24.2271i 0.871951i
\(773\) −19.6768 11.3604i −0.707726 0.408606i 0.102492 0.994734i \(-0.467318\pi\)
−0.810219 + 0.586128i \(0.800652\pi\)
\(774\) 0 0
\(775\) 16.1915 + 6.97008i 0.581615 + 0.250373i
\(776\) 4.69619 8.13404i 0.168583 0.291995i
\(777\) 0 0
\(778\) 9.93198 5.73423i 0.356079 0.205582i
\(779\) 30.1509 + 17.4077i 1.08027 + 0.623694i
\(780\) 0 0
\(781\) 1.48642 + 2.57455i 0.0531882 + 0.0921246i
\(782\) 21.9297 12.6611i 0.784203 0.452760i
\(783\) 0 0
\(784\) −6.04290 + 3.53318i −0.215818 + 0.126185i
\(785\) −7.97524 12.1160i −0.284648 0.432437i
\(786\) 0 0
\(787\) −28.3169 −1.00939 −0.504695 0.863298i \(-0.668395\pi\)
−0.504695 + 0.863298i \(0.668395\pi\)
\(788\) 6.89656 0.245680
\(789\) 0 0
\(790\) 0.0368667 + 0.0560078i 0.00131166 + 0.00199267i
\(791\) −20.1997 + 20.3108i −0.718220 + 0.722168i
\(792\) 0 0
\(793\) 39.4778 22.7925i 1.40190 0.809387i
\(794\) 1.89421 + 3.28087i 0.0672231 + 0.116434i
\(795\) 0 0
\(796\) −14.5256 8.38638i −0.514847 0.297247i
\(797\) 2.25578 1.30238i 0.0799040 0.0461326i −0.459516 0.888170i \(-0.651977\pi\)
0.539420 + 0.842037i \(0.318644\pi\)
\(798\) 0 0
\(799\) 30.3550 52.5764i 1.07388 1.86002i
\(800\) 1.97699 4.59255i 0.0698973 0.162371i
\(801\) 0 0
\(802\) 10.0319 + 5.79192i 0.354239 + 0.204520i
\(803\) 25.2026i 0.889379i
\(804\) 0 0
\(805\) −9.01082 26.9124i −0.317590 0.948536i
\(806\) −12.4015 + 7.16002i −0.436825 + 0.252201i
\(807\) 0 0
\(808\) −5.44619 9.43308i −0.191596 0.331855i
\(809\) 21.2398 + 12.2628i 0.746751 + 0.431137i 0.824519 0.565835i \(-0.191446\pi\)
−0.0777677 + 0.996972i \(0.524779\pi\)
\(810\) 0 0
\(811\) 9.73361i 0.341793i 0.985289 + 0.170897i \(0.0546664\pi\)
−0.985289 + 0.170897i \(0.945334\pi\)
\(812\) 5.47580 20.6623i 0.192163 0.725105i
\(813\) 0 0
\(814\) 1.82234 3.15639i 0.0638730 0.110631i
\(815\) −10.4735 5.25511i −0.366869 0.184078i
\(816\) 0 0
\(817\) 18.5831 0.650140
\(818\) 30.2706i 1.05839i
\(819\) 0 0
\(820\) 9.63012 19.1929i 0.336298 0.670245i
\(821\) 2.04290i 0.0712977i 0.999364 + 0.0356488i \(0.0113498\pi\)
−0.999364 + 0.0356488i \(0.988650\pi\)
\(822\) 0 0
\(823\) 13.0612i 0.455284i 0.973745 + 0.227642i \(0.0731016\pi\)
−0.973745 + 0.227642i \(0.926898\pi\)
\(824\) 0.292115 0.505958i 0.0101763 0.0176259i
\(825\) 0 0
\(826\) −4.86886 17.9736i −0.169409 0.625382i
\(827\) 18.5995 0.646767 0.323384 0.946268i \(-0.395180\pi\)
0.323384 + 0.946268i \(0.395180\pi\)
\(828\) 0 0
\(829\) −26.4337 15.2615i −0.918080 0.530053i −0.0350576 0.999385i \(-0.511161\pi\)
−0.883022 + 0.469332i \(0.844495\pi\)
\(830\) 1.04207 + 17.7782i 0.0361709 + 0.617089i
\(831\) 0 0
\(832\) 2.03087 + 3.51756i 0.0704076 + 0.121950i
\(833\) −36.9489 + 0.202548i −1.28021 + 0.00701787i
\(834\) 0 0
\(835\) −43.5864 21.8697i −1.50837 0.756831i
\(836\) 6.50291 11.2634i 0.224908 0.389552i
\(837\) 0 0
\(838\) −10.7319 18.5882i −0.370727 0.642118i
\(839\) 6.88932 11.9327i 0.237846 0.411961i −0.722250 0.691632i \(-0.756892\pi\)
0.960096 + 0.279671i \(0.0902253\pi\)
\(840\) 0 0
\(841\) 18.1368 + 31.4139i 0.625408 + 1.08324i
\(842\) 12.8685 22.2889i 0.443478 0.768127i
\(843\) 0 0
\(844\) 2.37689 + 4.11690i 0.0818161 + 0.141710i
\(845\) 7.80766 0.457650i 0.268592 0.0157436i
\(846\) 0 0
\(847\) −4.78149 1.26716i −0.164294 0.0435401i
\(848\) 5.71305 9.89529i 0.196187 0.339806i
\(849\) 0 0
\(850\) 21.1583 15.7762i 0.725725 0.541119i
\(851\) 4.87380i 0.167072i
\(852\) 0 0
\(853\) −2.66904 + 4.62291i −0.0913862 + 0.158286i −0.908095 0.418765i \(-0.862463\pi\)
0.816708 + 0.577051i \(0.195796\pi\)
\(854\) 28.6605 7.76380i 0.980741 0.265672i
\(855\) 0 0
\(856\) −1.34287 2.32592i −0.0458984 0.0794983i
\(857\) −32.1904 + 18.5851i −1.09960 + 0.634856i −0.936117 0.351690i \(-0.885607\pi\)
−0.163486 + 0.986546i \(0.552274\pi\)
\(858\) 0 0
\(859\) 33.7048 + 19.4595i 1.14999 + 0.663949i 0.948885 0.315621i \(-0.102213\pi\)
0.201107 + 0.979569i \(0.435546\pi\)
\(860\) −0.670681 11.4420i −0.0228700 0.390170i
\(861\) 0 0
\(862\) −1.05463 0.608890i −0.0359208 0.0207389i
\(863\) −2.48936 4.31171i −0.0847390 0.146772i 0.820541 0.571588i \(-0.193672\pi\)
−0.905280 + 0.424816i \(0.860339\pi\)
\(864\) 0 0
\(865\) 40.5009 26.6594i 1.37707 0.906446i
\(866\) −6.29897 −0.214048
\(867\) 0 0
\(868\) −9.00336 + 2.43891i −0.305594 + 0.0827821i
\(869\) 0.0931629 0.0537876i 0.00316034 0.00182462i
\(870\) 0 0
\(871\) 24.6068 14.2067i 0.833768 0.481376i
\(872\) 0.618180 1.07072i 0.0209342 0.0362591i
\(873\) 0 0
\(874\) 17.3918i 0.588287i
\(875\) −12.6044 26.7606i −0.426107 0.904673i
\(876\) 0 0
\(877\) 39.7198 + 22.9323i 1.34124 + 0.774367i 0.986990 0.160782i \(-0.0514017\pi\)
0.354253 + 0.935149i \(0.384735\pi\)
\(878\) 36.3857i 1.22796i
\(879\) 0 0
\(880\) −7.16981 3.59749i −0.241694 0.121271i
\(881\) −4.17555 −0.140678 −0.0703390 0.997523i \(-0.522408\pi\)
−0.0703390 + 0.997523i \(0.522408\pi\)
\(882\) 0 0
\(883\) 9.11973i 0.306903i 0.988156 + 0.153452i \(0.0490390\pi\)
−0.988156 + 0.153452i \(0.950961\pi\)
\(884\) 21.4399i 0.721101i
\(885\) 0 0
\(886\) −11.5534 −0.388143
\(887\) −6.54685 3.77983i −0.219822 0.126914i 0.386046 0.922480i \(-0.373841\pi\)
−0.605868 + 0.795565i \(0.707174\pi\)
\(888\) 0 0
\(889\) 12.6649 3.43078i 0.424767 0.115065i
\(890\) −1.25353 + 2.49830i −0.0420185 + 0.0837430i
\(891\) 0 0
\(892\) 8.37432 14.5048i 0.280393 0.485655i
\(893\) −20.8485 36.1106i −0.697668 1.20840i
\(894\) 0 0
\(895\) 2.28353 + 38.9579i 0.0763301 + 1.30222i
\(896\) 0.691773 + 2.55371i 0.0231105 + 0.0853136i
\(897\) 0 0
\(898\) 8.35607i 0.278846i
\(899\) 14.2420 24.6679i 0.474998 0.822721i
\(900\) 0 0
\(901\) 52.2323 30.1563i 1.74011 1.00465i
\(902\) −29.8352 17.2254i −0.993404 0.573542i
\(903\) 0 0
\(904\) 5.41347 + 9.37640i 0.180049 + 0.311854i
\(905\) −44.9177 + 29.5667i −1.49311 + 0.982830i
\(906\) 0 0
\(907\) 14.6018 8.43037i 0.484846 0.279926i −0.237588 0.971366i \(-0.576357\pi\)
0.722434 + 0.691440i \(0.243023\pi\)
\(908\) −5.49698 + 3.17368i −0.182424 + 0.105322i
\(909\) 0 0
\(910\) 23.5481 + 4.78594i 0.780612 + 0.158653i
\(911\) 4.64902 + 2.68411i 0.154029 + 0.0889286i 0.575033 0.818130i \(-0.304989\pi\)
−0.421005 + 0.907059i \(0.638322\pi\)
\(912\) 0 0
\(913\) 28.5713 0.945571
\(914\) 3.77155i 0.124752i
\(915\) 0 0
\(916\) 3.78920 + 2.18769i 0.125199 + 0.0722834i
\(917\) −23.7386 6.29104i −0.783916 0.207748i
\(918\) 0 0
\(919\) −8.65286 14.9872i −0.285432 0.494382i 0.687282 0.726390i \(-0.258804\pi\)
−0.972714 + 0.232009i \(0.925470\pi\)
\(920\) −10.7086 + 0.627687i −0.353051 + 0.0206942i
\(921\) 0 0
\(922\) −1.39131 + 2.40982i −0.0458204 + 0.0793632i
\(923\) −2.91494 + 1.68294i −0.0959464 + 0.0553947i
\(924\) 0 0
\(925\) −0.593471 5.04501i −0.0195132 0.165879i
\(926\) 9.52910 5.50163i 0.313146 0.180795i
\(927\) 0 0
\(928\) −6.99680 4.03961i −0.229681 0.132607i
\(929\) −10.7008 −0.351083 −0.175542 0.984472i \(-0.556168\pi\)
−0.175542 + 0.984472i \(0.556168\pi\)
\(930\) 0 0
\(931\) −12.5682 + 22.0470i −0.411906 + 0.722561i
\(932\) −12.2423 21.2043i −0.401010 0.694570i
\(933\) 0 0
\(934\) 16.4814 9.51552i 0.539287 0.311357i
\(935\) −23.2808 35.3682i −0.761364 1.15666i
\(936\) 0 0
\(937\) −12.8760 −0.420639 −0.210320 0.977633i \(-0.567450\pi\)
−0.210320 + 0.977633i \(0.567450\pi\)
\(938\) 17.8642 4.83923i 0.583288 0.158006i
\(939\) 0 0
\(940\) −21.4817 + 14.1402i −0.700656 + 0.461201i
\(941\) 33.7847 1.10135 0.550675 0.834720i \(-0.314370\pi\)
0.550675 + 0.834720i \(0.314370\pi\)
\(942\) 0 0
\(943\) −46.0687 −1.50020
\(944\) −7.03823 −0.229075
\(945\) 0 0
\(946\) −18.3885 −0.597862
\(947\) 21.1866 0.688472 0.344236 0.938883i \(-0.388138\pi\)
0.344236 + 0.938883i \(0.388138\pi\)
\(948\) 0 0
\(949\) 28.5347 0.926276
\(950\) −2.11776 18.0028i −0.0687093 0.584088i
\(951\) 0 0
\(952\) −3.57758 + 13.4996i −0.115950 + 0.437524i
\(953\) 15.9394 0.516328 0.258164 0.966101i \(-0.416883\pi\)
0.258164 + 0.966101i \(0.416883\pi\)
\(954\) 0 0
\(955\) 6.02604 3.96659i 0.194998 0.128356i
\(956\) −2.10722 + 1.21660i −0.0681524 + 0.0393478i
\(957\) 0 0
\(958\) 0.146168 + 0.253170i 0.00472247 + 0.00817956i
\(959\) −0.0114266 + 0.0114894i −0.000368983 + 0.000371011i
\(960\) 0 0
\(961\) 18.5702 0.599038
\(962\) 3.57371 + 2.06328i 0.115221 + 0.0665228i
\(963\) 0 0
\(964\) 1.82213 1.05201i 0.0586870 0.0338830i
\(965\) 45.2501 29.7855i 1.45665 0.958830i
\(966\) 0 0
\(967\) 48.1802 27.8169i 1.54937 0.894530i 0.551182 0.834385i \(-0.314177\pi\)
0.998190 0.0601450i \(-0.0191563\pi\)
\(968\) −0.934810 + 1.61914i −0.0300459 + 0.0520411i
\(969\) 0 0
\(970\) −20.9660 + 1.22893i −0.673178 + 0.0394586i
\(971\) 28.9188 + 50.0888i 0.928047 + 1.60743i 0.786586 + 0.617481i \(0.211847\pi\)
0.141462 + 0.989944i \(0.454820\pi\)
\(972\) 0 0
\(973\) 15.8682 + 15.7814i 0.508711 + 0.505930i
\(974\) 17.4211 + 10.0581i 0.558208 + 0.322281i
\(975\) 0 0
\(976\) 11.2231i 0.359241i
\(977\) 39.0804 1.25029 0.625146 0.780508i \(-0.285039\pi\)
0.625146 + 0.780508i \(0.285039\pi\)
\(978\) 0 0
\(979\) 3.88358 + 2.24219i 0.124120 + 0.0716606i
\(980\) 14.0284 + 6.94283i 0.448122 + 0.221781i
\(981\) 0 0
\(982\) −0.00977625 + 0.00564432i −0.000311973 + 0.000180118i
\(983\) −13.8267 + 7.98287i −0.441005 + 0.254614i −0.704024 0.710177i \(-0.748615\pi\)
0.263019 + 0.964791i \(0.415282\pi\)
\(984\) 0 0
\(985\) −8.47885 12.8811i −0.270159 0.410425i
\(986\) −21.3231 36.9326i −0.679065 1.17617i
\(987\) 0 0
\(988\) 12.7525 + 7.36268i 0.405712 + 0.234238i
\(989\) −21.2953 + 12.2949i −0.677153 + 0.390954i
\(990\) 0 0
\(991\) 16.1342 27.9452i 0.512519 0.887709i −0.487376 0.873192i \(-0.662046\pi\)
0.999895 0.0145163i \(-0.00462085\pi\)
\(992\) 3.52560i 0.111938i
\(993\) 0 0
\(994\) −2.11621 + 0.573259i −0.0671223 + 0.0181827i
\(995\) 2.19461 + 37.4407i 0.0695737 + 1.18695i
\(996\) 0 0
\(997\) −19.8570 34.3933i −0.628877 1.08925i −0.987777 0.155871i \(-0.950182\pi\)
0.358901 0.933376i \(-0.383152\pi\)
\(998\) 5.43038 9.40569i 0.171896 0.297732i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bi.a.899.8 48
3.2 odd 2 630.2.bi.b.479.24 yes 48
5.4 even 2 1890.2.bi.b.899.24 48
7.5 odd 6 1890.2.r.b.89.16 48
9.4 even 3 630.2.r.b.59.8 yes 48
9.5 odd 6 1890.2.r.a.1529.16 48
15.14 odd 2 630.2.bi.a.479.1 yes 48
21.5 even 6 630.2.r.a.299.17 yes 48
35.19 odd 6 1890.2.r.a.89.16 48
45.4 even 6 630.2.r.a.59.17 48
45.14 odd 6 1890.2.r.b.1529.16 48
63.5 even 6 1890.2.bi.b.719.24 48
63.40 odd 6 630.2.bi.a.509.1 yes 48
105.89 even 6 630.2.r.b.299.8 yes 48
315.194 even 6 inner 1890.2.bi.a.719.8 48
315.229 odd 6 630.2.bi.b.509.24 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.17 48 45.4 even 6
630.2.r.a.299.17 yes 48 21.5 even 6
630.2.r.b.59.8 yes 48 9.4 even 3
630.2.r.b.299.8 yes 48 105.89 even 6
630.2.bi.a.479.1 yes 48 15.14 odd 2
630.2.bi.a.509.1 yes 48 63.40 odd 6
630.2.bi.b.479.24 yes 48 3.2 odd 2
630.2.bi.b.509.24 yes 48 315.229 odd 6
1890.2.r.a.89.16 48 35.19 odd 6
1890.2.r.a.1529.16 48 9.5 odd 6
1890.2.r.b.89.16 48 7.5 odd 6
1890.2.r.b.1529.16 48 45.14 odd 6
1890.2.bi.a.719.8 48 315.194 even 6 inner
1890.2.bi.a.899.8 48 1.1 even 1 trivial
1890.2.bi.b.719.24 48 63.5 even 6
1890.2.bi.b.899.24 48 5.4 even 2