Properties

Label 1890.2.bf.f.1259.13
Level $1890$
Weight $2$
Character 1890.1259
Analytic conductor $15.092$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(629,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bf (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,16,0,-16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1259.13
Character \(\chi\) \(=\) 1890.1259
Dual form 1890.2.bf.f.629.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.22443 - 1.87103i) q^{5} +(2.07602 - 1.64016i) q^{7} -1.00000 q^{8} +(2.23258 + 0.124872i) q^{10} +(1.44107 - 0.832005i) q^{11} +(-1.04814 + 1.81544i) q^{13} +(2.45843 + 0.977807i) q^{14} +(-0.500000 - 0.866025i) q^{16} +7.45463i q^{17} +4.66141i q^{19} +(1.00815 + 1.99591i) q^{20} +(1.44107 + 0.832005i) q^{22} +(2.82486 - 4.89279i) q^{23} +(-2.00154 - 4.58191i) q^{25} -2.09629 q^{26} +(0.382411 + 2.61797i) q^{28} +(4.10738 - 2.37140i) q^{29} +(1.73402 + 1.00114i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-6.45590 + 3.72732i) q^{34} +(-0.526851 - 5.89257i) q^{35} +4.86789i q^{37} +(-4.03690 + 2.33070i) q^{38} +(-1.22443 + 1.87103i) q^{40} +(4.07169 - 7.05238i) q^{41} +(-2.25274 + 1.30062i) q^{43} +1.66401i q^{44} +5.64971 q^{46} +(8.90154 - 5.13931i) q^{47} +(1.61974 - 6.81003i) q^{49} +(2.96728 - 4.02433i) q^{50} +(-1.04814 - 1.81544i) q^{52} +13.8374 q^{53} +(0.207788 - 3.71503i) q^{55} +(-2.07602 + 1.64016i) q^{56} +(4.10738 + 2.37140i) q^{58} +(0.0862901 - 0.149459i) q^{59} +(5.17503 - 2.98781i) q^{61} +2.00228i q^{62} +1.00000 q^{64} +(2.11336 + 4.18399i) q^{65} +(4.70611 + 2.71707i) q^{67} +(-6.45590 - 3.72732i) q^{68} +(4.83969 - 3.40255i) q^{70} -12.0450i q^{71} -4.79644 q^{73} +(-4.21571 + 2.43394i) q^{74} +(-4.03690 - 2.33070i) q^{76} +(1.62708 - 4.09086i) q^{77} +(-6.30891 - 10.9273i) q^{79} +(-2.23258 - 0.124872i) q^{80} +8.14339 q^{82} +(-2.24015 + 1.29335i) q^{83} +(13.9479 + 9.12768i) q^{85} +(-2.25274 - 1.30062i) q^{86} +(-1.44107 + 0.832005i) q^{88} -11.2248 q^{89} +(0.801642 + 5.48801i) q^{91} +(2.82486 + 4.89279i) q^{92} +(8.90154 + 5.13931i) q^{94} +(8.72165 + 5.70757i) q^{95} +(-4.73188 - 8.19586i) q^{97} +(6.70752 - 2.00228i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{2} - 16 q^{4} - 32 q^{8} + 24 q^{11} - 16 q^{16} + 24 q^{22} + 24 q^{23} - 58 q^{25} + 36 q^{29} + 16 q^{32} + 48 q^{35} - 54 q^{43} + 48 q^{46} + 32 q^{49} - 50 q^{50} + 24 q^{53} + 36 q^{58}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.22443 1.87103i 0.547582 0.836752i
\(6\) 0 0
\(7\) 2.07602 1.64016i 0.784663 0.619923i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.23258 + 0.124872i 0.706003 + 0.0394879i
\(11\) 1.44107 0.832005i 0.434500 0.250859i −0.266762 0.963763i \(-0.585954\pi\)
0.701262 + 0.712904i \(0.252620\pi\)
\(12\) 0 0
\(13\) −1.04814 + 1.81544i −0.290703 + 0.503512i −0.973976 0.226651i \(-0.927222\pi\)
0.683273 + 0.730163i \(0.260556\pi\)
\(14\) 2.45843 + 0.977807i 0.657044 + 0.261330i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 7.45463i 1.80801i 0.427518 + 0.904007i \(0.359388\pi\)
−0.427518 + 0.904007i \(0.640612\pi\)
\(18\) 0 0
\(19\) 4.66141i 1.06940i 0.845042 + 0.534700i \(0.179575\pi\)
−0.845042 + 0.534700i \(0.820425\pi\)
\(20\) 1.00815 + 1.99591i 0.225429 + 0.446298i
\(21\) 0 0
\(22\) 1.44107 + 0.832005i 0.307238 + 0.177384i
\(23\) 2.82486 4.89279i 0.589023 1.02022i −0.405337 0.914167i \(-0.632846\pi\)
0.994361 0.106051i \(-0.0338207\pi\)
\(24\) 0 0
\(25\) −2.00154 4.58191i −0.400307 0.916381i
\(26\) −2.09629 −0.411116
\(27\) 0 0
\(28\) 0.382411 + 2.61797i 0.0722688 + 0.494750i
\(29\) 4.10738 2.37140i 0.762721 0.440357i −0.0675508 0.997716i \(-0.521518\pi\)
0.830272 + 0.557359i \(0.188185\pi\)
\(30\) 0 0
\(31\) 1.73402 + 1.00114i 0.311440 + 0.179810i 0.647571 0.762005i \(-0.275785\pi\)
−0.336131 + 0.941815i \(0.609118\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −6.45590 + 3.72732i −1.10718 + 0.639229i
\(35\) −0.526851 5.89257i −0.0890541 0.996027i
\(36\) 0 0
\(37\) 4.86789i 0.800276i 0.916455 + 0.400138i \(0.131038\pi\)
−0.916455 + 0.400138i \(0.868962\pi\)
\(38\) −4.03690 + 2.33070i −0.654871 + 0.378090i
\(39\) 0 0
\(40\) −1.22443 + 1.87103i −0.193600 + 0.295836i
\(41\) 4.07169 7.05238i 0.635892 1.10140i −0.350434 0.936587i \(-0.613966\pi\)
0.986325 0.164809i \(-0.0527008\pi\)
\(42\) 0 0
\(43\) −2.25274 + 1.30062i −0.343540 + 0.198343i −0.661836 0.749648i \(-0.730223\pi\)
0.318296 + 0.947991i \(0.396889\pi\)
\(44\) 1.66401i 0.250859i
\(45\) 0 0
\(46\) 5.64971 0.833005
\(47\) 8.90154 5.13931i 1.29842 0.749645i 0.318292 0.947993i \(-0.396891\pi\)
0.980132 + 0.198348i \(0.0635575\pi\)
\(48\) 0 0
\(49\) 1.61974 6.81003i 0.231391 0.972861i
\(50\) 2.96728 4.02433i 0.419637 0.569127i
\(51\) 0 0
\(52\) −1.04814 1.81544i −0.145351 0.251756i
\(53\) 13.8374 1.90071 0.950354 0.311170i \(-0.100721\pi\)
0.950354 + 0.311170i \(0.100721\pi\)
\(54\) 0 0
\(55\) 0.207788 3.71503i 0.0280181 0.500935i
\(56\) −2.07602 + 1.64016i −0.277420 + 0.219176i
\(57\) 0 0
\(58\) 4.10738 + 2.37140i 0.539325 + 0.311380i
\(59\) 0.0862901 0.149459i 0.0112340 0.0194579i −0.860354 0.509697i \(-0.829757\pi\)
0.871588 + 0.490240i \(0.163091\pi\)
\(60\) 0 0
\(61\) 5.17503 2.98781i 0.662595 0.382550i −0.130670 0.991426i \(-0.541713\pi\)
0.793265 + 0.608876i \(0.208379\pi\)
\(62\) 2.00228i 0.254290i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.11336 + 4.18399i 0.262131 + 0.518960i
\(66\) 0 0
\(67\) 4.70611 + 2.71707i 0.574943 + 0.331943i 0.759121 0.650949i \(-0.225629\pi\)
−0.184178 + 0.982893i \(0.558962\pi\)
\(68\) −6.45590 3.72732i −0.782893 0.452003i
\(69\) 0 0
\(70\) 4.83969 3.40255i 0.578454 0.406683i
\(71\) 12.0450i 1.42947i −0.699393 0.714737i \(-0.746546\pi\)
0.699393 0.714737i \(-0.253454\pi\)
\(72\) 0 0
\(73\) −4.79644 −0.561381 −0.280691 0.959798i \(-0.590563\pi\)
−0.280691 + 0.959798i \(0.590563\pi\)
\(74\) −4.21571 + 2.43394i −0.490067 + 0.282940i
\(75\) 0 0
\(76\) −4.03690 2.33070i −0.463064 0.267350i
\(77\) 1.62708 4.09086i 0.185423 0.466196i
\(78\) 0 0
\(79\) −6.30891 10.9273i −0.709807 1.22942i −0.964928 0.262513i \(-0.915449\pi\)
0.255121 0.966909i \(-0.417885\pi\)
\(80\) −2.23258 0.124872i −0.249610 0.0139611i
\(81\) 0 0
\(82\) 8.14339 0.899286
\(83\) −2.24015 + 1.29335i −0.245888 + 0.141964i −0.617880 0.786272i \(-0.712008\pi\)
0.371992 + 0.928236i \(0.378675\pi\)
\(84\) 0 0
\(85\) 13.9479 + 9.12768i 1.51286 + 0.990036i
\(86\) −2.25274 1.30062i −0.242919 0.140250i
\(87\) 0 0
\(88\) −1.44107 + 0.832005i −0.153619 + 0.0886920i
\(89\) −11.2248 −1.18982 −0.594912 0.803791i \(-0.702813\pi\)
−0.594912 + 0.803791i \(0.702813\pi\)
\(90\) 0 0
\(91\) 0.801642 + 5.48801i 0.0840350 + 0.575300i
\(92\) 2.82486 + 4.89279i 0.294512 + 0.510109i
\(93\) 0 0
\(94\) 8.90154 + 5.13931i 0.918124 + 0.530079i
\(95\) 8.72165 + 5.70757i 0.894823 + 0.585585i
\(96\) 0 0
\(97\) −4.73188 8.19586i −0.480450 0.832164i 0.519298 0.854593i \(-0.326193\pi\)
−0.999748 + 0.0224290i \(0.992860\pi\)
\(98\) 6.70752 2.00228i 0.677562 0.202261i
\(99\) 0 0
\(100\) 4.96881 + 0.557572i 0.496881 + 0.0557572i
\(101\) 5.28548 + 9.15472i 0.525925 + 0.910928i 0.999544 + 0.0301987i \(0.00961400\pi\)
−0.473619 + 0.880730i \(0.657053\pi\)
\(102\) 0 0
\(103\) −7.61856 + 13.1957i −0.750679 + 1.30021i 0.196816 + 0.980441i \(0.436940\pi\)
−0.947494 + 0.319773i \(0.896393\pi\)
\(104\) 1.04814 1.81544i 0.102779 0.178018i
\(105\) 0 0
\(106\) 6.91868 + 11.9835i 0.672002 + 1.16394i
\(107\) 11.4163 1.10366 0.551829 0.833957i \(-0.313930\pi\)
0.551829 + 0.833957i \(0.313930\pi\)
\(108\) 0 0
\(109\) −10.6147 −1.01670 −0.508351 0.861150i \(-0.669745\pi\)
−0.508351 + 0.861150i \(0.669745\pi\)
\(110\) 3.32121 1.67757i 0.316664 0.159950i
\(111\) 0 0
\(112\) −2.45843 0.977807i −0.232300 0.0923941i
\(113\) −6.87120 + 11.9013i −0.646388 + 1.11958i 0.337591 + 0.941293i \(0.390388\pi\)
−0.983979 + 0.178284i \(0.942945\pi\)
\(114\) 0 0
\(115\) −5.69574 11.2763i −0.531131 1.05152i
\(116\) 4.74279i 0.440357i
\(117\) 0 0
\(118\) 0.172580 0.0158873
\(119\) 12.2268 + 15.4760i 1.12083 + 1.41868i
\(120\) 0 0
\(121\) −4.11554 + 7.12832i −0.374140 + 0.648029i
\(122\) 5.17503 + 2.98781i 0.468526 + 0.270503i
\(123\) 0 0
\(124\) −1.73402 + 1.00114i −0.155720 + 0.0899050i
\(125\) −11.0236 1.86529i −0.985985 0.166837i
\(126\) 0 0
\(127\) 14.1949i 1.25960i 0.776759 + 0.629798i \(0.216862\pi\)
−0.776759 + 0.629798i \(0.783138\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −2.56676 + 3.92222i −0.225120 + 0.344002i
\(131\) 1.14681 1.98633i 0.100197 0.173547i −0.811569 0.584257i \(-0.801386\pi\)
0.911766 + 0.410710i \(0.134719\pi\)
\(132\) 0 0
\(133\) 7.64546 + 9.67719i 0.662946 + 0.839119i
\(134\) 5.43415i 0.469439i
\(135\) 0 0
\(136\) 7.45463i 0.639229i
\(137\) −5.41797 9.38419i −0.462888 0.801746i 0.536215 0.844081i \(-0.319853\pi\)
−0.999103 + 0.0423355i \(0.986520\pi\)
\(138\) 0 0
\(139\) −7.63600 4.40865i −0.647677 0.373936i 0.139889 0.990167i \(-0.455326\pi\)
−0.787566 + 0.616231i \(0.788659\pi\)
\(140\) 5.36654 + 2.49002i 0.453556 + 0.210445i
\(141\) 0 0
\(142\) 10.4312 6.02248i 0.875371 0.505396i
\(143\) 3.48824i 0.291701i
\(144\) 0 0
\(145\) 0.592241 10.5887i 0.0491830 0.879340i
\(146\) −2.39822 4.15384i −0.198478 0.343774i
\(147\) 0 0
\(148\) −4.21571 2.43394i −0.346529 0.200069i
\(149\) −12.4184 7.16974i −1.01735 0.587368i −0.104016 0.994576i \(-0.533169\pi\)
−0.913336 + 0.407207i \(0.866503\pi\)
\(150\) 0 0
\(151\) 3.45207 + 5.97917i 0.280926 + 0.486578i 0.971613 0.236576i \(-0.0760252\pi\)
−0.690687 + 0.723154i \(0.742692\pi\)
\(152\) 4.66141i 0.378090i
\(153\) 0 0
\(154\) 4.35632 0.636335i 0.351043 0.0512773i
\(155\) 3.99636 2.01859i 0.320995 0.162137i
\(156\) 0 0
\(157\) 7.48808 12.9697i 0.597614 1.03510i −0.395559 0.918441i \(-0.629449\pi\)
0.993172 0.116657i \(-0.0372177\pi\)
\(158\) 6.30891 10.9273i 0.501910 0.869333i
\(159\) 0 0
\(160\) −1.00815 1.99591i −0.0797010 0.157790i
\(161\) −2.16051 14.7908i −0.170272 1.16568i
\(162\) 0 0
\(163\) 8.03539i 0.629380i 0.949194 + 0.314690i \(0.101901\pi\)
−0.949194 + 0.314690i \(0.898099\pi\)
\(164\) 4.07169 + 7.05238i 0.317946 + 0.550698i
\(165\) 0 0
\(166\) −2.24015 1.29335i −0.173869 0.100384i
\(167\) 4.12075 + 2.37911i 0.318873 + 0.184101i 0.650890 0.759172i \(-0.274396\pi\)
−0.332017 + 0.943273i \(0.607729\pi\)
\(168\) 0 0
\(169\) 4.30279 + 7.45265i 0.330984 + 0.573281i
\(170\) −0.930873 + 16.6430i −0.0713947 + 1.27646i
\(171\) 0 0
\(172\) 2.60124i 0.198343i
\(173\) −14.9456 + 8.62882i −1.13629 + 0.656037i −0.945509 0.325595i \(-0.894435\pi\)
−0.190781 + 0.981633i \(0.561102\pi\)
\(174\) 0 0
\(175\) −11.6703 6.22930i −0.882192 0.470891i
\(176\) −1.44107 0.832005i −0.108625 0.0627147i
\(177\) 0 0
\(178\) −5.61239 9.72094i −0.420666 0.728616i
\(179\) 0.602635i 0.0450430i −0.999746 0.0225215i \(-0.992831\pi\)
0.999746 0.0225215i \(-0.00716943\pi\)
\(180\) 0 0
\(181\) 12.7778i 0.949769i −0.880048 0.474885i \(-0.842490\pi\)
0.880048 0.474885i \(-0.157510\pi\)
\(182\) −4.35194 + 3.43825i −0.322587 + 0.254860i
\(183\) 0 0
\(184\) −2.82486 + 4.89279i −0.208251 + 0.360702i
\(185\) 9.10798 + 5.96039i 0.669632 + 0.438217i
\(186\) 0 0
\(187\) 6.20229 + 10.7427i 0.453556 + 0.785582i
\(188\) 10.2786i 0.749645i
\(189\) 0 0
\(190\) −0.582079 + 10.4070i −0.0422284 + 0.755000i
\(191\) −16.3178 + 9.42111i −1.18072 + 0.681687i −0.956180 0.292778i \(-0.905420\pi\)
−0.224537 + 0.974466i \(0.572087\pi\)
\(192\) 0 0
\(193\) 5.89207 + 3.40179i 0.424120 + 0.244866i 0.696839 0.717228i \(-0.254589\pi\)
−0.272718 + 0.962094i \(0.587923\pi\)
\(194\) 4.73188 8.19586i 0.339730 0.588429i
\(195\) 0 0
\(196\) 5.08779 + 4.80775i 0.363413 + 0.343410i
\(197\) 8.58750 0.611834 0.305917 0.952058i \(-0.401037\pi\)
0.305917 + 0.952058i \(0.401037\pi\)
\(198\) 0 0
\(199\) 5.10064i 0.361575i 0.983522 + 0.180788i \(0.0578646\pi\)
−0.983522 + 0.180788i \(0.942135\pi\)
\(200\) 2.00154 + 4.58191i 0.141530 + 0.323990i
\(201\) 0 0
\(202\) −5.28548 + 9.15472i −0.371885 + 0.644124i
\(203\) 4.63754 11.6598i 0.325491 0.818360i
\(204\) 0 0
\(205\) −8.20973 16.2534i −0.573392 1.13519i
\(206\) −15.2371 −1.06162
\(207\) 0 0
\(208\) 2.09629 0.145351
\(209\) 3.87831 + 6.71743i 0.268268 + 0.464655i
\(210\) 0 0
\(211\) 5.01715 8.68995i 0.345395 0.598241i −0.640031 0.768349i \(-0.721078\pi\)
0.985425 + 0.170108i \(0.0544118\pi\)
\(212\) −6.91868 + 11.9835i −0.475177 + 0.823031i
\(213\) 0 0
\(214\) 5.70816 + 9.88683i 0.390202 + 0.675850i
\(215\) −0.324822 + 5.80748i −0.0221527 + 0.396067i
\(216\) 0 0
\(217\) 5.24190 0.765693i 0.355844 0.0519786i
\(218\) −5.30734 9.19258i −0.359458 0.622600i
\(219\) 0 0
\(220\) 3.11342 + 2.03747i 0.209907 + 0.137366i
\(221\) −13.5334 7.81352i −0.910356 0.525594i
\(222\) 0 0
\(223\) 8.87226 + 15.3672i 0.594131 + 1.02906i 0.993669 + 0.112348i \(0.0358372\pi\)
−0.399538 + 0.916717i \(0.630829\pi\)
\(224\) −0.382411 2.61797i −0.0255509 0.174920i
\(225\) 0 0
\(226\) −13.7424 −0.914131
\(227\) −0.411273 + 0.237449i −0.0272972 + 0.0157600i −0.513586 0.858038i \(-0.671683\pi\)
0.486289 + 0.873798i \(0.338350\pi\)
\(228\) 0 0
\(229\) 9.51279 + 5.49221i 0.628623 + 0.362936i 0.780219 0.625507i \(-0.215108\pi\)
−0.151596 + 0.988443i \(0.548441\pi\)
\(230\) 6.91769 10.5708i 0.456139 0.697018i
\(231\) 0 0
\(232\) −4.10738 + 2.37140i −0.269663 + 0.155690i
\(233\) −21.4794 −1.40716 −0.703582 0.710614i \(-0.748417\pi\)
−0.703582 + 0.710614i \(0.748417\pi\)
\(234\) 0 0
\(235\) 1.28351 22.9478i 0.0837269 1.49695i
\(236\) 0.0862901 + 0.149459i 0.00561701 + 0.00972894i
\(237\) 0 0
\(238\) −7.28919 + 18.3267i −0.472488 + 1.18794i
\(239\) 14.6228 + 8.44250i 0.945873 + 0.546100i 0.891797 0.452437i \(-0.149445\pi\)
0.0540768 + 0.998537i \(0.482778\pi\)
\(240\) 0 0
\(241\) −8.00911 + 4.62406i −0.515912 + 0.297862i −0.735261 0.677784i \(-0.762940\pi\)
0.219348 + 0.975647i \(0.429607\pi\)
\(242\) −8.23107 −0.529113
\(243\) 0 0
\(244\) 5.97562i 0.382550i
\(245\) −10.7585 11.3690i −0.687337 0.726338i
\(246\) 0 0
\(247\) −8.46249 4.88582i −0.538456 0.310877i
\(248\) −1.73402 1.00114i −0.110111 0.0635724i
\(249\) 0 0
\(250\) −3.89643 10.4794i −0.246432 0.662775i
\(251\) −9.36996 −0.591426 −0.295713 0.955277i \(-0.595557\pi\)
−0.295713 + 0.955277i \(0.595557\pi\)
\(252\) 0 0
\(253\) 9.40117i 0.591047i
\(254\) −12.2932 + 7.09746i −0.771342 + 0.445334i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.62239 3.24609i −0.350715 0.202485i 0.314285 0.949329i \(-0.398235\pi\)
−0.665000 + 0.746843i \(0.731569\pi\)
\(258\) 0 0
\(259\) 7.98412 + 10.1058i 0.496109 + 0.627946i
\(260\) −4.68012 0.261767i −0.290249 0.0162341i
\(261\) 0 0
\(262\) 2.29362 0.141700
\(263\) 4.41420 + 7.64563i 0.272192 + 0.471450i 0.969423 0.245397i \(-0.0789182\pi\)
−0.697231 + 0.716846i \(0.745585\pi\)
\(264\) 0 0
\(265\) 16.9429 25.8902i 1.04079 1.59042i
\(266\) −4.55796 + 11.4598i −0.279466 + 0.702643i
\(267\) 0 0
\(268\) −4.70611 + 2.71707i −0.287471 + 0.165972i
\(269\) 11.6257 0.708833 0.354416 0.935088i \(-0.384680\pi\)
0.354416 + 0.935088i \(0.384680\pi\)
\(270\) 0 0
\(271\) 16.8123i 1.02128i 0.859796 + 0.510638i \(0.170591\pi\)
−0.859796 + 0.510638i \(0.829409\pi\)
\(272\) 6.45590 3.72732i 0.391446 0.226002i
\(273\) 0 0
\(274\) 5.41797 9.38419i 0.327311 0.566920i
\(275\) −6.69653 4.93758i −0.403816 0.297747i
\(276\) 0 0
\(277\) −1.93149 + 1.11514i −0.116052 + 0.0670026i −0.556902 0.830578i \(-0.688010\pi\)
0.440850 + 0.897581i \(0.354677\pi\)
\(278\) 8.81729i 0.528826i
\(279\) 0 0
\(280\) 0.526851 + 5.89257i 0.0314854 + 0.352149i
\(281\) 2.79869 1.61582i 0.166956 0.0963919i −0.414194 0.910189i \(-0.635936\pi\)
0.581150 + 0.813797i \(0.302603\pi\)
\(282\) 0 0
\(283\) −3.23291 + 5.59957i −0.192177 + 0.332860i −0.945971 0.324250i \(-0.894888\pi\)
0.753795 + 0.657110i \(0.228221\pi\)
\(284\) 10.4312 + 6.02248i 0.618981 + 0.357369i
\(285\) 0 0
\(286\) −3.02090 + 1.74412i −0.178630 + 0.103132i
\(287\) −3.11412 21.3191i −0.183821 1.25843i
\(288\) 0 0
\(289\) −38.5715 −2.26891
\(290\) 9.46617 4.78143i 0.555872 0.280775i
\(291\) 0 0
\(292\) 2.39822 4.15384i 0.140345 0.243085i
\(293\) −16.0415 9.26155i −0.937153 0.541066i −0.0480865 0.998843i \(-0.515312\pi\)
−0.889067 + 0.457777i \(0.848646\pi\)
\(294\) 0 0
\(295\) −0.173986 0.344454i −0.0101299 0.0200549i
\(296\) 4.86789i 0.282940i
\(297\) 0 0
\(298\) 14.3395i 0.830664i
\(299\) 5.92171 + 10.2567i 0.342461 + 0.593160i
\(300\) 0 0
\(301\) −2.54351 + 6.39498i −0.146606 + 0.368600i
\(302\) −3.45207 + 5.97917i −0.198645 + 0.344062i
\(303\) 0 0
\(304\) 4.03690 2.33070i 0.231532 0.133675i
\(305\) 0.746186 13.3410i 0.0427265 0.763905i
\(306\) 0 0
\(307\) 3.44142 0.196412 0.0982062 0.995166i \(-0.468690\pi\)
0.0982062 + 0.995166i \(0.468690\pi\)
\(308\) 2.72924 + 3.45452i 0.155513 + 0.196840i
\(309\) 0 0
\(310\) 3.74633 + 2.45165i 0.212777 + 0.139245i
\(311\) 16.6186 28.7842i 0.942352 1.63220i 0.181385 0.983412i \(-0.441942\pi\)
0.760967 0.648790i \(-0.224725\pi\)
\(312\) 0 0
\(313\) −0.967111 1.67509i −0.0546644 0.0946815i 0.837398 0.546593i \(-0.184076\pi\)
−0.892063 + 0.451912i \(0.850742\pi\)
\(314\) 14.9762 0.845153
\(315\) 0 0
\(316\) 12.6178 0.709807
\(317\) −5.12038 8.86877i −0.287589 0.498120i 0.685644 0.727937i \(-0.259521\pi\)
−0.973234 + 0.229817i \(0.926187\pi\)
\(318\) 0 0
\(319\) 3.94603 6.83472i 0.220935 0.382671i
\(320\) 1.22443 1.87103i 0.0684478 0.104594i
\(321\) 0 0
\(322\) 11.7289 9.26644i 0.653628 0.516399i
\(323\) −34.7491 −1.93349
\(324\) 0 0
\(325\) 10.4161 + 1.16883i 0.577779 + 0.0648351i
\(326\) −6.95885 + 4.01770i −0.385415 + 0.222520i
\(327\) 0 0
\(328\) −4.07169 + 7.05238i −0.224822 + 0.389402i
\(329\) 10.0505 25.2693i 0.554102 1.39314i
\(330\) 0 0
\(331\) −2.81788 4.88070i −0.154884 0.268268i 0.778133 0.628100i \(-0.216167\pi\)
−0.933017 + 0.359832i \(0.882834\pi\)
\(332\) 2.58670i 0.141964i
\(333\) 0 0
\(334\) 4.75823i 0.260359i
\(335\) 10.8460 5.47842i 0.592583 0.299318i
\(336\) 0 0
\(337\) −11.8563 6.84524i −0.645854 0.372884i 0.141012 0.990008i \(-0.454964\pi\)
−0.786866 + 0.617124i \(0.788298\pi\)
\(338\) −4.30279 + 7.45265i −0.234041 + 0.405371i
\(339\) 0 0
\(340\) −14.8787 + 7.51536i −0.806913 + 0.407578i
\(341\) 3.33181 0.180428
\(342\) 0 0
\(343\) −7.80693 16.7944i −0.421535 0.906812i
\(344\) 2.25274 1.30062i 0.121460 0.0701248i
\(345\) 0 0
\(346\) −14.9456 8.62882i −0.803478 0.463888i
\(347\) −4.89520 + 8.47874i −0.262788 + 0.455163i −0.966982 0.254845i \(-0.917975\pi\)
0.704193 + 0.710008i \(0.251309\pi\)
\(348\) 0 0
\(349\) −14.0539 + 8.11400i −0.752286 + 0.434332i −0.826519 0.562909i \(-0.809682\pi\)
0.0742335 + 0.997241i \(0.476349\pi\)
\(350\) −0.440421 13.2214i −0.0235415 0.706715i
\(351\) 0 0
\(352\) 1.66401i 0.0886920i
\(353\) −20.9960 + 12.1220i −1.11750 + 0.645191i −0.940762 0.339066i \(-0.889889\pi\)
−0.176741 + 0.984257i \(0.556556\pi\)
\(354\) 0 0
\(355\) −22.5365 14.7482i −1.19612 0.782755i
\(356\) 5.61239 9.72094i 0.297456 0.515209i
\(357\) 0 0
\(358\) 0.521897 0.301317i 0.0275831 0.0159251i
\(359\) 31.3617i 1.65521i 0.561313 + 0.827604i \(0.310296\pi\)
−0.561313 + 0.827604i \(0.689704\pi\)
\(360\) 0 0
\(361\) −2.72872 −0.143617
\(362\) 11.0659 6.38892i 0.581612 0.335794i
\(363\) 0 0
\(364\) −5.15358 2.04976i −0.270121 0.107437i
\(365\) −5.87292 + 8.97431i −0.307402 + 0.469737i
\(366\) 0 0
\(367\) −0.616195 1.06728i −0.0321651 0.0557116i 0.849495 0.527597i \(-0.176907\pi\)
−0.881660 + 0.471885i \(0.843574\pi\)
\(368\) −5.64971 −0.294512
\(369\) 0 0
\(370\) −0.607862 + 10.8679i −0.0316012 + 0.564997i
\(371\) 28.7267 22.6955i 1.49142 1.17829i
\(372\) 0 0
\(373\) −23.9159 13.8079i −1.23832 0.714944i −0.269569 0.962981i \(-0.586881\pi\)
−0.968751 + 0.248037i \(0.920214\pi\)
\(374\) −6.20229 + 10.7427i −0.320713 + 0.555491i
\(375\) 0 0
\(376\) −8.90154 + 5.13931i −0.459062 + 0.265040i
\(377\) 9.94225i 0.512052i
\(378\) 0 0
\(379\) 23.2265 1.19307 0.596533 0.802589i \(-0.296545\pi\)
0.596533 + 0.802589i \(0.296545\pi\)
\(380\) −9.30373 + 4.69938i −0.477271 + 0.241073i
\(381\) 0 0
\(382\) −16.3178 9.42111i −0.834893 0.482026i
\(383\) −20.6052 11.8964i −1.05288 0.607880i −0.129425 0.991589i \(-0.541313\pi\)
−0.923454 + 0.383709i \(0.874646\pi\)
\(384\) 0 0
\(385\) −5.66188 8.05329i −0.288556 0.410434i
\(386\) 6.80357i 0.346293i
\(387\) 0 0
\(388\) 9.46377 0.480450
\(389\) 8.18328 4.72462i 0.414909 0.239548i −0.277988 0.960585i \(-0.589668\pi\)
0.692897 + 0.721037i \(0.256334\pi\)
\(390\) 0 0
\(391\) 36.4740 + 21.0583i 1.84457 + 1.06496i
\(392\) −1.61974 + 6.81003i −0.0818091 + 0.343958i
\(393\) 0 0
\(394\) 4.29375 + 7.43699i 0.216316 + 0.374670i
\(395\) −28.1703 1.57561i −1.41740 0.0792775i
\(396\) 0 0
\(397\) −21.7234 −1.09026 −0.545132 0.838350i \(-0.683521\pi\)
−0.545132 + 0.838350i \(0.683521\pi\)
\(398\) −4.41729 + 2.55032i −0.221419 + 0.127836i
\(399\) 0 0
\(400\) −2.96728 + 4.02433i −0.148364 + 0.201217i
\(401\) 10.6544 + 6.15134i 0.532057 + 0.307183i 0.741854 0.670562i \(-0.233947\pi\)
−0.209797 + 0.977745i \(0.567280\pi\)
\(402\) 0 0
\(403\) −3.63501 + 2.09867i −0.181073 + 0.104542i
\(404\) −10.5710 −0.525925
\(405\) 0 0
\(406\) 12.4165 1.81369i 0.616220 0.0900122i
\(407\) 4.05010 + 7.01498i 0.200756 + 0.347720i
\(408\) 0 0
\(409\) 2.50285 + 1.44502i 0.123758 + 0.0714517i 0.560601 0.828086i \(-0.310570\pi\)
−0.436843 + 0.899538i \(0.643903\pi\)
\(410\) 9.97102 15.2365i 0.492433 0.752480i
\(411\) 0 0
\(412\) −7.61856 13.1957i −0.375339 0.650107i
\(413\) −0.0659965 0.451810i −0.00324748 0.0222321i
\(414\) 0 0
\(415\) −0.323006 + 5.77502i −0.0158558 + 0.283484i
\(416\) 1.04814 + 1.81544i 0.0513894 + 0.0890091i
\(417\) 0 0
\(418\) −3.87831 + 6.71743i −0.189694 + 0.328560i
\(419\) −12.7397 + 22.0658i −0.622374 + 1.07798i 0.366668 + 0.930352i \(0.380499\pi\)
−0.989042 + 0.147632i \(0.952835\pi\)
\(420\) 0 0
\(421\) −2.96965 5.14359i −0.144732 0.250683i 0.784541 0.620077i \(-0.212899\pi\)
−0.929273 + 0.369394i \(0.879565\pi\)
\(422\) 10.0343 0.488462
\(423\) 0 0
\(424\) −13.8374 −0.672002
\(425\) 34.1564 14.9207i 1.65683 0.723761i
\(426\) 0 0
\(427\) 5.84300 14.6907i 0.282763 0.710930i
\(428\) −5.70816 + 9.88683i −0.275914 + 0.477898i
\(429\) 0 0
\(430\) −5.19183 + 2.62243i −0.250372 + 0.126465i
\(431\) 29.4344i 1.41781i 0.705306 + 0.708903i \(0.250810\pi\)
−0.705306 + 0.708903i \(0.749190\pi\)
\(432\) 0 0
\(433\) −14.2559 −0.685093 −0.342546 0.939501i \(-0.611289\pi\)
−0.342546 + 0.939501i \(0.611289\pi\)
\(434\) 3.28406 + 4.15678i 0.157640 + 0.199532i
\(435\) 0 0
\(436\) 5.30734 9.19258i 0.254176 0.440245i
\(437\) 22.8073 + 13.1678i 1.09102 + 0.629902i
\(438\) 0 0
\(439\) 9.41191 5.43397i 0.449206 0.259349i −0.258289 0.966068i \(-0.583159\pi\)
0.707495 + 0.706719i \(0.249825\pi\)
\(440\) −0.207788 + 3.71503i −0.00990590 + 0.177107i
\(441\) 0 0
\(442\) 15.6270i 0.743303i
\(443\) −5.24859 9.09083i −0.249368 0.431918i 0.713983 0.700164i \(-0.246890\pi\)
−0.963351 + 0.268245i \(0.913556\pi\)
\(444\) 0 0
\(445\) −13.7440 + 21.0019i −0.651527 + 0.995587i
\(446\) −8.87226 + 15.3672i −0.420114 + 0.727659i
\(447\) 0 0
\(448\) 2.07602 1.64016i 0.0980828 0.0774904i
\(449\) 37.0684i 1.74937i −0.484695 0.874683i \(-0.661070\pi\)
0.484695 0.874683i \(-0.338930\pi\)
\(450\) 0 0
\(451\) 13.5507i 0.638076i
\(452\) −6.87120 11.9013i −0.323194 0.559789i
\(453\) 0 0
\(454\) −0.411273 0.237449i −0.0193020 0.0111440i
\(455\) 11.2498 + 5.21980i 0.527399 + 0.244708i
\(456\) 0 0
\(457\) −17.5211 + 10.1158i −0.819601 + 0.473197i −0.850279 0.526333i \(-0.823567\pi\)
0.0306780 + 0.999529i \(0.490233\pi\)
\(458\) 10.9844i 0.513269i
\(459\) 0 0
\(460\) 12.6134 + 0.705490i 0.588104 + 0.0328936i
\(461\) 6.80701 + 11.7901i 0.317034 + 0.549119i 0.979868 0.199648i \(-0.0639798\pi\)
−0.662834 + 0.748766i \(0.730646\pi\)
\(462\) 0 0
\(463\) 19.8188 + 11.4424i 0.921057 + 0.531773i 0.883972 0.467539i \(-0.154859\pi\)
0.0370852 + 0.999312i \(0.488193\pi\)
\(464\) −4.10738 2.37140i −0.190680 0.110089i
\(465\) 0 0
\(466\) −10.7397 18.6017i −0.497507 0.861708i
\(467\) 3.34545i 0.154809i 0.997000 + 0.0774044i \(0.0246633\pi\)
−0.997000 + 0.0774044i \(0.975337\pi\)
\(468\) 0 0
\(469\) 14.2264 2.07808i 0.656916 0.0959567i
\(470\) 20.5151 10.3624i 0.946293 0.477980i
\(471\) 0 0
\(472\) −0.0862901 + 0.149459i −0.00397182 + 0.00687940i
\(473\) −2.16425 + 3.74858i −0.0995121 + 0.172360i
\(474\) 0 0
\(475\) 21.3581 9.32997i 0.979978 0.428088i
\(476\) −19.5160 + 2.85073i −0.894514 + 0.130663i
\(477\) 0 0
\(478\) 16.8850i 0.772302i
\(479\) −8.15257 14.1207i −0.372500 0.645189i 0.617449 0.786611i \(-0.288166\pi\)
−0.989949 + 0.141421i \(0.954833\pi\)
\(480\) 0 0
\(481\) −8.83734 5.10224i −0.402948 0.232642i
\(482\) −8.00911 4.62406i −0.364805 0.210620i
\(483\) 0 0
\(484\) −4.11554 7.12832i −0.187070 0.324014i
\(485\) −21.1286 1.18176i −0.959401 0.0536609i
\(486\) 0 0
\(487\) 5.20248i 0.235747i −0.993029 0.117873i \(-0.962392\pi\)
0.993029 0.117873i \(-0.0376077\pi\)
\(488\) −5.17503 + 2.98781i −0.234263 + 0.135252i
\(489\) 0 0
\(490\) 4.46657 15.0017i 0.201779 0.677706i
\(491\) 20.6633 + 11.9299i 0.932521 + 0.538391i 0.887608 0.460600i \(-0.152366\pi\)
0.0449127 + 0.998991i \(0.485699\pi\)
\(492\) 0 0
\(493\) 17.6779 + 30.6190i 0.796172 + 1.37901i
\(494\) 9.77165i 0.439647i
\(495\) 0 0
\(496\) 2.00228i 0.0899050i
\(497\) −19.7557 25.0056i −0.886164 1.12166i
\(498\) 0 0
\(499\) 16.1660 28.0003i 0.723688 1.25346i −0.235824 0.971796i \(-0.575779\pi\)
0.959512 0.281668i \(-0.0908877\pi\)
\(500\) 7.12721 8.61411i 0.318738 0.385235i
\(501\) 0 0
\(502\) −4.68498 8.11462i −0.209101 0.362173i
\(503\) 10.0768i 0.449301i 0.974439 + 0.224651i \(0.0721241\pi\)
−0.974439 + 0.224651i \(0.927876\pi\)
\(504\) 0 0
\(505\) 23.6005 + 1.32001i 1.05021 + 0.0587399i
\(506\) 8.14166 4.70059i 0.361941 0.208967i
\(507\) 0 0
\(508\) −12.2932 7.09746i −0.545421 0.314899i
\(509\) 10.5573 18.2858i 0.467944 0.810503i −0.531385 0.847131i \(-0.678328\pi\)
0.999329 + 0.0366275i \(0.0116615\pi\)
\(510\) 0 0
\(511\) −9.95752 + 7.86694i −0.440495 + 0.348013i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 6.49218i 0.286358i
\(515\) 15.3612 + 30.4118i 0.676898 + 1.34011i
\(516\) 0 0
\(517\) 8.55186 14.8122i 0.376110 0.651442i
\(518\) −4.75985 + 11.9674i −0.209136 + 0.525816i
\(519\) 0 0
\(520\) −2.11336 4.18399i −0.0926772 0.183480i
\(521\) 21.9402 0.961216 0.480608 0.876936i \(-0.340416\pi\)
0.480608 + 0.876936i \(0.340416\pi\)
\(522\) 0 0
\(523\) −7.10550 −0.310702 −0.155351 0.987859i \(-0.549651\pi\)
−0.155351 + 0.987859i \(0.549651\pi\)
\(524\) 1.14681 + 1.98633i 0.0500986 + 0.0867733i
\(525\) 0 0
\(526\) −4.41420 + 7.64563i −0.192468 + 0.333365i
\(527\) −7.46313 + 12.9265i −0.325099 + 0.563088i
\(528\) 0 0
\(529\) −4.45963 7.72430i −0.193897 0.335839i
\(530\) 30.8930 + 1.72790i 1.34191 + 0.0750551i
\(531\) 0 0
\(532\) −12.2034 + 1.78257i −0.529085 + 0.0772843i
\(533\) 8.53543 + 14.7838i 0.369711 + 0.640358i
\(534\) 0 0
\(535\) 13.9785 21.3603i 0.604344 0.923488i
\(536\) −4.70611 2.71707i −0.203273 0.117360i
\(537\) 0 0
\(538\) 5.81286 + 10.0682i 0.250610 + 0.434070i
\(539\) −3.33181 11.1614i −0.143511 0.480755i
\(540\) 0 0
\(541\) −36.7965 −1.58200 −0.791002 0.611813i \(-0.790441\pi\)
−0.791002 + 0.611813i \(0.790441\pi\)
\(542\) −14.5599 + 8.40617i −0.625402 + 0.361076i
\(543\) 0 0
\(544\) 6.45590 + 3.72732i 0.276794 + 0.159807i
\(545\) −12.9970 + 19.8604i −0.556728 + 0.850727i
\(546\) 0 0
\(547\) −14.6902 + 8.48140i −0.628108 + 0.362638i −0.780019 0.625756i \(-0.784791\pi\)
0.151911 + 0.988394i \(0.451457\pi\)
\(548\) 10.8359 0.462888
\(549\) 0 0
\(550\) 0.927806 8.26815i 0.0395618 0.352555i
\(551\) 11.0540 + 19.1462i 0.470918 + 0.815654i
\(552\) 0 0
\(553\) −31.0200 12.3378i −1.31911 0.524656i
\(554\) −1.93149 1.11514i −0.0820610 0.0473780i
\(555\) 0 0
\(556\) 7.63600 4.40865i 0.323839 0.186968i
\(557\) −2.63451 −0.111628 −0.0558139 0.998441i \(-0.517775\pi\)
−0.0558139 + 0.998441i \(0.517775\pi\)
\(558\) 0 0
\(559\) 5.45295i 0.230635i
\(560\) −4.83969 + 3.40255i −0.204514 + 0.143784i
\(561\) 0 0
\(562\) 2.79869 + 1.61582i 0.118055 + 0.0681594i
\(563\) −20.7641 11.9882i −0.875104 0.505242i −0.00606320 0.999982i \(-0.501930\pi\)
−0.869041 + 0.494740i \(0.835263\pi\)
\(564\) 0 0
\(565\) 13.8544 + 27.4285i 0.582857 + 1.15393i
\(566\) −6.46583 −0.271779
\(567\) 0 0
\(568\) 12.0450i 0.505396i
\(569\) −36.5400 + 21.0964i −1.53184 + 0.884407i −0.532560 + 0.846392i \(0.678770\pi\)
−0.999277 + 0.0380144i \(0.987897\pi\)
\(570\) 0 0
\(571\) 12.7469 22.0783i 0.533441 0.923947i −0.465796 0.884892i \(-0.654232\pi\)
0.999237 0.0390547i \(-0.0124347\pi\)
\(572\) −3.02090 1.74412i −0.126310 0.0729253i
\(573\) 0 0
\(574\) 16.9058 13.3565i 0.705637 0.557488i
\(575\) −28.0724 3.15012i −1.17070 0.131369i
\(576\) 0 0
\(577\) −32.7696 −1.36422 −0.682108 0.731251i \(-0.738937\pi\)
−0.682108 + 0.731251i \(0.738937\pi\)
\(578\) −19.2858 33.4039i −0.802182 1.38942i
\(579\) 0 0
\(580\) 8.87393 + 5.80722i 0.368470 + 0.241132i
\(581\) −2.52930 + 6.35923i −0.104933 + 0.263825i
\(582\) 0 0
\(583\) 19.9407 11.5128i 0.825858 0.476810i
\(584\) 4.79644 0.198478
\(585\) 0 0
\(586\) 18.5231i 0.765182i
\(587\) 19.1726 11.0693i 0.791337 0.456879i −0.0490959 0.998794i \(-0.515634\pi\)
0.840433 + 0.541915i \(0.182301\pi\)
\(588\) 0 0
\(589\) −4.66672 + 8.08300i −0.192289 + 0.333054i
\(590\) 0.211313 0.322903i 0.00869960 0.0132937i
\(591\) 0 0
\(592\) 4.21571 2.43394i 0.173265 0.100034i
\(593\) 26.0392i 1.06930i 0.845073 + 0.534650i \(0.179557\pi\)
−0.845073 + 0.534650i \(0.820443\pi\)
\(594\) 0 0
\(595\) 43.9270 3.92748i 1.80083 0.161011i
\(596\) 12.4184 7.16974i 0.508676 0.293684i
\(597\) 0 0
\(598\) −5.92171 + 10.2567i −0.242157 + 0.419428i
\(599\) −18.1227 10.4631i −0.740472 0.427512i 0.0817689 0.996651i \(-0.473943\pi\)
−0.822241 + 0.569140i \(0.807276\pi\)
\(600\) 0 0
\(601\) 25.4768 14.7091i 1.03922 0.599995i 0.119609 0.992821i \(-0.461836\pi\)
0.919613 + 0.392826i \(0.128503\pi\)
\(602\) −6.80997 + 0.994743i −0.277554 + 0.0405427i
\(603\) 0 0
\(604\) −6.90415 −0.280926
\(605\) 8.29813 + 16.4284i 0.337367 + 0.667911i
\(606\) 0 0
\(607\) 6.62507 11.4750i 0.268903 0.465754i −0.699676 0.714461i \(-0.746672\pi\)
0.968579 + 0.248707i \(0.0800055\pi\)
\(608\) 4.03690 + 2.33070i 0.163718 + 0.0945225i
\(609\) 0 0
\(610\) 11.9268 6.02430i 0.482901 0.243917i
\(611\) 21.5469i 0.871695i
\(612\) 0 0
\(613\) 17.3252i 0.699759i −0.936795 0.349880i \(-0.886222\pi\)
0.936795 0.349880i \(-0.113778\pi\)
\(614\) 1.72071 + 2.98036i 0.0694423 + 0.120278i
\(615\) 0 0
\(616\) −1.62708 + 4.09086i −0.0655569 + 0.164825i
\(617\) −9.93911 + 17.2150i −0.400133 + 0.693052i −0.993742 0.111703i \(-0.964370\pi\)
0.593608 + 0.804754i \(0.297703\pi\)
\(618\) 0 0
\(619\) −30.8618 + 17.8181i −1.24044 + 0.716168i −0.969184 0.246339i \(-0.920772\pi\)
−0.271256 + 0.962507i \(0.587439\pi\)
\(620\) −0.250028 + 4.47025i −0.0100414 + 0.179529i
\(621\) 0 0
\(622\) 33.2371 1.33269
\(623\) −23.3029 + 18.4105i −0.933611 + 0.737599i
\(624\) 0 0
\(625\) −16.9877 + 18.3417i −0.679509 + 0.733668i
\(626\) 0.967111 1.67509i 0.0386535 0.0669499i
\(627\) 0 0
\(628\) 7.48808 + 12.9697i 0.298807 + 0.517549i
\(629\) −36.2883 −1.44691
\(630\) 0 0
\(631\) 28.1609 1.12107 0.560533 0.828132i \(-0.310596\pi\)
0.560533 + 0.828132i \(0.310596\pi\)
\(632\) 6.30891 + 10.9273i 0.250955 + 0.434666i
\(633\) 0 0
\(634\) 5.12038 8.86877i 0.203356 0.352224i
\(635\) 26.5592 + 17.3807i 1.05397 + 0.689732i
\(636\) 0 0
\(637\) 10.6655 + 10.0784i 0.422581 + 0.399321i
\(638\) 7.89205 0.312449
\(639\) 0 0
\(640\) 2.23258 + 0.124872i 0.0882504 + 0.00493599i
\(641\) −25.4170 + 14.6745i −1.00391 + 0.579608i −0.909403 0.415916i \(-0.863461\pi\)
−0.0945076 + 0.995524i \(0.530128\pi\)
\(642\) 0 0
\(643\) −16.7337 + 28.9836i −0.659912 + 1.14300i 0.320726 + 0.947172i \(0.396073\pi\)
−0.980638 + 0.195830i \(0.937260\pi\)
\(644\) 13.8894 + 5.52433i 0.547321 + 0.217689i
\(645\) 0 0
\(646\) −17.3745 30.0936i −0.683592 1.18402i
\(647\) 19.6226i 0.771445i −0.922615 0.385723i \(-0.873952\pi\)
0.922615 0.385723i \(-0.126048\pi\)
\(648\) 0 0
\(649\) 0.287175i 0.0112726i
\(650\) 4.19579 + 9.60499i 0.164572 + 0.376739i
\(651\) 0 0
\(652\) −6.95885 4.01770i −0.272530 0.157345i
\(653\) 9.70880 16.8161i 0.379935 0.658066i −0.611118 0.791540i \(-0.709280\pi\)
0.991052 + 0.133474i \(0.0426131\pi\)
\(654\) 0 0
\(655\) −2.31231 4.57785i −0.0903492 0.178871i
\(656\) −8.14339 −0.317946
\(657\) 0 0
\(658\) 26.9091 3.93065i 1.04903 0.153233i
\(659\) 10.8291 6.25219i 0.421842 0.243551i −0.274023 0.961723i \(-0.588354\pi\)
0.695865 + 0.718172i \(0.255021\pi\)
\(660\) 0 0
\(661\) −3.75358 2.16713i −0.145997 0.0842916i 0.425222 0.905089i \(-0.360196\pi\)
−0.571219 + 0.820798i \(0.693529\pi\)
\(662\) 2.81788 4.88070i 0.109520 0.189694i
\(663\) 0 0
\(664\) 2.24015 1.29335i 0.0869347 0.0501918i
\(665\) 27.4677 2.45587i 1.06515 0.0952345i
\(666\) 0 0
\(667\) 26.7954i 1.03752i
\(668\) −4.12075 + 2.37911i −0.159436 + 0.0920507i
\(669\) 0 0
\(670\) 10.1675 + 6.65374i 0.392804 + 0.257056i
\(671\) 4.97174 8.61131i 0.191932 0.332436i
\(672\) 0 0
\(673\) −1.47592 + 0.852124i −0.0568926 + 0.0328470i −0.528177 0.849135i \(-0.677124\pi\)
0.471284 + 0.881982i \(0.343791\pi\)
\(674\) 13.6905i 0.527338i
\(675\) 0 0
\(676\) −8.60558 −0.330984
\(677\) 5.08519 2.93594i 0.195440 0.112837i −0.399087 0.916913i \(-0.630673\pi\)
0.594527 + 0.804076i \(0.297339\pi\)
\(678\) 0 0
\(679\) −23.2660 9.25374i −0.892869 0.355126i
\(680\) −13.9479 9.12768i −0.534876 0.350031i
\(681\) 0 0
\(682\) 1.66591 + 2.88543i 0.0637908 + 0.110489i
\(683\) −10.9483 −0.418926 −0.209463 0.977817i \(-0.567172\pi\)
−0.209463 + 0.977817i \(0.567172\pi\)
\(684\) 0 0
\(685\) −24.1921 1.35310i −0.924332 0.0516994i
\(686\) 10.6409 15.1582i 0.406272 0.578743i
\(687\) 0 0
\(688\) 2.25274 + 1.30062i 0.0858850 + 0.0495857i
\(689\) −14.5035 + 25.1209i −0.552541 + 0.957029i
\(690\) 0 0
\(691\) 34.4759 19.9047i 1.31153 0.757210i 0.329177 0.944268i \(-0.393229\pi\)
0.982349 + 0.187058i \(0.0598953\pi\)
\(692\) 17.2576i 0.656037i
\(693\) 0 0
\(694\) −9.79041 −0.371639
\(695\) −17.5985 + 8.88913i −0.667549 + 0.337184i
\(696\) 0 0
\(697\) 52.5729 + 30.3530i 1.99134 + 1.14970i
\(698\) −14.0539 8.11400i −0.531946 0.307119i
\(699\) 0 0
\(700\) 11.2299 6.99213i 0.424449 0.264278i
\(701\) 7.84396i 0.296262i −0.988968 0.148131i \(-0.952674\pi\)
0.988968 0.148131i \(-0.0473258\pi\)
\(702\) 0 0
\(703\) −22.6912 −0.855815
\(704\) 1.44107 0.832005i 0.0543125 0.0313574i
\(705\) 0 0
\(706\) −20.9960 12.1220i −0.790194 0.456219i
\(707\) 25.9880 + 10.3364i 0.977379 + 0.388739i
\(708\) 0 0
\(709\) 10.3461 + 17.9200i 0.388557 + 0.673001i 0.992256 0.124212i \(-0.0396402\pi\)
−0.603698 + 0.797213i \(0.706307\pi\)
\(710\) 1.50408 26.8913i 0.0564470 1.00921i
\(711\) 0 0
\(712\) 11.2248 0.420666
\(713\) 9.79674 5.65615i 0.366891 0.211825i
\(714\) 0 0
\(715\) 6.52661 + 4.27111i 0.244082 + 0.159730i
\(716\) 0.521897 + 0.301317i 0.0195042 + 0.0112608i
\(717\) 0 0
\(718\) −27.1600 + 15.6809i −1.01360 + 0.585204i
\(719\) −21.2881 −0.793910 −0.396955 0.917838i \(-0.629933\pi\)
−0.396955 + 0.917838i \(0.629933\pi\)
\(720\) 0 0
\(721\) 5.82684 + 39.8903i 0.217003 + 1.48559i
\(722\) −1.36436 2.36314i −0.0507763 0.0879471i
\(723\) 0 0
\(724\) 11.0659 + 6.38892i 0.411262 + 0.237442i
\(725\) −19.0866 14.0732i −0.708858 0.522665i
\(726\) 0 0
\(727\) −4.79802 8.31041i −0.177949 0.308216i 0.763229 0.646128i \(-0.223613\pi\)
−0.941178 + 0.337912i \(0.890279\pi\)
\(728\) −0.801642 5.48801i −0.0297108 0.203399i
\(729\) 0 0
\(730\) −10.7084 0.598941i −0.396337 0.0221678i
\(731\) −9.69565 16.7934i −0.358607 0.621125i
\(732\) 0 0
\(733\) 22.1972 38.4466i 0.819871 1.42006i −0.0859066 0.996303i \(-0.527379\pi\)
0.905777 0.423754i \(-0.139288\pi\)
\(734\) 0.616195 1.06728i 0.0227442 0.0393941i
\(735\) 0 0
\(736\) −2.82486 4.89279i −0.104126 0.180351i
\(737\) 9.04247 0.333084
\(738\) 0 0
\(739\) −17.8223 −0.655603 −0.327801 0.944747i \(-0.606308\pi\)
−0.327801 + 0.944747i \(0.606308\pi\)
\(740\) −9.71584 + 4.90754i −0.357161 + 0.180405i
\(741\) 0 0
\(742\) 34.0182 + 13.5303i 1.24885 + 0.496712i
\(743\) 25.2903 43.8041i 0.927811 1.60702i 0.140835 0.990033i \(-0.455021\pi\)
0.786976 0.616983i \(-0.211645\pi\)
\(744\) 0 0
\(745\) −28.6203 + 14.4563i −1.04857 + 0.529638i
\(746\) 27.6157i 1.01108i
\(747\) 0 0
\(748\) −12.4046 −0.453556
\(749\) 23.7005 18.7246i 0.865999 0.684183i
\(750\) 0 0
\(751\) −22.2173 + 38.4816i −0.810722 + 1.40421i 0.101637 + 0.994822i \(0.467592\pi\)
−0.912359 + 0.409390i \(0.865741\pi\)
\(752\) −8.90154 5.13931i −0.324606 0.187411i
\(753\) 0 0
\(754\) −8.61024 + 4.97113i −0.313567 + 0.181038i
\(755\) 15.4140 + 0.862134i 0.560975 + 0.0313763i
\(756\) 0 0
\(757\) 26.2968i 0.955774i −0.878421 0.477887i \(-0.841403\pi\)
0.878421 0.477887i \(-0.158597\pi\)
\(758\) 11.6133 + 20.1148i 0.421812 + 0.730601i
\(759\) 0 0
\(760\) −8.72165 5.70757i −0.316368 0.207035i
\(761\) −11.6947 + 20.2558i −0.423932 + 0.734272i −0.996320 0.0857107i \(-0.972684\pi\)
0.572388 + 0.819983i \(0.306017\pi\)
\(762\) 0 0
\(763\) −22.0363 + 17.4098i −0.797768 + 0.630277i
\(764\) 18.8422i 0.681687i
\(765\) 0 0
\(766\) 23.7929i 0.859672i
\(767\) 0.180889 + 0.313309i 0.00653152 + 0.0113129i
\(768\) 0 0
\(769\) 21.6845 + 12.5196i 0.781963 + 0.451467i 0.837126 0.547011i \(-0.184234\pi\)
−0.0551625 + 0.998477i \(0.517568\pi\)
\(770\) 4.14342 8.92998i 0.149318 0.321814i
\(771\) 0 0
\(772\) −5.89207 + 3.40179i −0.212060 + 0.122433i
\(773\) 55.5416i 1.99769i −0.0480317 0.998846i \(-0.515295\pi\)
0.0480317 0.998846i \(-0.484705\pi\)
\(774\) 0 0
\(775\) 1.11642 9.94895i 0.0401028 0.357377i
\(776\) 4.73188 + 8.19586i 0.169865 + 0.294214i
\(777\) 0 0
\(778\) 8.18328 + 4.72462i 0.293385 + 0.169386i
\(779\) 32.8740 + 18.9798i 1.17783 + 0.680023i
\(780\) 0 0
\(781\) −10.0215 17.3577i −0.358596 0.621107i
\(782\) 42.1165i 1.50608i
\(783\) 0 0
\(784\) −6.70752 + 2.00228i −0.239554 + 0.0715100i
\(785\) −15.0982 29.8910i −0.538877 1.06686i
\(786\) 0 0
\(787\) −7.49527 + 12.9822i −0.267177 + 0.462765i −0.968132 0.250441i \(-0.919424\pi\)
0.700954 + 0.713206i \(0.252758\pi\)
\(788\) −4.29375 + 7.43699i −0.152959 + 0.264932i
\(789\) 0 0
\(790\) −12.7206 25.1840i −0.452579 0.896005i
\(791\) 5.25524 + 35.9772i 0.186855 + 1.27920i
\(792\) 0 0
\(793\) 12.5266i 0.444833i
\(794\) −10.8617 18.8130i −0.385467 0.667648i
\(795\) 0 0
\(796\) −4.41729 2.55032i −0.156567 0.0903938i
\(797\) −43.9990 25.4028i −1.55852 0.899814i −0.997399 0.0720822i \(-0.977036\pi\)
−0.561124 0.827732i \(-0.689631\pi\)
\(798\) 0 0
\(799\) 38.3116 + 66.3577i 1.35537 + 2.34757i
\(800\) −4.96881 0.557572i −0.175674 0.0197132i
\(801\) 0 0
\(802\) 12.3027i 0.434423i
\(803\) −6.91203 + 3.99066i −0.243920 + 0.140827i
\(804\) 0 0
\(805\) −30.3194 14.0679i −1.06862 0.495828i
\(806\) −3.63501 2.09867i −0.128038 0.0739227i
\(807\) 0 0
\(808\) −5.28548 9.15472i −0.185942 0.322062i
\(809\) 38.3573i 1.34857i 0.738471 + 0.674285i \(0.235548\pi\)
−0.738471 + 0.674285i \(0.764452\pi\)
\(810\) 0 0
\(811\) 0.237330i 0.00833379i −0.999991 0.00416689i \(-0.998674\pi\)
0.999991 0.00416689i \(-0.00132637\pi\)
\(812\) 7.77895 + 9.84614i 0.272988 + 0.345532i
\(813\) 0 0
\(814\) −4.05010 + 7.01498i −0.141956 + 0.245875i
\(815\) 15.0345 + 9.83878i 0.526635 + 0.344638i
\(816\) 0 0
\(817\) −6.06273 10.5009i −0.212108 0.367382i
\(818\) 2.89004i 0.101048i
\(819\) 0 0
\(820\) 18.1807 + 1.01688i 0.634899 + 0.0355110i
\(821\) −34.0959 + 19.6853i −1.18995 + 0.687020i −0.958296 0.285777i \(-0.907748\pi\)
−0.231658 + 0.972797i \(0.574415\pi\)
\(822\) 0 0
\(823\) 12.0228 + 6.94134i 0.419087 + 0.241960i 0.694687 0.719312i \(-0.255543\pi\)
−0.275600 + 0.961273i \(0.588876\pi\)
\(824\) 7.61856 13.1957i 0.265405 0.459695i
\(825\) 0 0
\(826\) 0.358280 0.283060i 0.0124662 0.00984890i
\(827\) 53.7207 1.86805 0.934027 0.357204i \(-0.116270\pi\)
0.934027 + 0.357204i \(0.116270\pi\)
\(828\) 0 0
\(829\) 40.2685i 1.39858i −0.714836 0.699292i \(-0.753499\pi\)
0.714836 0.699292i \(-0.246501\pi\)
\(830\) −5.16281 + 2.60778i −0.179204 + 0.0905172i
\(831\) 0 0
\(832\) −1.04814 + 1.81544i −0.0363378 + 0.0629390i
\(833\) 50.7662 + 12.0745i 1.75895 + 0.418358i
\(834\) 0 0
\(835\) 9.49697 4.79699i 0.328656 0.166007i
\(836\) −7.75663 −0.268268
\(837\) 0 0
\(838\) −25.4794 −0.880170
\(839\) −12.6898 21.9794i −0.438100 0.758812i 0.559443 0.828869i \(-0.311015\pi\)
−0.997543 + 0.0700572i \(0.977682\pi\)
\(840\) 0 0
\(841\) −3.25296 + 5.63429i −0.112171 + 0.194286i
\(842\) 2.96965 5.14359i 0.102341 0.177260i
\(843\) 0 0
\(844\) 5.01715 + 8.68995i 0.172697 + 0.299120i
\(845\) 19.2126 + 1.07460i 0.660935 + 0.0369672i
\(846\) 0 0
\(847\) 3.14765 + 21.5487i 0.108155 + 0.740422i
\(848\) −6.91868 11.9835i −0.237589 0.411516i
\(849\) 0 0
\(850\) 29.9999 + 22.1200i 1.02899 + 0.758709i
\(851\) 23.8176 + 13.7511i 0.816456 + 0.471381i
\(852\) 0 0
\(853\) 17.2962 + 29.9580i 0.592212 + 1.02574i 0.993934 + 0.109979i \(0.0350785\pi\)
−0.401722 + 0.915762i \(0.631588\pi\)
\(854\) 15.6440 2.28514i 0.535326 0.0781959i
\(855\) 0 0
\(856\) −11.4163 −0.390202
\(857\) 16.9137 9.76512i 0.577761 0.333570i −0.182482 0.983209i \(-0.558413\pi\)
0.760243 + 0.649639i \(0.225080\pi\)
\(858\) 0 0
\(859\) −43.4126 25.0643i −1.48122 0.855182i −0.481446 0.876476i \(-0.659888\pi\)
−0.999773 + 0.0212940i \(0.993221\pi\)
\(860\) −4.86701 3.18504i −0.165964 0.108609i
\(861\) 0 0
\(862\) −25.4910 + 14.7172i −0.868225 + 0.501270i
\(863\) 17.7867 0.605465 0.302733 0.953076i \(-0.402101\pi\)
0.302733 + 0.953076i \(0.402101\pi\)
\(864\) 0 0
\(865\) −2.15499 + 38.5290i −0.0732720 + 1.31003i
\(866\) −7.12793 12.3459i −0.242217 0.419532i
\(867\) 0 0
\(868\) −1.95784 + 4.92247i −0.0664535 + 0.167079i
\(869\) −18.1832 10.4981i −0.616823 0.356123i
\(870\) 0 0
\(871\) −9.86535 + 5.69576i −0.334275 + 0.192994i
\(872\) 10.6147 0.359458
\(873\) 0 0
\(874\) 26.3356i 0.890815i
\(875\) −25.9447 + 14.2082i −0.877091 + 0.480324i
\(876\) 0 0
\(877\) 18.1879 + 10.5008i 0.614163 + 0.354587i 0.774593 0.632460i \(-0.217955\pi\)
−0.160430 + 0.987047i \(0.551288\pi\)
\(878\) 9.41191 + 5.43397i 0.317637 + 0.183388i
\(879\) 0 0
\(880\) −3.32121 + 1.67757i −0.111958 + 0.0565507i
\(881\) 57.9674 1.95297 0.976486 0.215580i \(-0.0691642\pi\)
0.976486 + 0.215580i \(0.0691642\pi\)
\(882\) 0 0
\(883\) 42.6213i 1.43432i 0.696908 + 0.717161i \(0.254559\pi\)
−0.696908 + 0.717161i \(0.745441\pi\)
\(884\) 13.5334 7.81352i 0.455178 0.262797i
\(885\) 0 0
\(886\) 5.24859 9.09083i 0.176330 0.305412i
\(887\) 3.27263 + 1.88945i 0.109884 + 0.0634416i 0.553935 0.832560i \(-0.313126\pi\)
−0.444051 + 0.896002i \(0.646459\pi\)
\(888\) 0 0
\(889\) 23.2820 + 29.4690i 0.780852 + 0.988358i
\(890\) −25.0602 1.40166i −0.840020 0.0469837i
\(891\) 0 0
\(892\) −17.7445 −0.594131
\(893\) 23.9564 + 41.4937i 0.801671 + 1.38853i
\(894\) 0 0
\(895\) −1.12755 0.737885i −0.0376898 0.0246648i
\(896\) 2.45843 + 0.977807i 0.0821305 + 0.0326662i
\(897\) 0 0
\(898\) 32.1022 18.5342i 1.07126 0.618494i
\(899\) 9.49639 0.316722
\(900\) 0 0
\(901\) 103.152i 3.43651i
\(902\) 11.7352 6.77533i 0.390740 0.225594i
\(903\) 0 0
\(904\) 6.87120 11.9013i 0.228533 0.395830i
\(905\) −23.9078 15.6456i −0.794721 0.520077i
\(906\) 0 0
\(907\) 43.9682 25.3850i 1.45994 0.842896i 0.460932 0.887436i \(-0.347515\pi\)
0.999008 + 0.0445394i \(0.0141820\pi\)
\(908\) 0.474897i 0.0157600i
\(909\) 0 0
\(910\) 1.10443 + 12.3525i 0.0366115 + 0.409482i
\(911\) 6.59422 3.80717i 0.218476 0.126137i −0.386768 0.922177i \(-0.626409\pi\)
0.605244 + 0.796040i \(0.293075\pi\)
\(912\) 0 0
\(913\) −2.15215 + 3.72763i −0.0712257 + 0.123367i
\(914\) −17.5211 10.1158i −0.579545 0.334601i
\(915\) 0 0
\(916\) −9.51279 + 5.49221i −0.314312 + 0.181468i
\(917\) −0.877104 6.00462i −0.0289645 0.198290i
\(918\) 0 0
\(919\) −10.4157 −0.343581 −0.171791 0.985133i \(-0.554955\pi\)
−0.171791 + 0.985133i \(0.554955\pi\)
\(920\) 5.69574 + 11.2763i 0.187783 + 0.371768i
\(921\) 0 0
\(922\) −6.80701 + 11.7901i −0.224177 + 0.388286i
\(923\) 21.8669 + 12.6249i 0.719757 + 0.415552i
\(924\) 0 0
\(925\) 22.3042 9.74324i 0.733357 0.320356i
\(926\) 22.8848i 0.752040i
\(927\) 0 0
\(928\) 4.74279i 0.155690i
\(929\) −21.5567 37.3374i −0.707253 1.22500i −0.965872 0.259019i \(-0.916601\pi\)
0.258619 0.965980i \(-0.416733\pi\)
\(930\) 0 0
\(931\) 31.7443 + 7.55026i 1.04038 + 0.247450i
\(932\) 10.7397 18.6017i 0.351791 0.609320i
\(933\) 0 0
\(934\) −2.89724 + 1.67272i −0.0948006 + 0.0547332i
\(935\) 27.6942 + 1.54898i 0.905697 + 0.0506571i
\(936\) 0 0
\(937\) −16.2891 −0.532140 −0.266070 0.963954i \(-0.585725\pi\)
−0.266070 + 0.963954i \(0.585725\pi\)
\(938\) 8.91288 + 11.2814i 0.291016 + 0.368351i
\(939\) 0 0
\(940\) 19.2316 + 12.5855i 0.627267 + 0.410492i
\(941\) 14.8611 25.7402i 0.484458 0.839106i −0.515383 0.856960i \(-0.672350\pi\)
0.999841 + 0.0178543i \(0.00568350\pi\)
\(942\) 0 0
\(943\) −23.0039 39.8439i −0.749110 1.29750i
\(944\) −0.172580 −0.00561701
\(945\) 0 0
\(946\) −4.32849 −0.140731
\(947\) −12.6233 21.8642i −0.410202 0.710490i 0.584710 0.811243i \(-0.301208\pi\)
−0.994912 + 0.100752i \(0.967875\pi\)
\(948\) 0 0
\(949\) 5.02736 8.70764i 0.163195 0.282662i
\(950\) 18.7591 + 13.8317i 0.608624 + 0.448760i
\(951\) 0 0
\(952\) −12.2268 15.4760i −0.396273 0.501579i
\(953\) 46.4580 1.50492 0.752461 0.658636i \(-0.228866\pi\)
0.752461 + 0.658636i \(0.228866\pi\)
\(954\) 0 0
\(955\) −2.35286 + 42.0667i −0.0761368 + 1.36125i
\(956\) −14.6228 + 8.44250i −0.472937 + 0.273050i
\(957\) 0 0
\(958\) 8.15257 14.1207i 0.263397 0.456218i
\(959\) −26.6394 10.5955i −0.860232 0.342145i
\(960\) 0 0
\(961\) −13.4954 23.3748i −0.435337 0.754025i
\(962\) 10.2045i 0.329006i
\(963\) 0 0
\(964\) 9.24813i 0.297862i
\(965\) 13.5793 6.85900i 0.437133 0.220799i
\(966\) 0 0
\(967\) −38.7680 22.3827i −1.24670 0.719780i −0.276246 0.961087i \(-0.589091\pi\)
−0.970449 + 0.241307i \(0.922424\pi\)
\(968\) 4.11554 7.12832i 0.132278 0.229113i
\(969\) 0 0
\(970\) −9.54087 18.8888i −0.306339 0.606483i
\(971\) 5.45198 0.174962 0.0874812 0.996166i \(-0.472118\pi\)
0.0874812 + 0.996166i \(0.472118\pi\)
\(972\) 0 0
\(973\) −23.0834 + 3.37183i −0.740020 + 0.108096i
\(974\) 4.50548 2.60124i 0.144365 0.0833491i
\(975\) 0 0
\(976\) −5.17503 2.98781i −0.165649 0.0956374i
\(977\) −9.53359 + 16.5127i −0.305007 + 0.528287i −0.977263 0.212032i \(-0.931992\pi\)
0.672256 + 0.740319i \(0.265325\pi\)
\(978\) 0 0
\(979\) −16.1757 + 9.33907i −0.516979 + 0.298478i
\(980\) 15.2251 3.63266i 0.486348 0.116041i
\(981\) 0 0
\(982\) 23.8599i 0.761400i
\(983\) −26.7964 + 15.4709i −0.854674 + 0.493446i −0.862225 0.506525i \(-0.830930\pi\)
0.00755133 + 0.999971i \(0.497596\pi\)
\(984\) 0 0
\(985\) 10.5148 16.0675i 0.335030 0.511953i
\(986\) −17.6779 + 30.6190i −0.562979 + 0.975107i
\(987\) 0 0
\(988\) 8.46249 4.88582i 0.269228 0.155439i
\(989\) 14.6963i 0.467314i
\(990\) 0 0
\(991\) 21.5926 0.685912 0.342956 0.939351i \(-0.388572\pi\)
0.342956 + 0.939351i \(0.388572\pi\)
\(992\) 1.73402 1.00114i 0.0550553 0.0317862i
\(993\) 0 0
\(994\) 11.7777 29.6117i 0.373565 0.939228i
\(995\) 9.54348 + 6.24539i 0.302549 + 0.197992i
\(996\) 0 0
\(997\) 26.8955 + 46.5843i 0.851788 + 1.47534i 0.879593 + 0.475726i \(0.157815\pi\)
−0.0278059 + 0.999613i \(0.508852\pi\)
\(998\) 32.3319 1.02345
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bf.f.1259.13 32
3.2 odd 2 630.2.bf.e.419.1 yes 32
5.4 even 2 1890.2.bf.e.1259.10 32
7.6 odd 2 inner 1890.2.bf.f.1259.4 32
9.2 odd 6 1890.2.bf.e.629.7 32
9.7 even 3 630.2.bf.f.209.1 yes 32
15.14 odd 2 630.2.bf.f.419.16 yes 32
21.20 even 2 630.2.bf.e.419.16 yes 32
35.34 odd 2 1890.2.bf.e.1259.7 32
45.29 odd 6 inner 1890.2.bf.f.629.4 32
45.34 even 6 630.2.bf.e.209.16 yes 32
63.20 even 6 1890.2.bf.e.629.10 32
63.34 odd 6 630.2.bf.f.209.16 yes 32
105.104 even 2 630.2.bf.f.419.1 yes 32
315.34 odd 6 630.2.bf.e.209.1 32
315.209 even 6 inner 1890.2.bf.f.629.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bf.e.209.1 32 315.34 odd 6
630.2.bf.e.209.16 yes 32 45.34 even 6
630.2.bf.e.419.1 yes 32 3.2 odd 2
630.2.bf.e.419.16 yes 32 21.20 even 2
630.2.bf.f.209.1 yes 32 9.7 even 3
630.2.bf.f.209.16 yes 32 63.34 odd 6
630.2.bf.f.419.1 yes 32 105.104 even 2
630.2.bf.f.419.16 yes 32 15.14 odd 2
1890.2.bf.e.629.7 32 9.2 odd 6
1890.2.bf.e.629.10 32 63.20 even 6
1890.2.bf.e.1259.7 32 35.34 odd 2
1890.2.bf.e.1259.10 32 5.4 even 2
1890.2.bf.f.629.4 32 45.29 odd 6 inner
1890.2.bf.f.629.13 32 315.209 even 6 inner
1890.2.bf.f.1259.4 32 7.6 odd 2 inner
1890.2.bf.f.1259.13 32 1.1 even 1 trivial