Properties

Label 1890.2.bf.e.1259.7
Level $1890$
Weight $2$
Character 1890.1259
Analytic conductor $15.092$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(629,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bf (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-16,0,-16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1259.7
Character \(\chi\) \(=\) 1890.1259
Dual form 1890.2.bf.e.629.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.00815 + 1.99591i) q^{5} +(-2.45843 + 0.977807i) q^{7} +1.00000 q^{8} +(2.23258 - 0.124872i) q^{10} +(1.44107 - 0.832005i) q^{11} +(-1.04814 + 1.81544i) q^{13} +(2.07602 + 1.64016i) q^{14} +(-0.500000 - 0.866025i) q^{16} +7.45463i q^{17} -4.66141i q^{19} +(-1.22443 - 1.87103i) q^{20} +(-1.44107 - 0.832005i) q^{22} +(-2.82486 + 4.89279i) q^{23} +(-2.96728 - 4.02433i) q^{25} +2.09629 q^{26} +(0.382411 - 2.61797i) q^{28} +(4.10738 - 2.37140i) q^{29} +(-1.73402 - 1.00114i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(6.45590 - 3.72732i) q^{34} +(0.526851 - 5.89257i) q^{35} -4.86789i q^{37} +(-4.03690 + 2.33070i) q^{38} +(-1.00815 + 1.99591i) q^{40} +(-4.07169 + 7.05238i) q^{41} +(2.25274 - 1.30062i) q^{43} +1.66401i q^{44} +5.64971 q^{46} +(8.90154 - 5.13931i) q^{47} +(5.08779 - 4.80775i) q^{49} +(-2.00154 + 4.58191i) q^{50} +(-1.04814 - 1.81544i) q^{52} -13.8374 q^{53} +(0.207788 + 3.71503i) q^{55} +(-2.45843 + 0.977807i) q^{56} +(-4.10738 - 2.37140i) q^{58} +(-0.0862901 + 0.149459i) q^{59} +(-5.17503 + 2.98781i) q^{61} +2.00228i q^{62} +1.00000 q^{64} +(-2.56676 - 3.92222i) q^{65} +(-4.70611 - 2.71707i) q^{67} +(-6.45590 - 3.72732i) q^{68} +(-5.36654 + 2.49002i) q^{70} -12.0450i q^{71} -4.79644 q^{73} +(-4.21571 + 2.43394i) q^{74} +(4.03690 + 2.33070i) q^{76} +(-2.72924 + 3.45452i) q^{77} +(-6.30891 - 10.9273i) q^{79} +(2.23258 - 0.124872i) q^{80} +8.14339 q^{82} +(-2.24015 + 1.29335i) q^{83} +(-14.8787 - 7.51536i) q^{85} +(-2.25274 - 1.30062i) q^{86} +(1.44107 - 0.832005i) q^{88} +11.2248 q^{89} +(0.801642 - 5.48801i) q^{91} +(-2.82486 - 4.89279i) q^{92} +(-8.90154 - 5.13931i) q^{94} +(9.30373 + 4.69938i) q^{95} +(-4.73188 - 8.19586i) q^{97} +(-6.70752 - 2.00228i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{2} - 16 q^{4} + 32 q^{8} + 24 q^{11} - 16 q^{16} - 24 q^{22} - 24 q^{23} + 50 q^{25} + 36 q^{29} - 16 q^{32} - 48 q^{35} + 54 q^{43} + 48 q^{46} + 32 q^{49} - 58 q^{50} - 24 q^{53} - 36 q^{58}+ \cdots - 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.00815 + 1.99591i −0.450857 + 0.892596i
\(6\) 0 0
\(7\) −2.45843 + 0.977807i −0.929200 + 0.369576i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.23258 0.124872i 0.706003 0.0394879i
\(11\) 1.44107 0.832005i 0.434500 0.250859i −0.266762 0.963763i \(-0.585954\pi\)
0.701262 + 0.712904i \(0.252620\pi\)
\(12\) 0 0
\(13\) −1.04814 + 1.81544i −0.290703 + 0.503512i −0.973976 0.226651i \(-0.927222\pi\)
0.683273 + 0.730163i \(0.260556\pi\)
\(14\) 2.07602 + 1.64016i 0.554840 + 0.438352i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 7.45463i 1.80801i 0.427518 + 0.904007i \(0.359388\pi\)
−0.427518 + 0.904007i \(0.640612\pi\)
\(18\) 0 0
\(19\) 4.66141i 1.06940i −0.845042 0.534700i \(-0.820425\pi\)
0.845042 0.534700i \(-0.179575\pi\)
\(20\) −1.22443 1.87103i −0.273791 0.418376i
\(21\) 0 0
\(22\) −1.44107 0.832005i −0.307238 0.177384i
\(23\) −2.82486 + 4.89279i −0.589023 + 1.02022i 0.405337 + 0.914167i \(0.367154\pi\)
−0.994361 + 0.106051i \(0.966179\pi\)
\(24\) 0 0
\(25\) −2.96728 4.02433i −0.593456 0.804867i
\(26\) 2.09629 0.411116
\(27\) 0 0
\(28\) 0.382411 2.61797i 0.0722688 0.494750i
\(29\) 4.10738 2.37140i 0.762721 0.440357i −0.0675508 0.997716i \(-0.521518\pi\)
0.830272 + 0.557359i \(0.188185\pi\)
\(30\) 0 0
\(31\) −1.73402 1.00114i −0.311440 0.179810i 0.336131 0.941815i \(-0.390882\pi\)
−0.647571 + 0.762005i \(0.724215\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 6.45590 3.72732i 1.10718 0.639229i
\(35\) 0.526851 5.89257i 0.0890541 0.996027i
\(36\) 0 0
\(37\) 4.86789i 0.800276i −0.916455 0.400138i \(-0.868962\pi\)
0.916455 0.400138i \(-0.131038\pi\)
\(38\) −4.03690 + 2.33070i −0.654871 + 0.378090i
\(39\) 0 0
\(40\) −1.00815 + 1.99591i −0.159402 + 0.315580i
\(41\) −4.07169 + 7.05238i −0.635892 + 1.10140i 0.350434 + 0.936587i \(0.386034\pi\)
−0.986325 + 0.164809i \(0.947299\pi\)
\(42\) 0 0
\(43\) 2.25274 1.30062i 0.343540 0.198343i −0.318296 0.947991i \(-0.603111\pi\)
0.661836 + 0.749648i \(0.269777\pi\)
\(44\) 1.66401i 0.250859i
\(45\) 0 0
\(46\) 5.64971 0.833005
\(47\) 8.90154 5.13931i 1.29842 0.749645i 0.318292 0.947993i \(-0.396891\pi\)
0.980132 + 0.198348i \(0.0635575\pi\)
\(48\) 0 0
\(49\) 5.08779 4.80775i 0.726827 0.686821i
\(50\) −2.00154 + 4.58191i −0.283060 + 0.647979i
\(51\) 0 0
\(52\) −1.04814 1.81544i −0.145351 0.251756i
\(53\) −13.8374 −1.90071 −0.950354 0.311170i \(-0.899279\pi\)
−0.950354 + 0.311170i \(0.899279\pi\)
\(54\) 0 0
\(55\) 0.207788 + 3.71503i 0.0280181 + 0.500935i
\(56\) −2.45843 + 0.977807i −0.328522 + 0.130665i
\(57\) 0 0
\(58\) −4.10738 2.37140i −0.539325 0.311380i
\(59\) −0.0862901 + 0.149459i −0.0112340 + 0.0194579i −0.871588 0.490240i \(-0.836909\pi\)
0.860354 + 0.509697i \(0.170243\pi\)
\(60\) 0 0
\(61\) −5.17503 + 2.98781i −0.662595 + 0.382550i −0.793265 0.608876i \(-0.791621\pi\)
0.130670 + 0.991426i \(0.458287\pi\)
\(62\) 2.00228i 0.254290i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.56676 3.92222i −0.318367 0.486492i
\(66\) 0 0
\(67\) −4.70611 2.71707i −0.574943 0.331943i 0.184178 0.982893i \(-0.441038\pi\)
−0.759121 + 0.650949i \(0.774371\pi\)
\(68\) −6.45590 3.72732i −0.782893 0.452003i
\(69\) 0 0
\(70\) −5.36654 + 2.49002i −0.641425 + 0.297614i
\(71\) 12.0450i 1.42947i −0.699393 0.714737i \(-0.746546\pi\)
0.699393 0.714737i \(-0.253454\pi\)
\(72\) 0 0
\(73\) −4.79644 −0.561381 −0.280691 0.959798i \(-0.590563\pi\)
−0.280691 + 0.959798i \(0.590563\pi\)
\(74\) −4.21571 + 2.43394i −0.490067 + 0.282940i
\(75\) 0 0
\(76\) 4.03690 + 2.33070i 0.463064 + 0.267350i
\(77\) −2.72924 + 3.45452i −0.311026 + 0.393679i
\(78\) 0 0
\(79\) −6.30891 10.9273i −0.709807 1.22942i −0.964928 0.262513i \(-0.915449\pi\)
0.255121 0.966909i \(-0.417885\pi\)
\(80\) 2.23258 0.124872i 0.249610 0.0139611i
\(81\) 0 0
\(82\) 8.14339 0.899286
\(83\) −2.24015 + 1.29335i −0.245888 + 0.141964i −0.617880 0.786272i \(-0.712008\pi\)
0.371992 + 0.928236i \(0.378675\pi\)
\(84\) 0 0
\(85\) −14.8787 7.51536i −1.61383 0.815156i
\(86\) −2.25274 1.30062i −0.242919 0.140250i
\(87\) 0 0
\(88\) 1.44107 0.832005i 0.153619 0.0886920i
\(89\) 11.2248 1.18982 0.594912 0.803791i \(-0.297187\pi\)
0.594912 + 0.803791i \(0.297187\pi\)
\(90\) 0 0
\(91\) 0.801642 5.48801i 0.0840350 0.575300i
\(92\) −2.82486 4.89279i −0.294512 0.510109i
\(93\) 0 0
\(94\) −8.90154 5.13931i −0.918124 0.530079i
\(95\) 9.30373 + 4.69938i 0.954543 + 0.482147i
\(96\) 0 0
\(97\) −4.73188 8.19586i −0.480450 0.832164i 0.519298 0.854593i \(-0.326193\pi\)
−0.999748 + 0.0224290i \(0.992860\pi\)
\(98\) −6.70752 2.00228i −0.677562 0.202261i
\(99\) 0 0
\(100\) 4.96881 0.557572i 0.496881 0.0557572i
\(101\) −5.28548 9.15472i −0.525925 0.910928i −0.999544 0.0301987i \(-0.990386\pi\)
0.473619 0.880730i \(-0.342947\pi\)
\(102\) 0 0
\(103\) −7.61856 + 13.1957i −0.750679 + 1.30021i 0.196816 + 0.980441i \(0.436940\pi\)
−0.947494 + 0.319773i \(0.896393\pi\)
\(104\) −1.04814 + 1.81544i −0.102779 + 0.178018i
\(105\) 0 0
\(106\) 6.91868 + 11.9835i 0.672002 + 1.16394i
\(107\) −11.4163 −1.10366 −0.551829 0.833957i \(-0.686070\pi\)
−0.551829 + 0.833957i \(0.686070\pi\)
\(108\) 0 0
\(109\) −10.6147 −1.01670 −0.508351 0.861150i \(-0.669745\pi\)
−0.508351 + 0.861150i \(0.669745\pi\)
\(110\) 3.11342 2.03747i 0.296853 0.194265i
\(111\) 0 0
\(112\) 2.07602 + 1.64016i 0.196166 + 0.154981i
\(113\) 6.87120 11.9013i 0.646388 1.11958i −0.337591 0.941293i \(-0.609612\pi\)
0.983979 0.178284i \(-0.0570546\pi\)
\(114\) 0 0
\(115\) −6.91769 10.5708i −0.645078 0.985733i
\(116\) 4.74279i 0.440357i
\(117\) 0 0
\(118\) 0.172580 0.0158873
\(119\) −7.28919 18.3267i −0.668199 1.68001i
\(120\) 0 0
\(121\) −4.11554 + 7.12832i −0.374140 + 0.648029i
\(122\) 5.17503 + 2.98781i 0.468526 + 0.270503i
\(123\) 0 0
\(124\) 1.73402 1.00114i 0.155720 0.0899050i
\(125\) 11.0236 1.86529i 0.985985 0.166837i
\(126\) 0 0
\(127\) 14.1949i 1.25960i −0.776759 0.629798i \(-0.783138\pi\)
0.776759 0.629798i \(-0.216862\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −2.11336 + 4.18399i −0.185354 + 0.366960i
\(131\) −1.14681 + 1.98633i −0.100197 + 0.173547i −0.911766 0.410710i \(-0.865281\pi\)
0.811569 + 0.584257i \(0.198614\pi\)
\(132\) 0 0
\(133\) 4.55796 + 11.4598i 0.395225 + 0.993687i
\(134\) 5.43415i 0.469439i
\(135\) 0 0
\(136\) 7.45463i 0.639229i
\(137\) 5.41797 + 9.38419i 0.462888 + 0.801746i 0.999103 0.0423355i \(-0.0134798\pi\)
−0.536215 + 0.844081i \(0.680147\pi\)
\(138\) 0 0
\(139\) 7.63600 + 4.40865i 0.647677 + 0.373936i 0.787566 0.616231i \(-0.211341\pi\)
−0.139889 + 0.990167i \(0.544674\pi\)
\(140\) 4.83969 + 3.40255i 0.409029 + 0.287568i
\(141\) 0 0
\(142\) −10.4312 + 6.02248i −0.875371 + 0.505396i
\(143\) 3.48824i 0.291701i
\(144\) 0 0
\(145\) 0.592241 + 10.5887i 0.0491830 + 0.879340i
\(146\) 2.39822 + 4.15384i 0.198478 + 0.343774i
\(147\) 0 0
\(148\) 4.21571 + 2.43394i 0.346529 + 0.200069i
\(149\) −12.4184 7.16974i −1.01735 0.587368i −0.104016 0.994576i \(-0.533169\pi\)
−0.913336 + 0.407207i \(0.866503\pi\)
\(150\) 0 0
\(151\) 3.45207 + 5.97917i 0.280926 + 0.486578i 0.971613 0.236576i \(-0.0760252\pi\)
−0.690687 + 0.723154i \(0.742692\pi\)
\(152\) 4.66141i 0.378090i
\(153\) 0 0
\(154\) 4.35632 + 0.636335i 0.351043 + 0.0512773i
\(155\) 3.74633 2.45165i 0.300913 0.196922i
\(156\) 0 0
\(157\) 7.48808 12.9697i 0.597614 1.03510i −0.395559 0.918441i \(-0.629449\pi\)
0.993172 0.116657i \(-0.0372177\pi\)
\(158\) −6.30891 + 10.9273i −0.501910 + 0.869333i
\(159\) 0 0
\(160\) −1.22443 1.87103i −0.0967998 0.147918i
\(161\) 2.16051 14.7908i 0.170272 1.16568i
\(162\) 0 0
\(163\) 8.03539i 0.629380i −0.949194 0.314690i \(-0.898099\pi\)
0.949194 0.314690i \(-0.101901\pi\)
\(164\) −4.07169 7.05238i −0.317946 0.550698i
\(165\) 0 0
\(166\) 2.24015 + 1.29335i 0.173869 + 0.100384i
\(167\) 4.12075 + 2.37911i 0.318873 + 0.184101i 0.650890 0.759172i \(-0.274396\pi\)
−0.332017 + 0.943273i \(0.607729\pi\)
\(168\) 0 0
\(169\) 4.30279 + 7.45265i 0.330984 + 0.573281i
\(170\) 0.930873 + 16.6430i 0.0713947 + 1.27646i
\(171\) 0 0
\(172\) 2.60124i 0.198343i
\(173\) −14.9456 + 8.62882i −1.13629 + 0.656037i −0.945509 0.325595i \(-0.894435\pi\)
−0.190781 + 0.981633i \(0.561102\pi\)
\(174\) 0 0
\(175\) 11.2299 + 6.99213i 0.848899 + 0.528555i
\(176\) −1.44107 0.832005i −0.108625 0.0627147i
\(177\) 0 0
\(178\) −5.61239 9.72094i −0.420666 0.728616i
\(179\) 0.602635i 0.0450430i −0.999746 0.0225215i \(-0.992831\pi\)
0.999746 0.0225215i \(-0.00716943\pi\)
\(180\) 0 0
\(181\) 12.7778i 0.949769i 0.880048 + 0.474885i \(0.157510\pi\)
−0.880048 + 0.474885i \(0.842490\pi\)
\(182\) −5.15358 + 2.04976i −0.382009 + 0.151939i
\(183\) 0 0
\(184\) −2.82486 + 4.89279i −0.208251 + 0.360702i
\(185\) 9.71584 + 4.90754i 0.714323 + 0.360810i
\(186\) 0 0
\(187\) 6.20229 + 10.7427i 0.453556 + 0.785582i
\(188\) 10.2786i 0.749645i
\(189\) 0 0
\(190\) −0.582079 10.4070i −0.0422284 0.755000i
\(191\) −16.3178 + 9.42111i −1.18072 + 0.681687i −0.956180 0.292778i \(-0.905420\pi\)
−0.224537 + 0.974466i \(0.572087\pi\)
\(192\) 0 0
\(193\) −5.89207 3.40179i −0.424120 0.244866i 0.272718 0.962094i \(-0.412077\pi\)
−0.696839 + 0.717228i \(0.745411\pi\)
\(194\) −4.73188 + 8.19586i −0.339730 + 0.588429i
\(195\) 0 0
\(196\) 1.61974 + 6.81003i 0.115696 + 0.486430i
\(197\) −8.58750 −0.611834 −0.305917 0.952058i \(-0.598963\pi\)
−0.305917 + 0.952058i \(0.598963\pi\)
\(198\) 0 0
\(199\) 5.10064i 0.361575i −0.983522 0.180788i \(-0.942135\pi\)
0.983522 0.180788i \(-0.0578646\pi\)
\(200\) −2.96728 4.02433i −0.209818 0.284563i
\(201\) 0 0
\(202\) −5.28548 + 9.15472i −0.371885 + 0.644124i
\(203\) −7.77895 + 9.84614i −0.545975 + 0.691064i
\(204\) 0 0
\(205\) −9.97102 15.2365i −0.696406 1.06417i
\(206\) 15.2371 1.06162
\(207\) 0 0
\(208\) 2.09629 0.145351
\(209\) −3.87831 6.71743i −0.268268 0.464655i
\(210\) 0 0
\(211\) 5.01715 8.68995i 0.345395 0.598241i −0.640031 0.768349i \(-0.721078\pi\)
0.985425 + 0.170108i \(0.0544118\pi\)
\(212\) 6.91868 11.9835i 0.475177 0.823031i
\(213\) 0 0
\(214\) 5.70816 + 9.88683i 0.390202 + 0.675850i
\(215\) 0.324822 + 5.80748i 0.0221527 + 0.396067i
\(216\) 0 0
\(217\) 5.24190 + 0.765693i 0.355844 + 0.0519786i
\(218\) 5.30734 + 9.19258i 0.359458 + 0.622600i
\(219\) 0 0
\(220\) −3.32121 1.67757i −0.223916 0.113101i
\(221\) −13.5334 7.81352i −0.910356 0.525594i
\(222\) 0 0
\(223\) 8.87226 + 15.3672i 0.594131 + 1.02906i 0.993669 + 0.112348i \(0.0358372\pi\)
−0.399538 + 0.916717i \(0.630829\pi\)
\(224\) 0.382411 2.61797i 0.0255509 0.174920i
\(225\) 0 0
\(226\) −13.7424 −0.914131
\(227\) −0.411273 + 0.237449i −0.0272972 + 0.0157600i −0.513586 0.858038i \(-0.671683\pi\)
0.486289 + 0.873798i \(0.338350\pi\)
\(228\) 0 0
\(229\) −9.51279 5.49221i −0.628623 0.362936i 0.151596 0.988443i \(-0.451559\pi\)
−0.780219 + 0.625507i \(0.784892\pi\)
\(230\) −5.69574 + 11.2763i −0.375566 + 0.743537i
\(231\) 0 0
\(232\) 4.10738 2.37140i 0.269663 0.155690i
\(233\) 21.4794 1.40716 0.703582 0.710614i \(-0.251583\pi\)
0.703582 + 0.710614i \(0.251583\pi\)
\(234\) 0 0
\(235\) 1.28351 + 22.9478i 0.0837269 + 1.49695i
\(236\) −0.0862901 0.149459i −0.00561701 0.00972894i
\(237\) 0 0
\(238\) −12.2268 + 15.4760i −0.792546 + 1.00316i
\(239\) 14.6228 + 8.44250i 0.945873 + 0.546100i 0.891797 0.452437i \(-0.149445\pi\)
0.0540768 + 0.998537i \(0.482778\pi\)
\(240\) 0 0
\(241\) 8.00911 4.62406i 0.515912 0.297862i −0.219348 0.975647i \(-0.570393\pi\)
0.735261 + 0.677784i \(0.237060\pi\)
\(242\) 8.23107 0.529113
\(243\) 0 0
\(244\) 5.97562i 0.382550i
\(245\) 4.46657 + 15.0017i 0.285359 + 0.958421i
\(246\) 0 0
\(247\) 8.46249 + 4.88582i 0.538456 + 0.310877i
\(248\) −1.73402 1.00114i −0.110111 0.0635724i
\(249\) 0 0
\(250\) −7.12721 8.61411i −0.450764 0.544804i
\(251\) 9.36996 0.591426 0.295713 0.955277i \(-0.404443\pi\)
0.295713 + 0.955277i \(0.404443\pi\)
\(252\) 0 0
\(253\) 9.40117i 0.591047i
\(254\) −12.2932 + 7.09746i −0.771342 + 0.445334i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.62239 3.24609i −0.350715 0.202485i 0.314285 0.949329i \(-0.398235\pi\)
−0.665000 + 0.746843i \(0.731569\pi\)
\(258\) 0 0
\(259\) 4.75985 + 11.9674i 0.295763 + 0.743616i
\(260\) 4.68012 0.261767i 0.290249 0.0162341i
\(261\) 0 0
\(262\) 2.29362 0.141700
\(263\) −4.41420 7.64563i −0.272192 0.471450i 0.697231 0.716846i \(-0.254415\pi\)
−0.969423 + 0.245397i \(0.921082\pi\)
\(264\) 0 0
\(265\) 13.9501 27.6181i 0.856948 1.69657i
\(266\) 7.64546 9.67719i 0.468773 0.593346i
\(267\) 0 0
\(268\) 4.70611 2.71707i 0.287471 0.165972i
\(269\) −11.6257 −0.708833 −0.354416 0.935088i \(-0.615320\pi\)
−0.354416 + 0.935088i \(0.615320\pi\)
\(270\) 0 0
\(271\) 16.8123i 1.02128i −0.859796 0.510638i \(-0.829409\pi\)
0.859796 0.510638i \(-0.170591\pi\)
\(272\) 6.45590 3.72732i 0.391446 0.226002i
\(273\) 0 0
\(274\) 5.41797 9.38419i 0.327311 0.566920i
\(275\) −7.62433 3.33057i −0.459765 0.200841i
\(276\) 0 0
\(277\) 1.93149 1.11514i 0.116052 0.0670026i −0.440850 0.897581i \(-0.645323\pi\)
0.556902 + 0.830578i \(0.311990\pi\)
\(278\) 8.81729i 0.528826i
\(279\) 0 0
\(280\) 0.526851 5.89257i 0.0314854 0.352149i
\(281\) 2.79869 1.61582i 0.166956 0.0963919i −0.414194 0.910189i \(-0.635936\pi\)
0.581150 + 0.813797i \(0.302603\pi\)
\(282\) 0 0
\(283\) −3.23291 + 5.59957i −0.192177 + 0.332860i −0.945971 0.324250i \(-0.894888\pi\)
0.753795 + 0.657110i \(0.228221\pi\)
\(284\) 10.4312 + 6.02248i 0.618981 + 0.357369i
\(285\) 0 0
\(286\) 3.02090 1.74412i 0.178630 0.103132i
\(287\) 3.11412 21.3191i 0.183821 1.25843i
\(288\) 0 0
\(289\) −38.5715 −2.26891
\(290\) 8.87393 5.80722i 0.521095 0.341012i
\(291\) 0 0
\(292\) 2.39822 4.15384i 0.140345 0.243085i
\(293\) −16.0415 9.26155i −0.937153 0.541066i −0.0480865 0.998843i \(-0.515312\pi\)
−0.889067 + 0.457777i \(0.848646\pi\)
\(294\) 0 0
\(295\) −0.211313 0.322903i −0.0123031 0.0188002i
\(296\) 4.86789i 0.282940i
\(297\) 0 0
\(298\) 14.3395i 0.830664i
\(299\) −5.92171 10.2567i −0.342461 0.593160i
\(300\) 0 0
\(301\) −4.26646 + 5.40024i −0.245915 + 0.311264i
\(302\) 3.45207 5.97917i 0.198645 0.344062i
\(303\) 0 0
\(304\) −4.03690 + 2.33070i −0.231532 + 0.133675i
\(305\) −0.746186 13.3410i −0.0427265 0.763905i
\(306\) 0 0
\(307\) 3.44142 0.196412 0.0982062 0.995166i \(-0.468690\pi\)
0.0982062 + 0.995166i \(0.468690\pi\)
\(308\) −1.62708 4.09086i −0.0927115 0.233098i
\(309\) 0 0
\(310\) −3.99636 2.01859i −0.226978 0.114648i
\(311\) −16.6186 + 28.7842i −0.942352 + 1.63220i −0.181385 + 0.983412i \(0.558058\pi\)
−0.760967 + 0.648790i \(0.775275\pi\)
\(312\) 0 0
\(313\) −0.967111 1.67509i −0.0546644 0.0946815i 0.837398 0.546593i \(-0.184076\pi\)
−0.892063 + 0.451912i \(0.850742\pi\)
\(314\) −14.9762 −0.845153
\(315\) 0 0
\(316\) 12.6178 0.709807
\(317\) 5.12038 + 8.86877i 0.287589 + 0.498120i 0.973234 0.229817i \(-0.0738128\pi\)
−0.685644 + 0.727937i \(0.740479\pi\)
\(318\) 0 0
\(319\) 3.94603 6.83472i 0.220935 0.382671i
\(320\) −1.00815 + 1.99591i −0.0563571 + 0.111575i
\(321\) 0 0
\(322\) −13.8894 + 5.52433i −0.774028 + 0.307859i
\(323\) 34.7491 1.93349
\(324\) 0 0
\(325\) 10.4161 1.16883i 0.577779 0.0648351i
\(326\) −6.95885 + 4.01770i −0.385415 + 0.222520i
\(327\) 0 0
\(328\) −4.07169 + 7.05238i −0.224822 + 0.389402i
\(329\) −16.8586 + 21.3386i −0.929444 + 1.17644i
\(330\) 0 0
\(331\) −2.81788 4.88070i −0.154884 0.268268i 0.778133 0.628100i \(-0.216167\pi\)
−0.933017 + 0.359832i \(0.882834\pi\)
\(332\) 2.58670i 0.141964i
\(333\) 0 0
\(334\) 4.75823i 0.260359i
\(335\) 10.1675 6.65374i 0.555508 0.363533i
\(336\) 0 0
\(337\) 11.8563 + 6.84524i 0.645854 + 0.372884i 0.786866 0.617124i \(-0.211702\pi\)
−0.141012 + 0.990008i \(0.545036\pi\)
\(338\) 4.30279 7.45265i 0.234041 0.405371i
\(339\) 0 0
\(340\) 13.9479 9.12768i 0.756429 0.495018i
\(341\) −3.33181 −0.180428
\(342\) 0 0
\(343\) −7.80693 + 16.7944i −0.421535 + 0.906812i
\(344\) 2.25274 1.30062i 0.121460 0.0701248i
\(345\) 0 0
\(346\) 14.9456 + 8.62882i 0.803478 + 0.463888i
\(347\) 4.89520 8.47874i 0.262788 0.455163i −0.704193 0.710008i \(-0.748691\pi\)
0.966982 + 0.254845i \(0.0820246\pi\)
\(348\) 0 0
\(349\) 14.0539 8.11400i 0.752286 0.434332i −0.0742335 0.997241i \(-0.523651\pi\)
0.826519 + 0.562909i \(0.190318\pi\)
\(350\) 0.440421 13.2214i 0.0235415 0.706715i
\(351\) 0 0
\(352\) 1.66401i 0.0886920i
\(353\) −20.9960 + 12.1220i −1.11750 + 0.645191i −0.940762 0.339066i \(-0.889889\pi\)
−0.176741 + 0.984257i \(0.556556\pi\)
\(354\) 0 0
\(355\) 24.0406 + 12.1431i 1.27594 + 0.644489i
\(356\) −5.61239 + 9.72094i −0.297456 + 0.515209i
\(357\) 0 0
\(358\) −0.521897 + 0.301317i −0.0275831 + 0.0159251i
\(359\) 31.3617i 1.65521i 0.561313 + 0.827604i \(0.310296\pi\)
−0.561313 + 0.827604i \(0.689704\pi\)
\(360\) 0 0
\(361\) −2.72872 −0.143617
\(362\) 11.0659 6.38892i 0.581612 0.335794i
\(363\) 0 0
\(364\) 4.35194 + 3.43825i 0.228103 + 0.180213i
\(365\) 4.83552 9.57325i 0.253103 0.501087i
\(366\) 0 0
\(367\) −0.616195 1.06728i −0.0321651 0.0557116i 0.849495 0.527597i \(-0.176907\pi\)
−0.881660 + 0.471885i \(0.843574\pi\)
\(368\) 5.64971 0.294512
\(369\) 0 0
\(370\) −0.607862 10.8679i −0.0316012 0.564997i
\(371\) 34.0182 13.5303i 1.76614 0.702457i
\(372\) 0 0
\(373\) 23.9159 + 13.8079i 1.23832 + 0.714944i 0.968751 0.248037i \(-0.0797855\pi\)
0.269569 + 0.962981i \(0.413119\pi\)
\(374\) 6.20229 10.7427i 0.320713 0.555491i
\(375\) 0 0
\(376\) 8.90154 5.13931i 0.459062 0.265040i
\(377\) 9.94225i 0.512052i
\(378\) 0 0
\(379\) 23.2265 1.19307 0.596533 0.802589i \(-0.296545\pi\)
0.596533 + 0.802589i \(0.296545\pi\)
\(380\) −8.72165 + 5.70757i −0.447411 + 0.292792i
\(381\) 0 0
\(382\) 16.3178 + 9.42111i 0.834893 + 0.482026i
\(383\) −20.6052 11.8964i −1.05288 0.607880i −0.129425 0.991589i \(-0.541313\pi\)
−0.923454 + 0.383709i \(0.874646\pi\)
\(384\) 0 0
\(385\) −4.14342 8.92998i −0.211168 0.455114i
\(386\) 6.80357i 0.346293i
\(387\) 0 0
\(388\) 9.46377 0.480450
\(389\) 8.18328 4.72462i 0.414909 0.239548i −0.277988 0.960585i \(-0.589668\pi\)
0.692897 + 0.721037i \(0.256334\pi\)
\(390\) 0 0
\(391\) −36.4740 21.0583i −1.84457 1.06496i
\(392\) 5.08779 4.80775i 0.256972 0.242828i
\(393\) 0 0
\(394\) 4.29375 + 7.43699i 0.216316 + 0.374670i
\(395\) 28.1703 1.57561i 1.41740 0.0792775i
\(396\) 0 0
\(397\) −21.7234 −1.09026 −0.545132 0.838350i \(-0.683521\pi\)
−0.545132 + 0.838350i \(0.683521\pi\)
\(398\) −4.41729 + 2.55032i −0.221419 + 0.127836i
\(399\) 0 0
\(400\) −2.00154 + 4.58191i −0.100077 + 0.229095i
\(401\) 10.6544 + 6.15134i 0.532057 + 0.307183i 0.741854 0.670562i \(-0.233947\pi\)
−0.209797 + 0.977745i \(0.567280\pi\)
\(402\) 0 0
\(403\) 3.63501 2.09867i 0.181073 0.104542i
\(404\) 10.5710 0.525925
\(405\) 0 0
\(406\) 12.4165 + 1.81369i 0.616220 + 0.0900122i
\(407\) −4.05010 7.01498i −0.200756 0.347720i
\(408\) 0 0
\(409\) −2.50285 1.44502i −0.123758 0.0714517i 0.436843 0.899538i \(-0.356097\pi\)
−0.560601 + 0.828086i \(0.689430\pi\)
\(410\) −8.20973 + 16.2534i −0.405450 + 0.802700i
\(411\) 0 0
\(412\) −7.61856 13.1957i −0.375339 0.650107i
\(413\) 0.0659965 0.451810i 0.00324748 0.0222321i
\(414\) 0 0
\(415\) −0.323006 5.77502i −0.0158558 0.283484i
\(416\) −1.04814 1.81544i −0.0513894 0.0890091i
\(417\) 0 0
\(418\) −3.87831 + 6.71743i −0.189694 + 0.328560i
\(419\) 12.7397 22.0658i 0.622374 1.07798i −0.366668 0.930352i \(-0.619501\pi\)
0.989042 0.147632i \(-0.0471652\pi\)
\(420\) 0 0
\(421\) −2.96965 5.14359i −0.144732 0.250683i 0.784541 0.620077i \(-0.212899\pi\)
−0.929273 + 0.369394i \(0.879565\pi\)
\(422\) −10.0343 −0.488462
\(423\) 0 0
\(424\) −13.8374 −0.672002
\(425\) 29.9999 22.1200i 1.45521 1.07298i
\(426\) 0 0
\(427\) 9.80098 12.4055i 0.474303 0.600345i
\(428\) 5.70816 9.88683i 0.275914 0.477898i
\(429\) 0 0
\(430\) 4.86701 3.18504i 0.234708 0.153596i
\(431\) 29.4344i 1.41781i 0.705306 + 0.708903i \(0.250810\pi\)
−0.705306 + 0.708903i \(0.749190\pi\)
\(432\) 0 0
\(433\) −14.2559 −0.685093 −0.342546 0.939501i \(-0.611289\pi\)
−0.342546 + 0.939501i \(0.611289\pi\)
\(434\) −1.95784 4.92247i −0.0939795 0.236286i
\(435\) 0 0
\(436\) 5.30734 9.19258i 0.254176 0.440245i
\(437\) 22.8073 + 13.1678i 1.09102 + 0.629902i
\(438\) 0 0
\(439\) −9.41191 + 5.43397i −0.449206 + 0.259349i −0.707495 0.706719i \(-0.750175\pi\)
0.258289 + 0.966068i \(0.416841\pi\)
\(440\) 0.207788 + 3.71503i 0.00990590 + 0.177107i
\(441\) 0 0
\(442\) 15.6270i 0.743303i
\(443\) 5.24859 + 9.09083i 0.249368 + 0.431918i 0.963351 0.268245i \(-0.0864438\pi\)
−0.713983 + 0.700164i \(0.753110\pi\)
\(444\) 0 0
\(445\) −11.3162 + 22.4036i −0.536441 + 1.06203i
\(446\) 8.87226 15.3672i 0.420114 0.727659i
\(447\) 0 0
\(448\) −2.45843 + 0.977807i −0.116150 + 0.0461970i
\(449\) 37.0684i 1.74937i −0.484695 0.874683i \(-0.661070\pi\)
0.484695 0.874683i \(-0.338930\pi\)
\(450\) 0 0
\(451\) 13.5507i 0.638076i
\(452\) 6.87120 + 11.9013i 0.323194 + 0.559789i
\(453\) 0 0
\(454\) 0.411273 + 0.237449i 0.0193020 + 0.0111440i
\(455\) 10.1454 + 7.13273i 0.475623 + 0.334387i
\(456\) 0 0
\(457\) 17.5211 10.1158i 0.819601 0.473197i −0.0306780 0.999529i \(-0.509767\pi\)
0.850279 + 0.526333i \(0.176433\pi\)
\(458\) 10.9844i 0.513269i
\(459\) 0 0
\(460\) 12.6134 0.705490i 0.588104 0.0328936i
\(461\) −6.80701 11.7901i −0.317034 0.549119i 0.662834 0.748766i \(-0.269354\pi\)
−0.979868 + 0.199648i \(0.936020\pi\)
\(462\) 0 0
\(463\) −19.8188 11.4424i −0.921057 0.531773i −0.0370852 0.999312i \(-0.511807\pi\)
−0.883972 + 0.467539i \(0.845141\pi\)
\(464\) −4.10738 2.37140i −0.190680 0.110089i
\(465\) 0 0
\(466\) −10.7397 18.6017i −0.497507 0.861708i
\(467\) 3.34545i 0.154809i 0.997000 + 0.0774044i \(0.0246633\pi\)
−0.997000 + 0.0774044i \(0.975337\pi\)
\(468\) 0 0
\(469\) 14.2264 + 2.07808i 0.656916 + 0.0959567i
\(470\) 19.2316 12.5855i 0.887089 0.580524i
\(471\) 0 0
\(472\) −0.0862901 + 0.149459i −0.00397182 + 0.00687940i
\(473\) 2.16425 3.74858i 0.0995121 0.172360i
\(474\) 0 0
\(475\) −18.7591 + 13.8317i −0.860725 + 0.634642i
\(476\) 19.5160 + 2.85073i 0.894514 + 0.130663i
\(477\) 0 0
\(478\) 16.8850i 0.772302i
\(479\) 8.15257 + 14.1207i 0.372500 + 0.645189i 0.989949 0.141421i \(-0.0451673\pi\)
−0.617449 + 0.786611i \(0.711834\pi\)
\(480\) 0 0
\(481\) 8.83734 + 5.10224i 0.402948 + 0.232642i
\(482\) −8.00911 4.62406i −0.364805 0.210620i
\(483\) 0 0
\(484\) −4.11554 7.12832i −0.187070 0.324014i
\(485\) 21.1286 1.18176i 0.959401 0.0536609i
\(486\) 0 0
\(487\) 5.20248i 0.235747i 0.993029 + 0.117873i \(0.0376077\pi\)
−0.993029 + 0.117873i \(0.962392\pi\)
\(488\) −5.17503 + 2.98781i −0.234263 + 0.135252i
\(489\) 0 0
\(490\) 10.7585 11.3690i 0.486021 0.513599i
\(491\) 20.6633 + 11.9299i 0.932521 + 0.538391i 0.887608 0.460600i \(-0.152366\pi\)
0.0449127 + 0.998991i \(0.485699\pi\)
\(492\) 0 0
\(493\) 17.6779 + 30.6190i 0.796172 + 1.37901i
\(494\) 9.77165i 0.439647i
\(495\) 0 0
\(496\) 2.00228i 0.0899050i
\(497\) 11.7777 + 29.6117i 0.528300 + 1.32827i
\(498\) 0 0
\(499\) 16.1660 28.0003i 0.723688 1.25346i −0.235824 0.971796i \(-0.575779\pi\)
0.959512 0.281668i \(-0.0908877\pi\)
\(500\) −3.89643 + 10.4794i −0.174254 + 0.468653i
\(501\) 0 0
\(502\) −4.68498 8.11462i −0.209101 0.362173i
\(503\) 10.0768i 0.449301i 0.974439 + 0.224651i \(0.0721241\pi\)
−0.974439 + 0.224651i \(0.927876\pi\)
\(504\) 0 0
\(505\) 23.6005 1.32001i 1.05021 0.0587399i
\(506\) 8.14166 4.70059i 0.361941 0.208967i
\(507\) 0 0
\(508\) 12.2932 + 7.09746i 0.545421 + 0.314899i
\(509\) −10.5573 + 18.2858i −0.467944 + 0.810503i −0.999329 0.0366275i \(-0.988338\pi\)
0.531385 + 0.847131i \(0.321672\pi\)
\(510\) 0 0
\(511\) 11.7917 4.69000i 0.521636 0.207473i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 6.49218i 0.286358i
\(515\) −18.6568 28.5092i −0.822117 1.25626i
\(516\) 0 0
\(517\) 8.55186 14.8122i 0.376110 0.651442i
\(518\) 7.98412 10.1058i 0.350802 0.444025i
\(519\) 0 0
\(520\) −2.56676 3.92222i −0.112560 0.172001i
\(521\) −21.9402 −0.961216 −0.480608 0.876936i \(-0.659584\pi\)
−0.480608 + 0.876936i \(0.659584\pi\)
\(522\) 0 0
\(523\) −7.10550 −0.310702 −0.155351 0.987859i \(-0.549651\pi\)
−0.155351 + 0.987859i \(0.549651\pi\)
\(524\) −1.14681 1.98633i −0.0500986 0.0867733i
\(525\) 0 0
\(526\) −4.41420 + 7.64563i −0.192468 + 0.333365i
\(527\) 7.46313 12.9265i 0.325099 0.563088i
\(528\) 0 0
\(529\) −4.45963 7.72430i −0.193897 0.335839i
\(530\) −30.8930 + 1.72790i −1.34191 + 0.0750551i
\(531\) 0 0
\(532\) −12.2034 1.78257i −0.529085 0.0772843i
\(533\) −8.53543 14.7838i −0.369711 0.640358i
\(534\) 0 0
\(535\) 11.5093 22.7859i 0.497592 0.985121i
\(536\) −4.70611 2.71707i −0.203273 0.117360i
\(537\) 0 0
\(538\) 5.81286 + 10.0682i 0.250610 + 0.434070i
\(539\) 3.33181 11.1614i 0.143511 0.480755i
\(540\) 0 0
\(541\) −36.7965 −1.58200 −0.791002 0.611813i \(-0.790441\pi\)
−0.791002 + 0.611813i \(0.790441\pi\)
\(542\) −14.5599 + 8.40617i −0.625402 + 0.361076i
\(543\) 0 0
\(544\) −6.45590 3.72732i −0.276794 0.159807i
\(545\) 10.7012 21.1859i 0.458387 0.907504i
\(546\) 0 0
\(547\) 14.6902 8.48140i 0.628108 0.362638i −0.151911 0.988394i \(-0.548543\pi\)
0.780019 + 0.625756i \(0.215209\pi\)
\(548\) −10.8359 −0.462888
\(549\) 0 0
\(550\) 0.927806 + 8.26815i 0.0395618 + 0.352555i
\(551\) −11.0540 19.1462i −0.470918 0.815654i
\(552\) 0 0
\(553\) 26.1949 + 20.6953i 1.11392 + 0.880052i
\(554\) −1.93149 1.11514i −0.0820610 0.0473780i
\(555\) 0 0
\(556\) −7.63600 + 4.40865i −0.323839 + 0.186968i
\(557\) 2.63451 0.111628 0.0558139 0.998441i \(-0.482225\pi\)
0.0558139 + 0.998441i \(0.482225\pi\)
\(558\) 0 0
\(559\) 5.45295i 0.230635i
\(560\) −5.36654 + 2.49002i −0.226778 + 0.105223i
\(561\) 0 0
\(562\) −2.79869 1.61582i −0.118055 0.0681594i
\(563\) −20.7641 11.9882i −0.875104 0.505242i −0.00606320 0.999982i \(-0.501930\pi\)
−0.869041 + 0.494740i \(0.835263\pi\)
\(564\) 0 0
\(565\) 16.8266 + 25.7125i 0.707902 + 1.08173i
\(566\) 6.46583 0.271779
\(567\) 0 0
\(568\) 12.0450i 0.505396i
\(569\) −36.5400 + 21.0964i −1.53184 + 0.884407i −0.532560 + 0.846392i \(0.678770\pi\)
−0.999277 + 0.0380144i \(0.987897\pi\)
\(570\) 0 0
\(571\) 12.7469 22.0783i 0.533441 0.923947i −0.465796 0.884892i \(-0.654232\pi\)
0.999237 0.0390547i \(-0.0124347\pi\)
\(572\) −3.02090 1.74412i −0.126310 0.0729253i
\(573\) 0 0
\(574\) −20.0200 + 7.96266i −0.835617 + 0.332355i
\(575\) 28.0724 3.15012i 1.17070 0.131369i
\(576\) 0 0
\(577\) −32.7696 −1.36422 −0.682108 0.731251i \(-0.738937\pi\)
−0.682108 + 0.731251i \(0.738937\pi\)
\(578\) 19.2858 + 33.4039i 0.802182 + 1.38942i
\(579\) 0 0
\(580\) −9.46617 4.78143i −0.393061 0.198538i
\(581\) 4.24261 5.37005i 0.176013 0.222787i
\(582\) 0 0
\(583\) −19.9407 + 11.5128i −0.825858 + 0.476810i
\(584\) −4.79644 −0.198478
\(585\) 0 0
\(586\) 18.5231i 0.765182i
\(587\) 19.1726 11.0693i 0.791337 0.456879i −0.0490959 0.998794i \(-0.515634\pi\)
0.840433 + 0.541915i \(0.182301\pi\)
\(588\) 0 0
\(589\) −4.66672 + 8.08300i −0.192289 + 0.333054i
\(590\) −0.173986 + 0.344454i −0.00716290 + 0.0141809i
\(591\) 0 0
\(592\) −4.21571 + 2.43394i −0.173265 + 0.100034i
\(593\) 26.0392i 1.06930i 0.845073 + 0.534650i \(0.179557\pi\)
−0.845073 + 0.534650i \(0.820443\pi\)
\(594\) 0 0
\(595\) 43.9270 + 3.92748i 1.80083 + 0.161011i
\(596\) 12.4184 7.16974i 0.508676 0.293684i
\(597\) 0 0
\(598\) −5.92171 + 10.2567i −0.242157 + 0.419428i
\(599\) −18.1227 10.4631i −0.740472 0.427512i 0.0817689 0.996651i \(-0.473943\pi\)
−0.822241 + 0.569140i \(0.807276\pi\)
\(600\) 0 0
\(601\) −25.4768 + 14.7091i −1.03922 + 0.599995i −0.919613 0.392826i \(-0.871497\pi\)
−0.119609 + 0.992821i \(0.538164\pi\)
\(602\) 6.80997 + 0.994743i 0.277554 + 0.0405427i
\(603\) 0 0
\(604\) −6.90415 −0.280926
\(605\) −10.0784 15.4006i −0.409745 0.626124i
\(606\) 0 0
\(607\) 6.62507 11.4750i 0.268903 0.465754i −0.699676 0.714461i \(-0.746672\pi\)
0.968579 + 0.248707i \(0.0800055\pi\)
\(608\) 4.03690 + 2.33070i 0.163718 + 0.0945225i
\(609\) 0 0
\(610\) −11.1806 + 7.31673i −0.452688 + 0.296246i
\(611\) 21.5469i 0.871695i
\(612\) 0 0
\(613\) 17.3252i 0.699759i 0.936795 + 0.349880i \(0.113778\pi\)
−0.936795 + 0.349880i \(0.886222\pi\)
\(614\) −1.72071 2.98036i −0.0694423 0.120278i
\(615\) 0 0
\(616\) −2.72924 + 3.45452i −0.109964 + 0.139187i
\(617\) 9.93911 17.2150i 0.400133 0.693052i −0.593608 0.804754i \(-0.702297\pi\)
0.993742 + 0.111703i \(0.0356304\pi\)
\(618\) 0 0
\(619\) 30.8618 17.8181i 1.24044 0.716168i 0.271256 0.962507i \(-0.412561\pi\)
0.969184 + 0.246339i \(0.0792276\pi\)
\(620\) 0.250028 + 4.47025i 0.0100414 + 0.179529i
\(621\) 0 0
\(622\) 33.2371 1.33269
\(623\) −27.5954 + 10.9757i −1.10559 + 0.439731i
\(624\) 0 0
\(625\) −7.39051 + 23.8826i −0.295620 + 0.955305i
\(626\) −0.967111 + 1.67509i −0.0386535 + 0.0669499i
\(627\) 0 0
\(628\) 7.48808 + 12.9697i 0.298807 + 0.517549i
\(629\) 36.2883 1.44691
\(630\) 0 0
\(631\) 28.1609 1.12107 0.560533 0.828132i \(-0.310596\pi\)
0.560533 + 0.828132i \(0.310596\pi\)
\(632\) −6.30891 10.9273i −0.250955 0.434666i
\(633\) 0 0
\(634\) 5.12038 8.86877i 0.203356 0.352224i
\(635\) 28.3317 + 14.3106i 1.12431 + 0.567898i
\(636\) 0 0
\(637\) 3.39543 + 14.2758i 0.134532 + 0.565626i
\(638\) −7.89205 −0.312449
\(639\) 0 0
\(640\) 2.23258 0.124872i 0.0882504 0.00493599i
\(641\) −25.4170 + 14.6745i −1.00391 + 0.579608i −0.909403 0.415916i \(-0.863461\pi\)
−0.0945076 + 0.995524i \(0.530128\pi\)
\(642\) 0 0
\(643\) −16.7337 + 28.9836i −0.659912 + 1.14300i 0.320726 + 0.947172i \(0.396073\pi\)
−0.980638 + 0.195830i \(0.937260\pi\)
\(644\) 11.7289 + 9.26644i 0.462185 + 0.365149i
\(645\) 0 0
\(646\) −17.3745 30.0936i −0.683592 1.18402i
\(647\) 19.6226i 0.771445i −0.922615 0.385723i \(-0.873952\pi\)
0.922615 0.385723i \(-0.126048\pi\)
\(648\) 0 0
\(649\) 0.287175i 0.0112726i
\(650\) −6.22027 8.43615i −0.243979 0.330893i
\(651\) 0 0
\(652\) 6.95885 + 4.01770i 0.272530 + 0.157345i
\(653\) −9.70880 + 16.8161i −0.379935 + 0.658066i −0.991052 0.133474i \(-0.957387\pi\)
0.611118 + 0.791540i \(0.290720\pi\)
\(654\) 0 0
\(655\) −2.80838 4.29144i −0.109732 0.167680i
\(656\) 8.14339 0.317946
\(657\) 0 0
\(658\) 26.9091 + 3.93065i 1.04903 + 0.153233i
\(659\) 10.8291 6.25219i 0.421842 0.243551i −0.274023 0.961723i \(-0.588354\pi\)
0.695865 + 0.718172i \(0.255021\pi\)
\(660\) 0 0
\(661\) 3.75358 + 2.16713i 0.145997 + 0.0842916i 0.571219 0.820798i \(-0.306471\pi\)
−0.425222 + 0.905089i \(0.639804\pi\)
\(662\) −2.81788 + 4.88070i −0.109520 + 0.189694i
\(663\) 0 0
\(664\) −2.24015 + 1.29335i −0.0869347 + 0.0501918i
\(665\) −27.4677 2.45587i −1.06515 0.0952345i
\(666\) 0 0
\(667\) 26.7954i 1.03752i
\(668\) −4.12075 + 2.37911i −0.159436 + 0.0920507i
\(669\) 0 0
\(670\) −10.8460 5.47842i −0.419019 0.211650i
\(671\) −4.97174 + 8.61131i −0.191932 + 0.332436i
\(672\) 0 0
\(673\) 1.47592 0.852124i 0.0568926 0.0328470i −0.471284 0.881982i \(-0.656209\pi\)
0.528177 + 0.849135i \(0.322876\pi\)
\(674\) 13.6905i 0.527338i
\(675\) 0 0
\(676\) −8.60558 −0.330984
\(677\) 5.08519 2.93594i 0.195440 0.112837i −0.399087 0.916913i \(-0.630673\pi\)
0.594527 + 0.804076i \(0.297339\pi\)
\(678\) 0 0
\(679\) 19.6470 + 15.5221i 0.753983 + 0.595684i
\(680\) −14.8787 7.51536i −0.570574 0.288201i
\(681\) 0 0
\(682\) 1.66591 + 2.88543i 0.0637908 + 0.110489i
\(683\) 10.9483 0.418926 0.209463 0.977817i \(-0.432828\pi\)
0.209463 + 0.977817i \(0.432828\pi\)
\(684\) 0 0
\(685\) −24.1921 + 1.35310i −0.924332 + 0.0516994i
\(686\) 18.4478 1.63620i 0.704342 0.0624702i
\(687\) 0 0
\(688\) −2.25274 1.30062i −0.0858850 0.0495857i
\(689\) 14.5035 25.1209i 0.552541 0.957029i
\(690\) 0 0
\(691\) −34.4759 + 19.9047i −1.31153 + 0.757210i −0.982349 0.187058i \(-0.940105\pi\)
−0.329177 + 0.944268i \(0.606771\pi\)
\(692\) 17.2576i 0.656037i
\(693\) 0 0
\(694\) −9.79041 −0.371639
\(695\) −16.4975 + 10.7962i −0.625784 + 0.409522i
\(696\) 0 0
\(697\) −52.5729 30.3530i −1.99134 1.14970i
\(698\) −14.0539 8.11400i −0.531946 0.307119i
\(699\) 0 0
\(700\) −11.6703 + 6.22930i −0.441096 + 0.235445i
\(701\) 7.84396i 0.296262i −0.988968 0.148131i \(-0.952674\pi\)
0.988968 0.148131i \(-0.0473258\pi\)
\(702\) 0 0
\(703\) −22.6912 −0.855815
\(704\) 1.44107 0.832005i 0.0543125 0.0313574i
\(705\) 0 0
\(706\) 20.9960 + 12.1220i 0.790194 + 0.456219i
\(707\) 21.9455 + 17.3381i 0.825347 + 0.652066i
\(708\) 0 0
\(709\) 10.3461 + 17.9200i 0.388557 + 0.673001i 0.992256 0.124212i \(-0.0396402\pi\)
−0.603698 + 0.797213i \(0.706307\pi\)
\(710\) −1.50408 26.8913i −0.0564470 1.00921i
\(711\) 0 0
\(712\) 11.2248 0.420666
\(713\) 9.79674 5.65615i 0.366891 0.211825i
\(714\) 0 0
\(715\) −6.96220 3.51666i −0.260371 0.131516i
\(716\) 0.521897 + 0.301317i 0.0195042 + 0.0112608i
\(717\) 0 0
\(718\) 27.1600 15.6809i 1.01360 0.585204i
\(719\) 21.2881 0.793910 0.396955 0.917838i \(-0.370067\pi\)
0.396955 + 0.917838i \(0.370067\pi\)
\(720\) 0 0
\(721\) 5.82684 39.8903i 0.217003 1.48559i
\(722\) 1.36436 + 2.36314i 0.0507763 + 0.0879471i
\(723\) 0 0
\(724\) −11.0659 6.38892i −0.411262 0.237442i
\(725\) −21.7310 9.49287i −0.807070 0.352556i
\(726\) 0 0
\(727\) −4.79802 8.31041i −0.177949 0.308216i 0.763229 0.646128i \(-0.223613\pi\)
−0.941178 + 0.337912i \(0.890279\pi\)
\(728\) 0.801642 5.48801i 0.0297108 0.203399i
\(729\) 0 0
\(730\) −10.7084 + 0.598941i −0.396337 + 0.0221678i
\(731\) 9.69565 + 16.7934i 0.358607 + 0.621125i
\(732\) 0 0
\(733\) 22.1972 38.4466i 0.819871 1.42006i −0.0859066 0.996303i \(-0.527379\pi\)
0.905777 0.423754i \(-0.139288\pi\)
\(734\) −0.616195 + 1.06728i −0.0227442 + 0.0393941i
\(735\) 0 0
\(736\) −2.82486 4.89279i −0.104126 0.180351i
\(737\) −9.04247 −0.333084
\(738\) 0 0
\(739\) −17.8223 −0.655603 −0.327801 0.944747i \(-0.606308\pi\)
−0.327801 + 0.944747i \(0.606308\pi\)
\(740\) −9.10798 + 5.96039i −0.334816 + 0.219108i
\(741\) 0 0
\(742\) −28.7267 22.6955i −1.05459 0.833179i
\(743\) −25.2903 + 43.8041i −0.927811 + 1.60702i −0.140835 + 0.990033i \(0.544979\pi\)
−0.786976 + 0.616983i \(0.788355\pi\)
\(744\) 0 0
\(745\) 26.8297 17.5577i 0.982963 0.643265i
\(746\) 27.6157i 1.01108i
\(747\) 0 0
\(748\) −12.4046 −0.453556
\(749\) 28.0663 11.1630i 1.02552 0.407886i
\(750\) 0 0
\(751\) −22.2173 + 38.4816i −0.810722 + 1.40421i 0.101637 + 0.994822i \(0.467592\pi\)
−0.912359 + 0.409390i \(0.865741\pi\)
\(752\) −8.90154 5.13931i −0.324606 0.187411i
\(753\) 0 0
\(754\) 8.61024 4.97113i 0.313567 0.181038i
\(755\) −15.4140 + 0.862134i −0.560975 + 0.0313763i
\(756\) 0 0
\(757\) 26.2968i 0.955774i 0.878421 + 0.477887i \(0.158597\pi\)
−0.878421 + 0.477887i \(0.841403\pi\)
\(758\) −11.6133 20.1148i −0.421812 0.730601i
\(759\) 0 0
\(760\) 9.30373 + 4.69938i 0.337482 + 0.170465i
\(761\) 11.6947 20.2558i 0.423932 0.734272i −0.572388 0.819983i \(-0.693983\pi\)
0.996320 + 0.0857107i \(0.0273161\pi\)
\(762\) 0 0
\(763\) 26.0955 10.3791i 0.944720 0.375749i
\(764\) 18.8422i 0.681687i
\(765\) 0 0
\(766\) 23.7929i 0.859672i
\(767\) −0.180889 0.313309i −0.00653152 0.0113129i
\(768\) 0 0
\(769\) −21.6845 12.5196i −0.781963 0.451467i 0.0551625 0.998477i \(-0.482432\pi\)
−0.837126 + 0.547011i \(0.815766\pi\)
\(770\) −5.66188 + 8.05329i −0.204040 + 0.290221i
\(771\) 0 0
\(772\) 5.89207 3.40179i 0.212060 0.122433i
\(773\) 55.5416i 1.99769i −0.0480317 0.998846i \(-0.515295\pi\)
0.0480317 0.998846i \(-0.484705\pi\)
\(774\) 0 0
\(775\) 1.11642 + 9.94895i 0.0401028 + 0.357377i
\(776\) −4.73188 8.19586i −0.169865 0.294214i
\(777\) 0 0
\(778\) −8.18328 4.72462i −0.293385 0.169386i
\(779\) 32.8740 + 18.9798i 1.17783 + 0.680023i
\(780\) 0 0
\(781\) −10.0215 17.3577i −0.358596 0.621107i
\(782\) 42.1165i 1.50608i
\(783\) 0 0
\(784\) −6.70752 2.00228i −0.239554 0.0715100i
\(785\) 18.3373 + 28.0209i 0.654485 + 1.00011i
\(786\) 0 0
\(787\) −7.49527 + 12.9822i −0.267177 + 0.462765i −0.968132 0.250441i \(-0.919424\pi\)
0.700954 + 0.713206i \(0.252758\pi\)
\(788\) 4.29375 7.43699i 0.152959 0.264932i
\(789\) 0 0
\(790\) −15.4496 23.6084i −0.549674 0.839947i
\(791\) −5.25524 + 35.9772i −0.186855 + 1.27920i
\(792\) 0 0
\(793\) 12.5266i 0.444833i
\(794\) 10.8617 + 18.8130i 0.385467 + 0.667648i
\(795\) 0 0
\(796\) 4.41729 + 2.55032i 0.156567 + 0.0903938i
\(797\) −43.9990 25.4028i −1.55852 0.899814i −0.997399 0.0720822i \(-0.977036\pi\)
−0.561124 0.827732i \(-0.689631\pi\)
\(798\) 0 0
\(799\) 38.3116 + 66.3577i 1.35537 + 2.34757i
\(800\) 4.96881 0.557572i 0.175674 0.0197132i
\(801\) 0 0
\(802\) 12.3027i 0.434423i
\(803\) −6.91203 + 3.99066i −0.243920 + 0.140827i
\(804\) 0 0
\(805\) 27.3429 + 19.2235i 0.963710 + 0.677538i
\(806\) −3.63501 2.09867i −0.128038 0.0739227i
\(807\) 0 0
\(808\) −5.28548 9.15472i −0.185942 0.322062i
\(809\) 38.3573i 1.34857i 0.738471 + 0.674285i \(0.235548\pi\)
−0.738471 + 0.674285i \(0.764452\pi\)
\(810\) 0 0
\(811\) 0.237330i 0.00833379i 0.999991 + 0.00416689i \(0.00132637\pi\)
−0.999991 + 0.00416689i \(0.998674\pi\)
\(812\) −4.63754 11.6598i −0.162746 0.409180i
\(813\) 0 0
\(814\) −4.05010 + 7.01498i −0.141956 + 0.245875i
\(815\) 16.0379 + 8.10086i 0.561782 + 0.283761i
\(816\) 0 0
\(817\) −6.06273 10.5009i −0.212108 0.367382i
\(818\) 2.89004i 0.101048i
\(819\) 0 0
\(820\) 18.1807 1.01688i 0.634899 0.0355110i
\(821\) −34.0959 + 19.6853i −1.18995 + 0.687020i −0.958296 0.285777i \(-0.907748\pi\)
−0.231658 + 0.972797i \(0.574415\pi\)
\(822\) 0 0
\(823\) −12.0228 6.94134i −0.419087 0.241960i 0.275600 0.961273i \(-0.411124\pi\)
−0.694687 + 0.719312i \(0.744457\pi\)
\(824\) −7.61856 + 13.1957i −0.265405 + 0.459695i
\(825\) 0 0
\(826\) −0.424277 + 0.168750i −0.0147625 + 0.00587157i
\(827\) −53.7207 −1.86805 −0.934027 0.357204i \(-0.883730\pi\)
−0.934027 + 0.357204i \(0.883730\pi\)
\(828\) 0 0
\(829\) 40.2685i 1.39858i 0.714836 + 0.699292i \(0.246501\pi\)
−0.714836 + 0.699292i \(0.753499\pi\)
\(830\) −4.83981 + 3.16724i −0.167992 + 0.109936i
\(831\) 0 0
\(832\) −1.04814 + 1.81544i −0.0363378 + 0.0629390i
\(833\) 35.8400 + 37.9276i 1.24178 + 1.31411i
\(834\) 0 0
\(835\) −8.90281 + 5.82612i −0.308094 + 0.201621i
\(836\) 7.75663 0.268268
\(837\) 0 0
\(838\) −25.4794 −0.880170
\(839\) 12.6898 + 21.9794i 0.438100 + 0.758812i 0.997543 0.0700572i \(-0.0223182\pi\)
−0.559443 + 0.828869i \(0.688985\pi\)
\(840\) 0 0
\(841\) −3.25296 + 5.63429i −0.112171 + 0.194286i
\(842\) −2.96965 + 5.14359i −0.102341 + 0.177260i
\(843\) 0 0
\(844\) 5.01715 + 8.68995i 0.172697 + 0.299120i
\(845\) −19.2126 + 1.07460i −0.660935 + 0.0369672i
\(846\) 0 0
\(847\) 3.14765 21.5487i 0.108155 0.740422i
\(848\) 6.91868 + 11.9835i 0.237589 + 0.411516i
\(849\) 0 0
\(850\) −34.1564 14.9207i −1.17156 0.511776i
\(851\) 23.8176 + 13.7511i 0.816456 + 0.471381i
\(852\) 0 0
\(853\) 17.2962 + 29.9580i 0.592212 + 1.02574i 0.993934 + 0.109979i \(0.0350785\pi\)
−0.401722 + 0.915762i \(0.631588\pi\)
\(854\) −15.6440 2.28514i −0.535326 0.0781959i
\(855\) 0 0
\(856\) −11.4163 −0.390202
\(857\) 16.9137 9.76512i 0.577761 0.333570i −0.182482 0.983209i \(-0.558413\pi\)
0.760243 + 0.649639i \(0.225080\pi\)
\(858\) 0 0
\(859\) 43.4126 + 25.0643i 1.48122 + 0.855182i 0.999773 0.0212940i \(-0.00677859\pi\)
0.481446 + 0.876476i \(0.340112\pi\)
\(860\) −5.19183 2.62243i −0.177040 0.0894243i
\(861\) 0 0
\(862\) 25.4910 14.7172i 0.868225 0.501270i
\(863\) −17.7867 −0.605465 −0.302733 0.953076i \(-0.597899\pi\)
−0.302733 + 0.953076i \(0.597899\pi\)
\(864\) 0 0
\(865\) −2.15499 38.5290i −0.0732720 1.31003i
\(866\) 7.12793 + 12.3459i 0.242217 + 0.419532i
\(867\) 0 0
\(868\) −3.28406 + 4.15678i −0.111468 + 0.141090i
\(869\) −18.1832 10.4981i −0.616823 0.356123i
\(870\) 0 0
\(871\) 9.86535 5.69576i 0.334275 0.192994i
\(872\) −10.6147 −0.359458
\(873\) 0 0
\(874\) 26.3356i 0.890815i
\(875\) −25.2770 + 15.3647i −0.854518 + 0.519421i
\(876\) 0 0
\(877\) −18.1879 10.5008i −0.614163 0.354587i 0.160430 0.987047i \(-0.448712\pi\)
−0.774593 + 0.632460i \(0.782045\pi\)
\(878\) 9.41191 + 5.43397i 0.317637 + 0.183388i
\(879\) 0 0
\(880\) 3.11342 2.03747i 0.104953 0.0686829i
\(881\) −57.9674 −1.95297 −0.976486 0.215580i \(-0.930836\pi\)
−0.976486 + 0.215580i \(0.930836\pi\)
\(882\) 0 0
\(883\) 42.6213i 1.43432i −0.696908 0.717161i \(-0.745441\pi\)
0.696908 0.717161i \(-0.254559\pi\)
\(884\) 13.5334 7.81352i 0.455178 0.262797i
\(885\) 0 0
\(886\) 5.24859 9.09083i 0.176330 0.305412i
\(887\) 3.27263 + 1.88945i 0.109884 + 0.0634416i 0.553935 0.832560i \(-0.313126\pi\)
−0.444051 + 0.896002i \(0.646459\pi\)
\(888\) 0 0
\(889\) 13.8799 + 34.8973i 0.465517 + 1.17042i
\(890\) 25.0602 1.40166i 0.840020 0.0469837i
\(891\) 0 0
\(892\) −17.7445 −0.594131
\(893\) −23.9564 41.4937i −0.801671 1.38853i
\(894\) 0 0
\(895\) 1.20280 + 0.607544i 0.0402052 + 0.0203080i
\(896\) 2.07602 + 1.64016i 0.0693550 + 0.0547940i
\(897\) 0 0
\(898\) −32.1022 + 18.5342i −1.07126 + 0.618494i
\(899\) −9.49639 −0.316722
\(900\) 0 0
\(901\) 103.152i 3.43651i
\(902\) 11.7352 6.77533i 0.390740 0.225594i
\(903\) 0 0
\(904\) 6.87120 11.9013i 0.228533 0.395830i
\(905\) −25.5034 12.8819i −0.847760 0.428210i
\(906\) 0 0
\(907\) −43.9682 + 25.3850i −1.45994 + 0.842896i −0.999008 0.0445394i \(-0.985818\pi\)
−0.460932 + 0.887436i \(0.652485\pi\)
\(908\) 0.474897i 0.0157600i
\(909\) 0 0
\(910\) 1.10443 12.3525i 0.0366115 0.409482i
\(911\) 6.59422 3.80717i 0.218476 0.126137i −0.386768 0.922177i \(-0.626409\pi\)
0.605244 + 0.796040i \(0.293075\pi\)
\(912\) 0 0
\(913\) −2.15215 + 3.72763i −0.0712257 + 0.123367i
\(914\) −17.5211 10.1158i −0.579545 0.334601i
\(915\) 0 0
\(916\) 9.51279 5.49221i 0.314312 0.181468i
\(917\) 0.877104 6.00462i 0.0289645 0.198290i
\(918\) 0 0
\(919\) −10.4157 −0.343581 −0.171791 0.985133i \(-0.554955\pi\)
−0.171791 + 0.985133i \(0.554955\pi\)
\(920\) −6.91769 10.5708i −0.228069 0.348509i
\(921\) 0 0
\(922\) −6.80701 + 11.7901i −0.224177 + 0.388286i
\(923\) 21.8669 + 12.6249i 0.719757 + 0.415552i
\(924\) 0 0
\(925\) −19.5900 + 14.4444i −0.644115 + 0.474928i
\(926\) 22.8848i 0.752040i
\(927\) 0 0
\(928\) 4.74279i 0.155690i
\(929\) 21.5567 + 37.3374i 0.707253 + 1.22500i 0.965872 + 0.259019i \(0.0833994\pi\)
−0.258619 + 0.965980i \(0.583267\pi\)
\(930\) 0 0
\(931\) −22.4109 23.7162i −0.734487 0.777269i
\(932\) −10.7397 + 18.6017i −0.351791 + 0.609320i
\(933\) 0 0
\(934\) 2.89724 1.67272i 0.0948006 0.0547332i
\(935\) −27.6942 + 1.54898i −0.905697 + 0.0506571i
\(936\) 0 0
\(937\) −16.2891 −0.532140 −0.266070 0.963954i \(-0.585725\pi\)
−0.266070 + 0.963954i \(0.585725\pi\)
\(938\) −5.31355 13.3595i −0.173494 0.436203i
\(939\) 0 0
\(940\) −20.5151 10.3624i −0.669130 0.337983i
\(941\) −14.8611 + 25.7402i −0.484458 + 0.839106i −0.999841 0.0178543i \(-0.994316\pi\)
0.515383 + 0.856960i \(0.327650\pi\)
\(942\) 0 0
\(943\) −23.0039 39.8439i −0.749110 1.29750i
\(944\) 0.172580 0.00561701
\(945\) 0 0
\(946\) −4.32849 −0.140731
\(947\) 12.6233 + 21.8642i 0.410202 + 0.710490i 0.994912 0.100752i \(-0.0321249\pi\)
−0.584710 + 0.811243i \(0.698792\pi\)
\(948\) 0 0
\(949\) 5.02736 8.70764i 0.163195 0.282662i
\(950\) 21.3581 + 9.32997i 0.692949 + 0.302704i
\(951\) 0 0
\(952\) −7.28919 18.3267i −0.236244 0.593972i
\(953\) −46.4580 −1.50492 −0.752461 0.658636i \(-0.771134\pi\)
−0.752461 + 0.658636i \(0.771134\pi\)
\(954\) 0 0
\(955\) −2.35286 42.0667i −0.0761368 1.36125i
\(956\) −14.6228 + 8.44250i −0.472937 + 0.273050i
\(957\) 0 0
\(958\) 8.15257 14.1207i 0.263397 0.456218i
\(959\) −22.4956 17.7727i −0.726422 0.573910i
\(960\) 0 0
\(961\) −13.4954 23.3748i −0.435337 0.754025i
\(962\) 10.2045i 0.329006i
\(963\) 0 0
\(964\) 9.24813i 0.297862i
\(965\) 12.7297 8.33051i 0.409784 0.268169i
\(966\) 0 0
\(967\) 38.7680 + 22.3827i 1.24670 + 0.719780i 0.970449 0.241307i \(-0.0775761\pi\)
0.276246 + 0.961087i \(0.410909\pi\)
\(968\) −4.11554 + 7.12832i −0.132278 + 0.229113i
\(969\) 0 0
\(970\) −11.5877 17.7070i −0.372060 0.568539i
\(971\) −5.45198 −0.174962 −0.0874812 0.996166i \(-0.527882\pi\)
−0.0874812 + 0.996166i \(0.527882\pi\)
\(972\) 0 0
\(973\) −23.0834 3.37183i −0.740020 0.108096i
\(974\) 4.50548 2.60124i 0.144365 0.0833491i
\(975\) 0 0
\(976\) 5.17503 + 2.98781i 0.165649 + 0.0956374i
\(977\) 9.53359 16.5127i 0.305007 0.528287i −0.672256 0.740319i \(-0.734675\pi\)
0.977263 + 0.212032i \(0.0680080\pi\)
\(978\) 0 0
\(979\) 16.1757 9.33907i 0.516979 0.298478i
\(980\) −15.2251 3.63266i −0.486348 0.116041i
\(981\) 0 0
\(982\) 23.8599i 0.761400i
\(983\) −26.7964 + 15.4709i −0.854674 + 0.493446i −0.862225 0.506525i \(-0.830930\pi\)
0.00755133 + 0.999971i \(0.497596\pi\)
\(984\) 0 0
\(985\) 8.65746 17.1398i 0.275850 0.546121i
\(986\) 17.6779 30.6190i 0.562979 0.975107i
\(987\) 0 0
\(988\) −8.46249 + 4.88582i −0.269228 + 0.155439i
\(989\) 14.6963i 0.467314i
\(990\) 0 0
\(991\) 21.5926 0.685912 0.342956 0.939351i \(-0.388572\pi\)
0.342956 + 0.939351i \(0.388572\pi\)
\(992\) 1.73402 1.00114i 0.0550553 0.0317862i
\(993\) 0 0
\(994\) 19.7557 25.0056i 0.626613 0.793130i
\(995\) 10.1804 + 5.14220i 0.322741 + 0.163019i
\(996\) 0 0
\(997\) 26.8955 + 46.5843i 0.851788 + 1.47534i 0.879593 + 0.475726i \(0.157815\pi\)
−0.0278059 + 0.999613i \(0.508852\pi\)
\(998\) −32.3319 −1.02345
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bf.e.1259.7 32
3.2 odd 2 630.2.bf.f.419.1 yes 32
5.4 even 2 1890.2.bf.f.1259.4 32
7.6 odd 2 inner 1890.2.bf.e.1259.10 32
9.2 odd 6 1890.2.bf.f.629.13 32
9.7 even 3 630.2.bf.e.209.1 32
15.14 odd 2 630.2.bf.e.419.16 yes 32
21.20 even 2 630.2.bf.f.419.16 yes 32
35.34 odd 2 1890.2.bf.f.1259.13 32
45.29 odd 6 inner 1890.2.bf.e.629.10 32
45.34 even 6 630.2.bf.f.209.16 yes 32
63.20 even 6 1890.2.bf.f.629.4 32
63.34 odd 6 630.2.bf.e.209.16 yes 32
105.104 even 2 630.2.bf.e.419.1 yes 32
315.34 odd 6 630.2.bf.f.209.1 yes 32
315.209 even 6 inner 1890.2.bf.e.629.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bf.e.209.1 32 9.7 even 3
630.2.bf.e.209.16 yes 32 63.34 odd 6
630.2.bf.e.419.1 yes 32 105.104 even 2
630.2.bf.e.419.16 yes 32 15.14 odd 2
630.2.bf.f.209.1 yes 32 315.34 odd 6
630.2.bf.f.209.16 yes 32 45.34 even 6
630.2.bf.f.419.1 yes 32 3.2 odd 2
630.2.bf.f.419.16 yes 32 21.20 even 2
1890.2.bf.e.629.7 32 315.209 even 6 inner
1890.2.bf.e.629.10 32 45.29 odd 6 inner
1890.2.bf.e.1259.7 32 1.1 even 1 trivial
1890.2.bf.e.1259.10 32 7.6 odd 2 inner
1890.2.bf.f.629.4 32 63.20 even 6
1890.2.bf.f.629.13 32 9.2 odd 6
1890.2.bf.f.1259.4 32 5.4 even 2
1890.2.bf.f.1259.13 32 35.34 odd 2