Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,3,Mod(10,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.10");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.k (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.14987699641\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −1.91801 | + | 3.32210i | 0 | −5.35756 | − | 9.27956i | 0.216546i | 0 | 6.73498 | − | 1.90790i | 25.7594 | 0 | −0.719386 | − | 0.415338i | ||||||||||
10.2 | −1.62718 | + | 2.81835i | 0 | −3.29541 | − | 5.70782i | − | 3.39483i | 0 | −6.91332 | − | 1.09817i | 8.43145 | 0 | 9.56782 | + | 5.52398i | |||||||||
10.3 | −1.41697 | + | 2.45427i | 0 | −2.01561 | − | 3.49114i | − | 2.39855i | 0 | 0.0107242 | + | 6.99999i | 0.0884848 | 0 | 5.88667 | + | 3.39867i | |||||||||
10.4 | −0.902282 | + | 1.56280i | 0 | 0.371774 | + | 0.643931i | 5.75495i | 0 | 6.44289 | + | 2.73664i | −8.56004 | 0 | −8.99383 | − | 5.19259i | ||||||||||
10.5 | −0.826674 | + | 1.43184i | 0 | 0.633221 | + | 1.09677i | 7.86923i | 0 | −5.81886 | − | 3.89113i | −8.70726 | 0 | −11.2675 | − | 6.50529i | ||||||||||
10.6 | −0.662399 | + | 1.14731i | 0 | 1.12246 | + | 1.94415i | − | 7.23514i | 0 | −3.90816 | − | 5.80744i | −8.27324 | 0 | 8.30093 | + | 4.79254i | |||||||||
10.7 | −0.198068 | + | 0.343064i | 0 | 1.92154 | + | 3.32820i | − | 2.97240i | 0 | 2.98301 | − | 6.33259i | −3.10693 | 0 | 1.01972 | + | 0.588737i | |||||||||
10.8 | 0.178911 | − | 0.309883i | 0 | 1.93598 | + | 3.35322i | 4.59004i | 0 | −6.01934 | + | 3.57317i | 2.81677 | 0 | 1.42238 | + | 0.821210i | ||||||||||
10.9 | 0.227576 | − | 0.394173i | 0 | 1.89642 | + | 3.28469i | − | 4.37081i | 0 | 5.22047 | + | 4.66334i | 3.54692 | 0 | −1.72285 | − | 0.994690i | |||||||||
10.10 | 0.840995 | − | 1.45665i | 0 | 0.585454 | + | 1.01404i | 2.34462i | 0 | −3.93446 | + | 5.78964i | 8.69742 | 0 | 3.41529 | + | 1.97182i | ||||||||||
10.11 | 1.12025 | − | 1.94033i | 0 | −0.509909 | − | 0.883189i | − | 1.93444i | 0 | 3.87064 | − | 5.83251i | 6.67708 | 0 | −3.75345 | − | 2.16706i | |||||||||
10.12 | 1.32841 | − | 2.30087i | 0 | −1.52933 | − | 2.64888i | 9.20400i | 0 | 6.96620 | + | 0.687028i | 2.50096 | 0 | 21.1772 | + | 12.2267i | ||||||||||
10.13 | 1.67756 | − | 2.90562i | 0 | −3.62842 | − | 6.28461i | − | 0.888628i | 0 | −3.29335 | − | 6.17688i | −10.9271 | 0 | −2.58202 | − | 1.49073i | |||||||||
10.14 | 1.67789 | − | 2.90618i | 0 | −3.63061 | − | 6.28839i | − | 8.51666i | 0 | −2.34142 | + | 6.59680i | −10.9439 | 0 | −24.7510 | − | 14.2900i | |||||||||
19.1 | −1.91801 | − | 3.32210i | 0 | −5.35756 | + | 9.27956i | − | 0.216546i | 0 | 6.73498 | + | 1.90790i | 25.7594 | 0 | −0.719386 | + | 0.415338i | |||||||||
19.2 | −1.62718 | − | 2.81835i | 0 | −3.29541 | + | 5.70782i | 3.39483i | 0 | −6.91332 | + | 1.09817i | 8.43145 | 0 | 9.56782 | − | 5.52398i | ||||||||||
19.3 | −1.41697 | − | 2.45427i | 0 | −2.01561 | + | 3.49114i | 2.39855i | 0 | 0.0107242 | − | 6.99999i | 0.0884848 | 0 | 5.88667 | − | 3.39867i | ||||||||||
19.4 | −0.902282 | − | 1.56280i | 0 | 0.371774 | − | 0.643931i | − | 5.75495i | 0 | 6.44289 | − | 2.73664i | −8.56004 | 0 | −8.99383 | + | 5.19259i | |||||||||
19.5 | −0.826674 | − | 1.43184i | 0 | 0.633221 | − | 1.09677i | − | 7.86923i | 0 | −5.81886 | + | 3.89113i | −8.70726 | 0 | −11.2675 | + | 6.50529i | |||||||||
19.6 | −0.662399 | − | 1.14731i | 0 | 1.12246 | − | 1.94415i | 7.23514i | 0 | −3.90816 | + | 5.80744i | −8.27324 | 0 | 8.30093 | − | 4.79254i | ||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.k | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.3.k.a | 28 | |
3.b | odd | 2 | 1 | 63.3.k.a | ✓ | 28 | |
7.d | odd | 6 | 1 | 189.3.t.a | 28 | ||
9.c | even | 3 | 1 | 189.3.t.a | 28 | ||
9.d | odd | 6 | 1 | 63.3.t.a | yes | 28 | |
21.c | even | 2 | 1 | 441.3.k.b | 28 | ||
21.g | even | 6 | 1 | 63.3.t.a | yes | 28 | |
21.g | even | 6 | 1 | 441.3.l.b | 28 | ||
21.h | odd | 6 | 1 | 441.3.l.a | 28 | ||
21.h | odd | 6 | 1 | 441.3.t.a | 28 | ||
63.i | even | 6 | 1 | 441.3.l.a | 28 | ||
63.j | odd | 6 | 1 | 441.3.l.b | 28 | ||
63.k | odd | 6 | 1 | inner | 189.3.k.a | 28 | |
63.n | odd | 6 | 1 | 441.3.k.b | 28 | ||
63.o | even | 6 | 1 | 441.3.t.a | 28 | ||
63.s | even | 6 | 1 | 63.3.k.a | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.k.a | ✓ | 28 | 3.b | odd | 2 | 1 | |
63.3.k.a | ✓ | 28 | 63.s | even | 6 | 1 | |
63.3.t.a | yes | 28 | 9.d | odd | 6 | 1 | |
63.3.t.a | yes | 28 | 21.g | even | 6 | 1 | |
189.3.k.a | 28 | 1.a | even | 1 | 1 | trivial | |
189.3.k.a | 28 | 63.k | odd | 6 | 1 | inner | |
189.3.t.a | 28 | 7.d | odd | 6 | 1 | ||
189.3.t.a | 28 | 9.c | even | 3 | 1 | ||
441.3.k.b | 28 | 21.c | even | 2 | 1 | ||
441.3.k.b | 28 | 63.n | odd | 6 | 1 | ||
441.3.l.a | 28 | 21.h | odd | 6 | 1 | ||
441.3.l.a | 28 | 63.i | even | 6 | 1 | ||
441.3.l.b | 28 | 21.g | even | 6 | 1 | ||
441.3.l.b | 28 | 63.j | odd | 6 | 1 | ||
441.3.t.a | 28 | 21.h | odd | 6 | 1 | ||
441.3.t.a | 28 | 63.o | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(189, [\chi])\).