Properties

Label 189.3
Level 189
Weight 3
Dimension 1882
Nonzero newspaces 16
Newform subspaces 38
Sturm bound 7776
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 16 \)
Newform subspaces: \( 38 \)
Sturm bound: \(7776\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(189))\).

Total New Old
Modular forms 2772 2042 730
Cusp forms 2412 1882 530
Eisenstein series 360 160 200

Trace form

\( 1882 q - 18 q^{2} - 24 q^{3} - 16 q^{4} + 18 q^{5} - 31 q^{7} - 30 q^{8} - 36 q^{9} - 48 q^{10} - 18 q^{11} - 6 q^{12} + 18 q^{13} + 69 q^{14} - 54 q^{15} + 64 q^{16} + 48 q^{17} - 162 q^{18} - 24 q^{19}+ \cdots - 1098 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(189))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
189.3.b \(\chi_{189}(134, \cdot)\) 189.3.b.a 4 1
189.3.b.b 4
189.3.b.c 8
189.3.d \(\chi_{189}(55, \cdot)\) 189.3.d.a 2 1
189.3.d.b 2
189.3.d.c 2
189.3.d.d 8
189.3.d.e 8
189.3.j \(\chi_{189}(44, \cdot)\) 189.3.j.a 6 2
189.3.j.b 22
189.3.k \(\chi_{189}(10, \cdot)\) 189.3.k.a 28 2
189.3.l \(\chi_{189}(118, \cdot)\) 189.3.l.a 28 2
189.3.m \(\chi_{189}(82, \cdot)\) 189.3.m.a 2 2
189.3.m.b 4
189.3.m.c 4
189.3.m.d 6
189.3.m.e 6
189.3.m.f 8
189.3.m.g 12
189.3.n \(\chi_{189}(170, \cdot)\) 189.3.n.a 6 2
189.3.n.b 22
189.3.q \(\chi_{189}(53, \cdot)\) 189.3.q.a 2 2
189.3.q.b 2
189.3.q.c 2
189.3.q.d 4
189.3.q.e 4
189.3.q.f 4
189.3.q.g 4
189.3.q.h 4
189.3.q.i 16
189.3.r \(\chi_{189}(8, \cdot)\) 189.3.r.a 24 2
189.3.t \(\chi_{189}(73, \cdot)\) 189.3.t.a 28 2
189.3.x \(\chi_{189}(40, \cdot)\) 189.3.x.a 276 6
189.3.y \(\chi_{189}(13, \cdot)\) 189.3.y.a 276 6
189.3.z \(\chi_{189}(31, \cdot)\) 189.3.z.a 276 6
189.3.bb \(\chi_{189}(29, \cdot)\) 189.3.bb.a 216 6
189.3.bc \(\chi_{189}(2, \cdot)\) 189.3.bc.a 276 6
189.3.bf \(\chi_{189}(11, \cdot)\) 189.3.bf.a 276 6

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(189))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(189)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)