Properties

Label 189.2.ba.a.101.22
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.22
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.75048 - 2.08614i) q^{2} +(-1.10271 + 1.33567i) q^{3} +(-0.940509 - 5.33389i) q^{4} +(2.08375 - 1.74847i) q^{5} +(0.856127 + 4.63849i) q^{6} +(-0.122613 + 2.64291i) q^{7} +(-8.05677 - 4.65158i) q^{8} +(-0.568048 - 2.94573i) q^{9} +O(q^{10})\) \(q+(1.75048 - 2.08614i) q^{2} +(-1.10271 + 1.33567i) q^{3} +(-0.940509 - 5.33389i) q^{4} +(2.08375 - 1.74847i) q^{5} +(0.856127 + 4.63849i) q^{6} +(-0.122613 + 2.64291i) q^{7} +(-8.05677 - 4.65158i) q^{8} +(-0.568048 - 2.94573i) q^{9} -7.40767i q^{10} +(0.0911635 - 0.108644i) q^{11} +(8.16145 + 4.62554i) q^{12} +(-0.695830 + 1.91178i) q^{13} +(5.29885 + 4.88215i) q^{14} +(0.0376120 + 4.71128i) q^{15} +(-13.6280 + 4.96018i) q^{16} +4.00161 q^{17} +(-7.13957 - 3.97142i) q^{18} +3.04328i q^{19} +(-11.2860 - 9.47004i) q^{20} +(-3.39486 - 3.07814i) q^{21} +(-0.0670678 - 0.380360i) q^{22} +(-0.449297 + 1.23443i) q^{23} +(15.0973 - 5.63186i) q^{24} +(0.416612 - 2.36273i) q^{25} +(2.77020 + 4.79813i) q^{26} +(4.56093 + 2.48957i) q^{27} +(14.2123 - 1.83168i) q^{28} +(2.12744 + 5.84511i) q^{29} +(9.89423 + 8.16854i) q^{30} +(-4.18959 + 0.738737i) q^{31} +(-7.14417 + 19.6284i) q^{32} +(0.0445863 + 0.241568i) q^{33} +(7.00474 - 8.34792i) q^{34} +(4.36556 + 5.72155i) q^{35} +(-15.1779 + 5.80039i) q^{36} +(4.69031 - 8.12386i) q^{37} +(6.34871 + 5.32720i) q^{38} +(-1.78621 - 3.03754i) q^{39} +(-24.9215 + 4.39432i) q^{40} +(0.303455 + 0.110449i) q^{41} +(-12.3641 + 1.69393i) q^{42} +(0.643705 - 3.65063i) q^{43} +(-0.665238 - 0.384075i) q^{44} +(-6.33420 - 5.14495i) q^{45} +(1.78872 + 3.09815i) q^{46} +(-1.15909 + 6.57353i) q^{47} +(8.40258 - 23.6722i) q^{48} +(-6.96993 - 0.648108i) q^{49} +(-4.19971 - 5.00502i) q^{50} +(-4.41262 + 5.34484i) q^{51} +(10.8516 + 1.91344i) q^{52} +(-6.59926 - 3.81008i) q^{53} +(13.1774 - 5.15680i) q^{54} -0.385785i q^{55} +(13.2816 - 20.7230i) q^{56} +(-4.06482 - 3.35586i) q^{57} +(15.9178 + 5.79360i) q^{58} +(-6.06369 - 2.20700i) q^{59} +(25.0941 - 4.63162i) q^{60} +(-11.1600 - 1.96782i) q^{61} +(-5.79268 + 10.0332i) q^{62} +(7.85494 - 1.14011i) q^{63} +(13.9394 + 24.1437i) q^{64} +(1.89276 + 5.20030i) q^{65} +(0.581994 + 0.329848i) q^{66} +(-1.37385 + 1.15280i) q^{67} +(-3.76355 - 21.3441i) q^{68} +(-1.15335 - 1.96134i) q^{69} +(19.5778 + 0.908274i) q^{70} +(6.03534 - 3.48450i) q^{71} +(-9.12566 + 26.3754i) q^{72} +(3.67285 - 2.12052i) q^{73} +(-8.73722 - 24.0053i) q^{74} +(2.69643 + 3.16187i) q^{75} +(16.2325 - 2.86223i) q^{76} +(0.275960 + 0.254258i) q^{77} +(-9.46347 - 1.59087i) q^{78} +(-11.4740 - 9.62781i) q^{79} +(-19.7246 + 34.1640i) q^{80} +(-8.35464 + 3.34663i) q^{81} +(0.761604 - 0.439712i) q^{82} +(-0.966634 + 0.351826i) q^{83} +(-13.2256 + 21.0028i) q^{84} +(8.33835 - 6.99670i) q^{85} +(-6.48894 - 7.73322i) q^{86} +(-10.1531 - 3.60390i) q^{87} +(-1.23985 + 0.451269i) q^{88} -5.17217 q^{89} +(-21.8210 + 4.20791i) q^{90} +(-4.96733 - 2.07342i) q^{91} +(7.00690 + 1.23551i) q^{92} +(3.63320 - 6.41053i) q^{93} +(11.6843 + 13.9249i) q^{94} +(5.32109 + 6.34143i) q^{95} +(-18.3392 - 31.1868i) q^{96} +(-7.25860 - 1.27989i) q^{97} +(-13.5528 + 13.4058i) q^{98} +(-0.371822 - 0.206828i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75048 2.08614i 1.23778 1.47513i 0.411946 0.911208i \(-0.364849\pi\)
0.825831 0.563917i \(-0.190706\pi\)
\(3\) −1.10271 + 1.33567i −0.636652 + 0.771152i
\(4\) −0.940509 5.33389i −0.470255 2.66695i
\(5\) 2.08375 1.74847i 0.931881 0.781941i −0.0442728 0.999019i \(-0.514097\pi\)
0.976154 + 0.217078i \(0.0696526\pi\)
\(6\) 0.856127 + 4.63849i 0.349512 + 1.89365i
\(7\) −0.122613 + 2.64291i −0.0463432 + 0.998926i
\(8\) −8.05677 4.65158i −2.84850 1.64458i
\(9\) −0.568048 2.94573i −0.189349 0.981910i
\(10\) 7.40767i 2.34251i
\(11\) 0.0911635 0.108644i 0.0274868 0.0327575i −0.752126 0.659019i \(-0.770971\pi\)
0.779613 + 0.626262i \(0.215416\pi\)
\(12\) 8.16145 + 4.62554i 2.35601 + 1.33528i
\(13\) −0.695830 + 1.91178i −0.192988 + 0.530231i −0.998013 0.0630103i \(-0.979930\pi\)
0.805024 + 0.593242i \(0.202152\pi\)
\(14\) 5.29885 + 4.88215i 1.41618 + 1.30481i
\(15\) 0.0376120 + 4.71128i 0.00971138 + 1.21645i
\(16\) −13.6280 + 4.96018i −3.40700 + 1.24005i
\(17\) 4.00161 0.970532 0.485266 0.874367i \(-0.338723\pi\)
0.485266 + 0.874367i \(0.338723\pi\)
\(18\) −7.13957 3.97142i −1.68281 0.936072i
\(19\) 3.04328i 0.698176i 0.937090 + 0.349088i \(0.113509\pi\)
−0.937090 + 0.349088i \(0.886491\pi\)
\(20\) −11.2860 9.47004i −2.52362 2.11757i
\(21\) −3.39486 3.07814i −0.740818 0.671705i
\(22\) −0.0670678 0.380360i −0.0142989 0.0810931i
\(23\) −0.449297 + 1.23443i −0.0936849 + 0.257397i −0.977680 0.210099i \(-0.932621\pi\)
0.883995 + 0.467496i \(0.154844\pi\)
\(24\) 15.0973 5.63186i 3.08172 1.14960i
\(25\) 0.416612 2.36273i 0.0833225 0.472545i
\(26\) 2.77020 + 4.79813i 0.543281 + 0.940990i
\(27\) 4.56093 + 2.48957i 0.877751 + 0.479118i
\(28\) 14.2123 1.83168i 2.68587 0.346154i
\(29\) 2.12744 + 5.84511i 0.395056 + 1.08541i 0.964662 + 0.263491i \(0.0848738\pi\)
−0.569605 + 0.821918i \(0.692904\pi\)
\(30\) 9.89423 + 8.16854i 1.80643 + 1.49136i
\(31\) −4.18959 + 0.738737i −0.752472 + 0.132681i −0.536712 0.843765i \(-0.680334\pi\)
−0.215760 + 0.976446i \(0.569223\pi\)
\(32\) −7.14417 + 19.6284i −1.26292 + 3.46985i
\(33\) 0.0445863 + 0.241568i 0.00776148 + 0.0420517i
\(34\) 7.00474 8.34792i 1.20130 1.43166i
\(35\) 4.36556 + 5.72155i 0.737915 + 0.967118i
\(36\) −15.1779 + 5.80039i −2.52966 + 0.966732i
\(37\) 4.69031 8.12386i 0.771083 1.33555i −0.165888 0.986145i \(-0.553049\pi\)
0.936970 0.349409i \(-0.113618\pi\)
\(38\) 6.34871 + 5.32720i 1.02990 + 0.864186i
\(39\) −1.78621 3.03754i −0.286022 0.486396i
\(40\) −24.9215 + 4.39432i −3.94043 + 0.694804i
\(41\) 0.303455 + 0.110449i 0.0473917 + 0.0172492i 0.365607 0.930769i \(-0.380861\pi\)
−0.318216 + 0.948018i \(0.603084\pi\)
\(42\) −12.3641 + 1.69393i −1.90782 + 0.261379i
\(43\) 0.643705 3.65063i 0.0981640 0.556716i −0.895568 0.444925i \(-0.853230\pi\)
0.993732 0.111791i \(-0.0356586\pi\)
\(44\) −0.665238 0.384075i −0.100288 0.0579015i
\(45\) −6.33420 5.14495i −0.944247 0.766963i
\(46\) 1.78872 + 3.09815i 0.263732 + 0.456797i
\(47\) −1.15909 + 6.57353i −0.169071 + 0.958847i 0.775697 + 0.631106i \(0.217399\pi\)
−0.944767 + 0.327741i \(0.893713\pi\)
\(48\) 8.40258 23.6722i 1.21281 3.41679i
\(49\) −6.96993 0.648108i −0.995705 0.0925868i
\(50\) −4.19971 5.00502i −0.593929 0.707817i
\(51\) −4.41262 + 5.34484i −0.617891 + 0.748427i
\(52\) 10.8516 + 1.91344i 1.50485 + 0.265346i
\(53\) −6.59926 3.81008i −0.906477 0.523355i −0.0271813 0.999631i \(-0.508653\pi\)
−0.879296 + 0.476276i \(0.841986\pi\)
\(54\) 13.1774 5.15680i 1.79322 0.701752i
\(55\) 0.385785i 0.0520192i
\(56\) 13.2816 20.7230i 1.77482 2.76922i
\(57\) −4.06482 3.35586i −0.538399 0.444495i
\(58\) 15.9178 + 5.79360i 2.09011 + 0.760736i
\(59\) −6.06369 2.20700i −0.789425 0.287327i −0.0843278 0.996438i \(-0.526874\pi\)
−0.705097 + 0.709111i \(0.749096\pi\)
\(60\) 25.0941 4.63162i 3.23963 0.597939i
\(61\) −11.1600 1.96782i −1.42890 0.251953i −0.594935 0.803774i \(-0.702822\pi\)
−0.833963 + 0.551821i \(0.813933\pi\)
\(62\) −5.79268 + 10.0332i −0.735671 + 1.27422i
\(63\) 7.85494 1.14011i 0.989630 0.143641i
\(64\) 13.9394 + 24.1437i 1.74242 + 3.01796i
\(65\) 1.89276 + 5.20030i 0.234767 + 0.645018i
\(66\) 0.581994 + 0.329848i 0.0716385 + 0.0406014i
\(67\) −1.37385 + 1.15280i −0.167843 + 0.140837i −0.722840 0.691015i \(-0.757164\pi\)
0.554997 + 0.831852i \(0.312719\pi\)
\(68\) −3.76355 21.3441i −0.456397 2.58836i
\(69\) −1.15335 1.96134i −0.138848 0.236118i
\(70\) 19.5778 + 0.908274i 2.33999 + 0.108560i
\(71\) 6.03534 3.48450i 0.716263 0.413534i −0.0971130 0.995273i \(-0.530961\pi\)
0.813376 + 0.581739i \(0.197627\pi\)
\(72\) −9.12566 + 26.3754i −1.07547 + 3.10837i
\(73\) 3.67285 2.12052i 0.429875 0.248188i −0.269418 0.963023i \(-0.586831\pi\)
0.699293 + 0.714835i \(0.253498\pi\)
\(74\) −8.73722 24.0053i −1.01568 2.79056i
\(75\) 2.69643 + 3.16187i 0.311357 + 0.365101i
\(76\) 16.2325 2.86223i 1.86200 0.328320i
\(77\) 0.275960 + 0.254258i 0.0314485 + 0.0289754i
\(78\) −9.46347 1.59087i −1.07153 0.180131i
\(79\) −11.4740 9.62781i −1.29092 1.08321i −0.991638 0.129049i \(-0.958808\pi\)
−0.299284 0.954164i \(-0.596748\pi\)
\(80\) −19.7246 + 34.1640i −2.20528 + 3.81965i
\(81\) −8.35464 + 3.34663i −0.928294 + 0.371848i
\(82\) 0.761604 0.439712i 0.0841050 0.0485581i
\(83\) −0.966634 + 0.351826i −0.106102 + 0.0386179i −0.394526 0.918885i \(-0.629091\pi\)
0.288424 + 0.957503i \(0.406869\pi\)
\(84\) −13.2256 + 21.0028i −1.44303 + 2.29160i
\(85\) 8.33835 6.99670i 0.904421 0.758899i
\(86\) −6.48894 7.73322i −0.699721 0.833895i
\(87\) −10.1531 3.60390i −1.08853 0.386379i
\(88\) −1.23985 + 0.451269i −0.132169 + 0.0481054i
\(89\) −5.17217 −0.548249 −0.274124 0.961694i \(-0.588388\pi\)
−0.274124 + 0.961694i \(0.588388\pi\)
\(90\) −21.8210 + 4.20791i −2.30013 + 0.443553i
\(91\) −4.96733 2.07342i −0.520718 0.217354i
\(92\) 7.00690 + 1.23551i 0.730520 + 0.128810i
\(93\) 3.63320 6.41053i 0.376745 0.664741i
\(94\) 11.6843 + 13.9249i 1.20515 + 1.43624i
\(95\) 5.32109 + 6.34143i 0.545932 + 0.650617i
\(96\) −18.3392 31.1868i −1.87174 3.18299i
\(97\) −7.25860 1.27989i −0.736999 0.129953i −0.207466 0.978242i \(-0.566522\pi\)
−0.529533 + 0.848289i \(0.677633\pi\)
\(98\) −13.5528 + 13.4058i −1.36904 + 1.35419i
\(99\) −0.371822 0.206828i −0.0373696 0.0207870i
\(100\) −12.9944 −1.29944
\(101\) 6.33569 2.30600i 0.630425 0.229456i −0.00699121 0.999976i \(-0.502225\pi\)
0.637416 + 0.770520i \(0.280003\pi\)
\(102\) 3.42588 + 18.5614i 0.339213 + 1.83785i
\(103\) 7.37734 + 8.79197i 0.726911 + 0.866299i 0.995283 0.0970166i \(-0.0309300\pi\)
−0.268372 + 0.963315i \(0.586486\pi\)
\(104\) 14.4989 12.1660i 1.42174 1.19298i
\(105\) −12.4561 0.478257i −1.21559 0.0466731i
\(106\) −19.5002 + 7.09751i −1.89403 + 0.689371i
\(107\) 15.4754 8.93470i 1.49606 0.863750i 0.496069 0.868283i \(-0.334776\pi\)
0.999990 + 0.00453289i \(0.00144287\pi\)
\(108\) 8.98949 26.6690i 0.865014 2.56622i
\(109\) −4.74241 + 8.21409i −0.454240 + 0.786768i −0.998644 0.0520558i \(-0.983423\pi\)
0.544404 + 0.838823i \(0.316756\pi\)
\(110\) −0.804802 0.675309i −0.0767349 0.0643882i
\(111\) 5.67876 + 15.2230i 0.539004 + 1.44490i
\(112\) −11.4383 36.6257i −1.08082 3.46081i
\(113\) −1.54842 + 0.273029i −0.145663 + 0.0256844i −0.246004 0.969269i \(-0.579118\pi\)
0.100341 + 0.994953i \(0.468007\pi\)
\(114\) −14.1162 + 2.60543i −1.32210 + 0.244021i
\(115\) 1.22215 + 3.35783i 0.113966 + 0.313120i
\(116\) 29.1763 16.8449i 2.70895 1.56401i
\(117\) 6.02684 + 0.963745i 0.557182 + 0.0890983i
\(118\) −15.2185 + 8.78640i −1.40098 + 0.808853i
\(119\) −0.490647 + 10.5759i −0.0449776 + 0.969489i
\(120\) 21.6118 38.1326i 1.97288 3.48101i
\(121\) 1.90664 + 10.8131i 0.173331 + 0.983007i
\(122\) −23.6406 + 19.8368i −2.14032 + 1.79594i
\(123\) −0.482147 + 0.283524i −0.0434737 + 0.0255645i
\(124\) 7.88069 + 21.6520i 0.707707 + 1.94441i
\(125\) 3.53731 + 6.12679i 0.316386 + 0.547997i
\(126\) 11.3715 18.3823i 1.01305 1.63762i
\(127\) 9.03739 15.6532i 0.801938 1.38900i −0.116400 0.993202i \(-0.537136\pi\)
0.918339 0.395795i \(-0.129531\pi\)
\(128\) 33.6262 + 5.92921i 2.97217 + 0.524073i
\(129\) 4.16623 + 4.88538i 0.366816 + 0.430134i
\(130\) 14.1618 + 5.15448i 1.24207 + 0.452077i
\(131\) 5.15318 + 1.87560i 0.450235 + 0.163872i 0.557178 0.830393i \(-0.311884\pi\)
−0.106943 + 0.994265i \(0.534106\pi\)
\(132\) 1.24657 0.465016i 0.108500 0.0404744i
\(133\) −8.04310 0.373144i −0.697425 0.0323557i
\(134\) 4.88401i 0.421914i
\(135\) 13.8568 2.78702i 1.19260 0.239869i
\(136\) −32.2400 18.6138i −2.76456 1.59612i
\(137\) −4.12294 0.726986i −0.352247 0.0621106i −0.00527469 0.999986i \(-0.501679\pi\)
−0.346972 + 0.937875i \(0.612790\pi\)
\(138\) −6.11056 1.02723i −0.520165 0.0874434i
\(139\) −7.34520 8.75367i −0.623012 0.742477i 0.358573 0.933502i \(-0.383263\pi\)
−0.981585 + 0.191025i \(0.938819\pi\)
\(140\) 26.4123 28.6666i 2.23224 2.42277i
\(141\) −7.50194 8.79688i −0.631777 0.740831i
\(142\) 3.29557 18.6901i 0.276558 1.56844i
\(143\) 0.144270 + 0.249882i 0.0120644 + 0.0208962i
\(144\) 22.3527 + 37.3268i 1.86273 + 3.11056i
\(145\) 14.6531 + 8.45996i 1.21687 + 0.702561i
\(146\) 2.00555 11.3740i 0.165980 0.941322i
\(147\) 8.55150 8.59488i 0.705315 0.708894i
\(148\) −47.7431 17.3771i −3.92446 1.42839i
\(149\) 22.8439 4.02799i 1.87144 0.329986i 0.881583 0.472030i \(-0.156478\pi\)
0.989860 + 0.142044i \(0.0453674\pi\)
\(150\) 11.3162 0.0903414i 0.923960 0.00737635i
\(151\) 0.176411 + 0.148026i 0.0143561 + 0.0120462i 0.649937 0.759988i \(-0.274795\pi\)
−0.635581 + 0.772034i \(0.719240\pi\)
\(152\) 14.1560 24.5190i 1.14821 1.98875i
\(153\) −2.27310 11.7876i −0.183770 0.952975i
\(154\) 1.01348 0.130617i 0.0816686 0.0105254i
\(155\) −7.43839 + 8.86472i −0.597466 + 0.712032i
\(156\) −14.5220 + 12.3843i −1.16269 + 0.991536i
\(157\) −3.36532 + 9.24614i −0.268582 + 0.737922i 0.729937 + 0.683514i \(0.239549\pi\)
−0.998519 + 0.0544079i \(0.982673\pi\)
\(158\) −40.1699 + 7.08305i −3.19575 + 0.563497i
\(159\) 12.3661 4.61302i 0.980696 0.365837i
\(160\) 19.4332 + 53.3921i 1.53633 + 4.22102i
\(161\) −3.20740 1.33881i −0.252779 0.105513i
\(162\) −7.64310 + 23.2872i −0.600499 + 1.82961i
\(163\) −0.272626 0.472203i −0.0213537 0.0369858i 0.855151 0.518379i \(-0.173464\pi\)
−0.876505 + 0.481393i \(0.840131\pi\)
\(164\) 0.303719 1.72247i 0.0237164 0.134503i
\(165\) 0.515283 + 0.425410i 0.0401147 + 0.0331181i
\(166\) −0.958116 + 2.63240i −0.0743642 + 0.204314i
\(167\) −2.22249 12.6044i −0.171981 0.975354i −0.941571 0.336815i \(-0.890650\pi\)
0.769590 0.638539i \(-0.220461\pi\)
\(168\) 13.0334 + 40.5913i 1.00555 + 3.13169i
\(169\) 6.78787 + 5.69570i 0.522144 + 0.438131i
\(170\) 29.6426i 2.27348i
\(171\) 8.96467 1.72873i 0.685545 0.132199i
\(172\) −20.0775 −1.53089
\(173\) 3.16024 1.15023i 0.240269 0.0874506i −0.219079 0.975707i \(-0.570305\pi\)
0.459348 + 0.888256i \(0.348083\pi\)
\(174\) −25.2911 + 14.8723i −1.91731 + 1.12746i
\(175\) 6.19339 + 1.39077i 0.468176 + 0.105132i
\(176\) −0.703479 + 1.93279i −0.0530268 + 0.145690i
\(177\) 9.63434 5.66542i 0.724161 0.425839i
\(178\) −9.05378 + 10.7899i −0.678610 + 0.808736i
\(179\) 1.33384i 0.0996962i 0.998757 + 0.0498481i \(0.0158737\pi\)
−0.998757 + 0.0498481i \(0.984126\pi\)
\(180\) −21.4852 + 38.6248i −1.60141 + 2.87892i
\(181\) 2.64678 + 1.52812i 0.196733 + 0.113584i 0.595131 0.803629i \(-0.297100\pi\)
−0.398398 + 0.917213i \(0.630434\pi\)
\(182\) −13.0207 + 6.73308i −0.965157 + 0.499089i
\(183\) 14.9347 12.7362i 1.10400 0.941490i
\(184\) 9.36194 7.85560i 0.690171 0.579123i
\(185\) −4.43092 25.1290i −0.325768 1.84752i
\(186\) −7.01344 18.8009i −0.514250 1.37855i
\(187\) 0.364800 0.434752i 0.0266769 0.0317922i
\(188\) 36.1526 2.63670
\(189\) −7.13893 + 11.7489i −0.519281 + 0.854604i
\(190\) 22.5436 1.63548
\(191\) −9.72666 + 11.5918i −0.703797 + 0.838752i −0.992950 0.118530i \(-0.962182\pi\)
0.289154 + 0.957283i \(0.406626\pi\)
\(192\) −47.6192 8.00513i −3.43662 0.577720i
\(193\) 0.829438 + 4.70398i 0.0597042 + 0.338600i 0.999998 0.00176318i \(-0.000561238\pi\)
−0.940294 + 0.340363i \(0.889450\pi\)
\(194\) −15.3761 + 12.9021i −1.10394 + 0.926314i
\(195\) −9.03307 3.20634i −0.646872 0.229611i
\(196\) 3.09835 + 37.7864i 0.221310 + 2.69903i
\(197\) 7.02585 + 4.05638i 0.500571 + 0.289005i 0.728949 0.684568i \(-0.240009\pi\)
−0.228378 + 0.973572i \(0.573342\pi\)
\(198\) −1.08234 + 0.413626i −0.0769186 + 0.0293951i
\(199\) 5.04150i 0.357382i 0.983905 + 0.178691i \(0.0571863\pi\)
−0.983905 + 0.178691i \(0.942814\pi\)
\(200\) −14.3470 + 17.0980i −1.01448 + 1.20901i
\(201\) −0.0247983 3.10623i −0.00174914 0.219096i
\(202\) 6.27986 17.2538i 0.441850 1.21397i
\(203\) −15.7089 + 4.90596i −1.10255 + 0.344331i
\(204\) 32.6589 + 18.5096i 2.28658 + 1.29593i
\(205\) 0.825441 0.300436i 0.0576513 0.0209833i
\(206\) 31.2552 2.17765
\(207\) 3.89153 + 0.622290i 0.270480 + 0.0432521i
\(208\) 29.5051i 2.04581i
\(209\) 0.330635 + 0.277436i 0.0228705 + 0.0191906i
\(210\) −22.8019 + 25.1480i −1.57348 + 1.73538i
\(211\) −0.533965 3.02827i −0.0367597 0.208474i 0.960896 0.276910i \(-0.0893104\pi\)
−0.997656 + 0.0684355i \(0.978199\pi\)
\(212\) −14.1159 + 38.7831i −0.969484 + 2.66364i
\(213\) −2.00109 + 11.9036i −0.137112 + 0.815624i
\(214\) 8.45026 47.9238i 0.577648 3.27600i
\(215\) −5.04171 8.73250i −0.343842 0.595552i
\(216\) −25.1659 41.2734i −1.71232 2.80830i
\(217\) −1.43872 11.1633i −0.0976666 0.757812i
\(218\) 8.83427 + 24.2720i 0.598332 + 1.64390i
\(219\) −1.21778 + 7.24406i −0.0822898 + 0.489508i
\(220\) −2.05774 + 0.362834i −0.138732 + 0.0244623i
\(221\) −2.78444 + 7.65017i −0.187301 + 0.514606i
\(222\) 41.6979 + 14.8009i 2.79858 + 0.993372i
\(223\) −11.4325 + 13.6247i −0.765576 + 0.912378i −0.998187 0.0601917i \(-0.980829\pi\)
0.232611 + 0.972570i \(0.425273\pi\)
\(224\) −51.0002 21.2881i −3.40759 1.42237i
\(225\) −7.19661 + 0.114914i −0.479774 + 0.00766095i
\(226\) −2.14091 + 3.70816i −0.142411 + 0.246663i
\(227\) −5.54136 4.64975i −0.367793 0.308615i 0.440095 0.897951i \(-0.354945\pi\)
−0.807888 + 0.589336i \(0.799389\pi\)
\(228\) −14.0768 + 24.8376i −0.932259 + 1.64491i
\(229\) 14.9612 2.63807i 0.988665 0.174328i 0.344146 0.938916i \(-0.388169\pi\)
0.644519 + 0.764588i \(0.277057\pi\)
\(230\) 9.14427 + 3.32824i 0.602956 + 0.219458i
\(231\) −0.643910 + 0.0882183i −0.0423662 + 0.00580434i
\(232\) 10.0486 56.9886i 0.659725 3.74149i
\(233\) −10.7311 6.19561i −0.703019 0.405888i 0.105452 0.994424i \(-0.466371\pi\)
−0.808471 + 0.588536i \(0.799704\pi\)
\(234\) 12.5604 10.8858i 0.821098 0.711629i
\(235\) 9.07838 + 15.7242i 0.592208 + 1.02574i
\(236\) −6.06895 + 34.4187i −0.395055 + 2.24047i
\(237\) 25.5121 4.70877i 1.65719 0.305868i
\(238\) 21.2039 + 19.5364i 1.37445 + 1.26636i
\(239\) 5.11974 + 6.10146i 0.331168 + 0.394671i 0.905775 0.423759i \(-0.139290\pi\)
−0.574607 + 0.818430i \(0.694845\pi\)
\(240\) −23.8814 64.0187i −1.54154 4.13239i
\(241\) 0.540011 + 0.0952186i 0.0347852 + 0.00613357i 0.191014 0.981587i \(-0.438823\pi\)
−0.156229 + 0.987721i \(0.549934\pi\)
\(242\) 25.8952 + 14.9506i 1.66460 + 0.961059i
\(243\) 4.74277 14.8494i 0.304249 0.952593i
\(244\) 61.3772i 3.92927i
\(245\) −15.6568 + 10.8363i −1.00028 + 0.692303i
\(246\) −0.252518 + 1.50213i −0.0161000 + 0.0957723i
\(247\) −5.81806 2.11760i −0.370195 0.134740i
\(248\) 37.1908 + 13.5363i 2.36162 + 0.859559i
\(249\) 0.595995 1.67907i 0.0377697 0.106407i
\(250\) 18.9734 + 3.34551i 1.19998 + 0.211589i
\(251\) 8.86627 15.3568i 0.559634 0.969314i −0.437893 0.899027i \(-0.644275\pi\)
0.997527 0.0702870i \(-0.0223915\pi\)
\(252\) −13.4689 40.8251i −0.848461 2.57174i
\(253\) 0.0931548 + 0.161349i 0.00585659 + 0.0101439i
\(254\) −16.8351 46.2539i −1.05633 2.90223i
\(255\) 0.150508 + 18.8527i 0.00942520 + 1.18060i
\(256\) 28.5185 23.9299i 1.78241 1.49562i
\(257\) −4.85836 27.5531i −0.303056 1.71872i −0.632516 0.774547i \(-0.717978\pi\)
0.329460 0.944169i \(-0.393133\pi\)
\(258\) 17.4845 0.139586i 1.08854 0.00869024i
\(259\) 20.8955 + 13.3922i 1.29838 + 0.832148i
\(260\) 25.9577 14.9867i 1.60983 0.929435i
\(261\) 16.0096 9.58717i 0.990970 0.593431i
\(262\) 12.9333 7.46705i 0.799023 0.461316i
\(263\) 3.81588 + 10.4841i 0.235297 + 0.646475i 0.999998 + 0.00208847i \(0.000664780\pi\)
−0.764700 + 0.644386i \(0.777113\pi\)
\(264\) 0.764452 2.15366i 0.0470488 0.132548i
\(265\) −20.4130 + 3.59937i −1.25396 + 0.221107i
\(266\) −14.8577 + 16.1259i −0.910986 + 0.988741i
\(267\) 5.70342 6.90833i 0.349043 0.422783i
\(268\) 7.44103 + 6.24377i 0.454533 + 0.381399i
\(269\) 2.38895 4.13779i 0.145657 0.252286i −0.783961 0.620810i \(-0.786804\pi\)
0.929618 + 0.368525i \(0.120137\pi\)
\(270\) 18.4419 33.7858i 1.12234 2.05614i
\(271\) −18.5269 + 10.6965i −1.12543 + 0.649766i −0.942781 0.333412i \(-0.891800\pi\)
−0.182647 + 0.983179i \(0.558467\pi\)
\(272\) −54.5339 + 19.8487i −3.30660 + 1.20350i
\(273\) 8.24696 4.34834i 0.499129 0.263174i
\(274\) −8.73373 + 7.32847i −0.527624 + 0.442729i
\(275\) −0.218717 0.260657i −0.0131892 0.0157182i
\(276\) −9.37683 + 7.99652i −0.564419 + 0.481334i
\(277\) −11.6375 + 4.23571i −0.699231 + 0.254499i −0.667083 0.744984i \(-0.732457\pi\)
−0.0321485 + 0.999483i \(0.510235\pi\)
\(278\) −31.1191 −1.86640
\(279\) 4.55600 + 11.9217i 0.272761 + 0.713736i
\(280\) −8.55811 66.4039i −0.511445 3.96839i
\(281\) −15.3782 2.71159i −0.917385 0.161760i −0.305030 0.952343i \(-0.598667\pi\)
−0.612355 + 0.790583i \(0.709778\pi\)
\(282\) −31.4835 + 0.251346i −1.87482 + 0.0149674i
\(283\) −14.6993 17.5180i −0.873785 1.04134i −0.998790 0.0491805i \(-0.984339\pi\)
0.125005 0.992156i \(-0.460105\pi\)
\(284\) −24.2622 28.9146i −1.43970 1.71577i
\(285\) −14.3377 + 0.114464i −0.849293 + 0.00678025i
\(286\) 0.773831 + 0.136447i 0.0457576 + 0.00806830i
\(287\) −0.329113 + 0.788461i −0.0194269 + 0.0465414i
\(288\) 61.8783 + 9.89489i 3.64621 + 0.583062i
\(289\) −0.987154 −0.0580679
\(290\) 43.2986 15.7594i 2.54258 0.925424i
\(291\) 9.71366 8.28377i 0.569425 0.485603i
\(292\) −14.7650 17.5962i −0.864056 1.02974i
\(293\) 25.2580 21.1939i 1.47559 1.23816i 0.564837 0.825203i \(-0.308939\pi\)
0.910749 0.412960i \(-0.135505\pi\)
\(294\) −2.96090 32.8848i −0.172683 1.91788i
\(295\) −16.4941 + 6.00336i −0.960323 + 0.349529i
\(296\) −75.5775 + 43.6347i −4.39285 + 2.53622i
\(297\) 0.686268 0.268562i 0.0398213 0.0155835i
\(298\) 31.5848 54.7065i 1.82966 3.16906i
\(299\) −2.04733 1.71791i −0.118400 0.0993493i
\(300\) 14.3290 17.3562i 0.827288 1.00206i
\(301\) 9.56936 + 2.14887i 0.551569 + 0.123859i
\(302\) 0.617608 0.108901i 0.0355393 0.00626654i
\(303\) −3.90638 + 11.0053i −0.224416 + 0.632237i
\(304\) −15.0952 41.4738i −0.865770 2.37868i
\(305\) −26.6954 + 15.4126i −1.52858 + 0.882523i
\(306\) −28.5697 15.8920i −1.63322 0.908487i
\(307\) 13.5558 7.82647i 0.773672 0.446680i −0.0605107 0.998168i \(-0.519273\pi\)
0.834183 + 0.551488i \(0.185940\pi\)
\(308\) 1.09664 1.71107i 0.0624870 0.0974973i
\(309\) −19.8783 + 0.158696i −1.13084 + 0.00902793i
\(310\) 5.47232 + 31.0351i 0.310807 + 1.76267i
\(311\) −20.3810 + 17.1017i −1.15570 + 0.969749i −0.999837 0.0180296i \(-0.994261\pi\)
−0.155864 + 0.987778i \(0.549816\pi\)
\(312\) 0.261708 + 32.7815i 0.0148163 + 1.85588i
\(313\) 10.6716 + 29.3199i 0.603193 + 1.65726i 0.744762 + 0.667330i \(0.232563\pi\)
−0.141569 + 0.989928i \(0.545215\pi\)
\(314\) 13.3978 + 23.2057i 0.756084 + 1.30958i
\(315\) 14.3743 16.1099i 0.809899 0.907689i
\(316\) −40.5623 + 70.2560i −2.28181 + 3.95221i
\(317\) 12.1904 + 2.14949i 0.684679 + 0.120727i 0.505158 0.863027i \(-0.331434\pi\)
0.179521 + 0.983754i \(0.442545\pi\)
\(318\) 12.0232 33.8725i 0.674229 1.89947i
\(319\) 0.828984 + 0.301725i 0.0464142 + 0.0168934i
\(320\) 71.2608 + 25.9368i 3.98360 + 1.44991i
\(321\) −5.13103 + 30.5224i −0.286386 + 1.70360i
\(322\) −8.40745 + 4.34754i −0.468529 + 0.242279i
\(323\) 12.1780i 0.677602i
\(324\) 25.7082 + 41.4152i 1.42823 + 2.30085i
\(325\) 4.22711 + 2.44053i 0.234478 + 0.135376i
\(326\) −1.46231 0.257845i −0.0809898 0.0142807i
\(327\) −5.74183 15.3921i −0.317524 0.851185i
\(328\) −1.93111 2.30140i −0.106627 0.127074i
\(329\) −17.2311 3.86937i −0.949982 0.213325i
\(330\) 1.78946 0.330281i 0.0985065 0.0181814i
\(331\) −3.30152 + 18.7238i −0.181468 + 1.02916i 0.748942 + 0.662635i \(0.230562\pi\)
−0.930410 + 0.366520i \(0.880549\pi\)
\(332\) 2.78573 + 4.82503i 0.152887 + 0.264808i
\(333\) −26.5950 9.20165i −1.45740 0.504247i
\(334\) −30.1849 17.4273i −1.65164 0.953577i
\(335\) −0.847127 + 4.80430i −0.0462835 + 0.262487i
\(336\) 61.5332 + 25.1098i 3.35691 + 1.36985i
\(337\) 22.8085 + 8.30162i 1.24246 + 0.452218i 0.877847 0.478941i \(-0.158979\pi\)
0.364612 + 0.931159i \(0.381201\pi\)
\(338\) 23.7641 4.19025i 1.29260 0.227919i
\(339\) 1.34279 2.36926i 0.0729303 0.128681i
\(340\) −45.1619 37.8954i −2.44925 2.05517i
\(341\) −0.301678 + 0.522521i −0.0163368 + 0.0282961i
\(342\) 12.0861 21.7277i 0.653542 1.17490i
\(343\) 2.56749 18.3414i 0.138632 0.990344i
\(344\) −22.1674 + 26.4180i −1.19518 + 1.42437i
\(345\) −5.83265 2.07033i −0.314019 0.111463i
\(346\) 3.13239 8.60617i 0.168398 0.462671i
\(347\) 30.0193 5.29321i 1.61152 0.284154i 0.705921 0.708291i \(-0.250534\pi\)
0.905598 + 0.424137i \(0.139422\pi\)
\(348\) −9.67373 + 57.5451i −0.518566 + 3.08474i
\(349\) −3.07591 8.45099i −0.164650 0.452371i 0.829740 0.558150i \(-0.188489\pi\)
−0.994390 + 0.105779i \(0.966266\pi\)
\(350\) 13.7428 10.4858i 0.734581 0.560488i
\(351\) −7.93312 + 6.98716i −0.423439 + 0.372947i
\(352\) 1.48123 + 2.56557i 0.0789500 + 0.136745i
\(353\) 3.11622 17.6729i 0.165860 0.940636i −0.782314 0.622884i \(-0.785961\pi\)
0.948174 0.317752i \(-0.102928\pi\)
\(354\) 5.04587 30.0158i 0.268185 1.59532i
\(355\) 6.48357 17.8135i 0.344112 0.945440i
\(356\) 4.86447 + 27.5878i 0.257816 + 1.46215i
\(357\) −13.5849 12.3175i −0.718988 0.651911i
\(358\) 2.78259 + 2.33487i 0.147064 + 0.123402i
\(359\) 27.0082i 1.42544i 0.701450 + 0.712719i \(0.252536\pi\)
−0.701450 + 0.712719i \(0.747464\pi\)
\(360\) 27.1011 + 70.9157i 1.42835 + 3.73758i
\(361\) 9.73847 0.512551
\(362\) 7.82100 2.84661i 0.411063 0.149615i
\(363\) −16.5452 9.37708i −0.868399 0.492169i
\(364\) −6.38759 + 28.4453i −0.334801 + 1.49094i
\(365\) 3.94563 10.8405i 0.206524 0.567419i
\(366\) −0.426716 53.4504i −0.0223048 2.79390i
\(367\) 10.3302 12.3111i 0.539232 0.642632i −0.425783 0.904825i \(-0.640001\pi\)
0.965015 + 0.262193i \(0.0844458\pi\)
\(368\) 19.0514i 0.993125i
\(369\) 0.152975 0.956636i 0.00796354 0.0498005i
\(370\) −60.1789 34.7443i −3.12855 1.80627i
\(371\) 10.8789 16.9741i 0.564802 0.881250i
\(372\) −37.6102 13.3499i −1.95000 0.692161i
\(373\) −15.0090 + 12.5940i −0.777136 + 0.652095i −0.942526 0.334134i \(-0.891556\pi\)
0.165390 + 0.986228i \(0.447112\pi\)
\(374\) −0.268379 1.52205i −0.0138775 0.0787034i
\(375\) −12.0840 2.03141i −0.624017 0.104902i
\(376\) 39.9158 47.5698i 2.05850 2.45322i
\(377\) −12.6549 −0.651759
\(378\) 12.0132 + 35.4590i 0.617894 + 1.82381i
\(379\) 4.00603 0.205776 0.102888 0.994693i \(-0.467192\pi\)
0.102888 + 0.994693i \(0.467192\pi\)
\(380\) 28.8200 34.3463i 1.47843 1.76193i
\(381\) 10.9419 + 29.3320i 0.560572 + 1.50272i
\(382\) 7.15577 + 40.5824i 0.366121 + 2.07638i
\(383\) −16.2280 + 13.6169i −0.829211 + 0.695791i −0.955110 0.296253i \(-0.904263\pi\)
0.125899 + 0.992043i \(0.459819\pi\)
\(384\) −44.9996 + 38.3754i −2.29637 + 1.95834i
\(385\) 1.01959 + 0.0473021i 0.0519633 + 0.00241074i
\(386\) 11.2651 + 6.50390i 0.573377 + 0.331040i
\(387\) −11.1194 + 0.177553i −0.565232 + 0.00902553i
\(388\) 39.9203i 2.02665i
\(389\) 11.4973 13.7019i 0.582936 0.694716i −0.391296 0.920265i \(-0.627973\pi\)
0.974232 + 0.225549i \(0.0724175\pi\)
\(390\) −22.5011 + 13.2316i −1.13939 + 0.670010i
\(391\) −1.79791 + 4.93971i −0.0909242 + 0.249812i
\(392\) 53.1404 + 37.6428i 2.68400 + 1.90125i
\(393\) −8.18767 + 4.81471i −0.413013 + 0.242870i
\(394\) 20.7608 7.55631i 1.04591 0.380681i
\(395\) −40.7429 −2.05000
\(396\) −0.753495 + 2.17778i −0.0378645 + 0.109438i
\(397\) 16.1300i 0.809544i 0.914418 + 0.404772i \(0.132649\pi\)
−0.914418 + 0.404772i \(0.867351\pi\)
\(398\) 10.5173 + 8.82505i 0.527184 + 0.442360i
\(399\) 9.36763 10.3315i 0.468968 0.517221i
\(400\) 6.04197 + 34.2657i 0.302098 + 1.71328i
\(401\) −1.01818 + 2.79743i −0.0508456 + 0.139697i −0.962516 0.271225i \(-0.912571\pi\)
0.911670 + 0.410923i \(0.134793\pi\)
\(402\) −6.52344 5.38566i −0.325360 0.268612i
\(403\) 1.50294 8.52358i 0.0748667 0.424590i
\(404\) −18.2588 31.6251i −0.908407 1.57341i
\(405\) −11.5575 + 21.5814i −0.574296 + 1.07239i
\(406\) −17.2637 + 41.3589i −0.856781 + 2.05261i
\(407\) −0.455027 1.25018i −0.0225548 0.0619689i
\(408\) 60.4134 22.5365i 2.99091 1.11572i
\(409\) −22.7127 + 4.00487i −1.12307 + 0.198028i −0.704189 0.710012i \(-0.748689\pi\)
−0.418883 + 0.908040i \(0.637578\pi\)
\(410\) 0.818166 2.24789i 0.0404064 0.111016i
\(411\) 5.51744 4.70525i 0.272155 0.232093i
\(412\) 39.9570 47.6189i 1.96854 2.34601i
\(413\) 6.57639 15.7552i 0.323603 0.775261i
\(414\) 8.11023 7.02898i 0.398596 0.345455i
\(415\) −1.39906 + 2.42325i −0.0686774 + 0.118953i
\(416\) −32.5541 27.3161i −1.59609 1.33928i
\(417\) 19.7917 0.158005i 0.969204 0.00773755i
\(418\) 1.15754 0.204106i 0.0566172 0.00998314i
\(419\) −7.21684 2.62672i −0.352566 0.128323i 0.159665 0.987171i \(-0.448959\pi\)
−0.512231 + 0.858848i \(0.671181\pi\)
\(420\) 9.16409 + 66.8892i 0.447162 + 3.26386i
\(421\) 6.15920 34.9305i 0.300181 1.70241i −0.345183 0.938535i \(-0.612183\pi\)
0.645364 0.763875i \(-0.276706\pi\)
\(422\) −7.25209 4.18700i −0.353026 0.203820i
\(423\) 20.0222 0.319712i 0.973515 0.0155449i
\(424\) 35.4458 + 61.3939i 1.72140 + 2.98155i
\(425\) 1.66712 9.45470i 0.0808671 0.458620i
\(426\) 21.3298 + 25.0117i 1.03343 + 1.21182i
\(427\) 6.56912 29.2537i 0.317902 1.41569i
\(428\) −62.2114 74.1407i −3.00710 3.58373i
\(429\) −0.492849 0.0828514i −0.0237950 0.00400010i
\(430\) −27.0427 4.76835i −1.30411 0.229950i
\(431\) −12.6881 7.32548i −0.611164 0.352856i 0.162257 0.986749i \(-0.448123\pi\)
−0.773421 + 0.633893i \(0.781456\pi\)
\(432\) −74.5050 11.3048i −3.58462 0.543901i
\(433\) 20.7962i 0.999403i −0.866198 0.499701i \(-0.833443\pi\)
0.866198 0.499701i \(-0.166557\pi\)
\(434\) −25.8066 16.5397i −1.23876 0.793932i
\(435\) −27.4579 + 10.2428i −1.31650 + 0.491106i
\(436\) 48.2734 + 17.5701i 2.31187 + 0.841454i
\(437\) −3.75672 1.36733i −0.179708 0.0654085i
\(438\) 12.9805 + 15.2211i 0.620230 + 0.727290i
\(439\) −25.8246 4.55358i −1.23254 0.217331i −0.480826 0.876816i \(-0.659663\pi\)
−0.751717 + 0.659486i \(0.770774\pi\)
\(440\) −1.79451 + 3.10818i −0.0855498 + 0.148177i
\(441\) 2.05010 + 20.8997i 0.0976240 + 0.995223i
\(442\) 11.0852 + 19.2002i 0.527272 + 0.913261i
\(443\) −0.0493954 0.135713i −0.00234684 0.00644790i 0.938514 0.345242i \(-0.112203\pi\)
−0.940861 + 0.338794i \(0.889981\pi\)
\(444\) 75.8570 44.6072i 3.60001 2.11697i
\(445\) −10.7775 + 9.04340i −0.510903 + 0.428698i
\(446\) 8.41073 + 47.6996i 0.398260 + 2.25864i
\(447\) −19.8102 + 34.9537i −0.936988 + 1.65325i
\(448\) −65.5188 + 33.8802i −3.09547 + 1.60069i
\(449\) 15.6193 9.01783i 0.737122 0.425578i −0.0838999 0.996474i \(-0.526738\pi\)
0.821022 + 0.570897i \(0.193404\pi\)
\(450\) −12.3578 + 15.2143i −0.582552 + 0.717209i
\(451\) 0.0396636 0.0228998i 0.00186769 0.00107831i
\(452\) 2.91261 + 8.00233i 0.136998 + 0.376398i
\(453\) −0.392245 + 0.0723968i −0.0184293 + 0.00340150i
\(454\) −19.4001 + 3.42076i −0.910492 + 0.160544i
\(455\) −13.9760 + 4.36476i −0.655205 + 0.204623i
\(456\) 17.1393 + 45.9452i 0.802621 + 2.15158i
\(457\) −14.9995 12.5861i −0.701647 0.588752i 0.220595 0.975366i \(-0.429200\pi\)
−0.922242 + 0.386614i \(0.873645\pi\)
\(458\) 20.6860 35.8291i 0.966591 1.67418i
\(459\) 18.2510 + 9.96227i 0.851885 + 0.464999i
\(460\) 16.7609 9.67690i 0.781480 0.451188i
\(461\) 12.6847 4.61684i 0.590784 0.215028i −0.0292902 0.999571i \(-0.509325\pi\)
0.620074 + 0.784543i \(0.287102\pi\)
\(462\) −0.943117 + 1.49771i −0.0438778 + 0.0696799i
\(463\) −6.46334 + 5.42339i −0.300377 + 0.252046i −0.780501 0.625154i \(-0.785036\pi\)
0.480124 + 0.877200i \(0.340592\pi\)
\(464\) −57.9856 69.1045i −2.69191 3.20810i
\(465\) −3.63797 19.7105i −0.168707 0.914053i
\(466\) −31.7096 + 11.5413i −1.46892 + 0.534642i
\(467\) 13.9457 0.645328 0.322664 0.946514i \(-0.395422\pi\)
0.322664 + 0.946514i \(0.395422\pi\)
\(468\) −0.527783 33.0529i −0.0243968 1.52787i
\(469\) −2.87829 3.77232i −0.132907 0.174189i
\(470\) 48.6945 + 8.58616i 2.24611 + 0.396050i
\(471\) −8.63884 14.6908i −0.398057 0.676917i
\(472\) 38.5877 + 45.9870i 1.77614 + 2.11672i
\(473\) −0.337938 0.402739i −0.0155384 0.0185180i
\(474\) 34.8353 61.4645i 1.60004 2.82316i
\(475\) 7.19043 + 1.26787i 0.329920 + 0.0581737i
\(476\) 56.8720 7.32965i 2.60673 0.335954i
\(477\) −7.47478 + 21.6039i −0.342247 + 0.989176i
\(478\) 21.6905 0.992102
\(479\) −20.5798 + 7.49045i −0.940317 + 0.342247i −0.766291 0.642494i \(-0.777900\pi\)
−0.174026 + 0.984741i \(0.555678\pi\)
\(480\) −92.7437 32.9199i −4.23315 1.50258i
\(481\) 12.2673 + 14.6196i 0.559343 + 0.666599i
\(482\) 1.14392 0.959862i 0.0521041 0.0437205i
\(483\) 5.32506 2.80772i 0.242298 0.127756i
\(484\) 55.8826 20.3396i 2.54012 0.924527i
\(485\) −17.3630 + 10.0245i −0.788411 + 0.455189i
\(486\) −22.6759 35.8878i −1.02860 1.62790i
\(487\) 4.85645 8.41162i 0.220067 0.381167i −0.734761 0.678326i \(-0.762706\pi\)
0.954828 + 0.297159i \(0.0960392\pi\)
\(488\) 80.7604 + 67.7660i 3.65585 + 3.06762i
\(489\) 0.931337 + 0.156564i 0.0421165 + 0.00708008i
\(490\) −4.80097 + 51.6310i −0.216886 + 2.33245i
\(491\) 26.7581 4.71818i 1.20758 0.212928i 0.466606 0.884465i \(-0.345477\pi\)
0.740971 + 0.671537i \(0.234366\pi\)
\(492\) 1.96575 + 2.30506i 0.0886228 + 0.103920i
\(493\) 8.51319 + 23.3898i 0.383415 + 1.05342i
\(494\) −14.6020 + 8.43049i −0.656976 + 0.379306i
\(495\) −1.13642 + 0.219144i −0.0510782 + 0.00984981i
\(496\) 53.4314 30.8486i 2.39914 1.38514i
\(497\) 8.46921 + 16.3781i 0.379896 + 0.734658i
\(498\) −2.45950 4.18251i −0.110213 0.187423i
\(499\) −5.63790 31.9741i −0.252387 1.43136i −0.802692 0.596394i \(-0.796600\pi\)
0.550305 0.834964i \(-0.314512\pi\)
\(500\) 29.3528 24.6299i 1.31270 1.10148i
\(501\) 19.2861 + 10.9305i 0.861638 + 0.488337i
\(502\) −16.5163 45.3781i −0.737158 2.02532i
\(503\) 12.9131 + 22.3661i 0.575764 + 0.997253i 0.995958 + 0.0898189i \(0.0286288\pi\)
−0.420194 + 0.907434i \(0.638038\pi\)
\(504\) −68.5888 27.3522i −3.05519 1.21837i
\(505\) 9.17002 15.8829i 0.408060 0.706781i
\(506\) 0.499663 + 0.0881040i 0.0222127 + 0.00391670i
\(507\) −15.0927 + 2.78566i −0.670289 + 0.123715i
\(508\) −91.9923 33.4824i −4.08150 1.48554i
\(509\) 27.4413 + 9.98782i 1.21631 + 0.442702i 0.868890 0.495006i \(-0.164834\pi\)
0.347425 + 0.937708i \(0.387056\pi\)
\(510\) 39.5928 + 32.6873i 1.75320 + 1.44742i
\(511\) 5.15401 + 9.96702i 0.228000 + 0.440915i
\(512\) 33.0926i 1.46250i
\(513\) −7.57644 + 13.8802i −0.334508 + 0.612824i
\(514\) −65.9842 38.0960i −2.91044 1.68034i
\(515\) 30.7451 + 5.42119i 1.35479 + 0.238886i
\(516\) 22.1397 26.8170i 0.974646 1.18055i
\(517\) 0.608510 + 0.725194i 0.0267623 + 0.0318940i
\(518\) 64.5152 20.1483i 2.83463 0.885267i
\(519\) −1.94850 + 5.48943i −0.0855297 + 0.240959i
\(520\) 8.94012 50.7019i 0.392050 2.22343i
\(521\) −1.43518 2.48580i −0.0628763 0.108905i 0.832874 0.553463i \(-0.186694\pi\)
−0.895750 + 0.444558i \(0.853361\pi\)
\(522\) 8.02431 50.1805i 0.351214 2.19634i
\(523\) 6.72356 + 3.88185i 0.294001 + 0.169742i 0.639745 0.768587i \(-0.279040\pi\)
−0.345744 + 0.938329i \(0.612373\pi\)
\(524\) 5.15765 29.2505i 0.225313 1.27781i
\(525\) −8.68714 + 6.73873i −0.379138 + 0.294102i
\(526\) 28.5509 + 10.3917i 1.24488 + 0.453098i
\(527\) −16.7651 + 2.95613i −0.730298 + 0.128771i
\(528\) −1.80585 3.07094i −0.0785894 0.133645i
\(529\) 16.2971 + 13.6749i 0.708568 + 0.594559i
\(530\) −28.2238 + 48.8851i −1.22596 + 2.12343i
\(531\) −3.05676 + 19.1157i −0.132652 + 0.829549i
\(532\) 5.57430 + 43.2520i 0.241677 + 1.87521i
\(533\) −0.422306 + 0.503284i −0.0182921 + 0.0217997i
\(534\) −4.42803 23.9910i −0.191620 1.03819i
\(535\) 16.6247 45.6759i 0.718748 1.97474i
\(536\) 16.4312 2.89726i 0.709718 0.125142i
\(537\) −1.78158 1.47085i −0.0768809 0.0634718i
\(538\) −4.45020 12.2268i −0.191862 0.527136i
\(539\) −0.705817 + 0.698161i −0.0304017 + 0.0300719i
\(540\) −27.8981 71.2893i −1.20054 3.06780i
\(541\) 0.0411054 + 0.0711966i 0.00176726 + 0.00306098i 0.866908 0.498469i \(-0.166104\pi\)
−0.865140 + 0.501530i \(0.832771\pi\)
\(542\) −10.1165 + 57.3738i −0.434543 + 2.46441i
\(543\) −4.95970 + 1.85015i −0.212841 + 0.0793977i
\(544\) −28.5881 + 78.5453i −1.22571 + 3.36760i
\(545\) 4.48013 + 25.4081i 0.191908 + 1.08836i
\(546\) 5.36488 24.8160i 0.229596 1.06203i
\(547\) 0.989409 + 0.830213i 0.0423041 + 0.0354973i 0.663695 0.748004i \(-0.268987\pi\)
−0.621390 + 0.783501i \(0.713432\pi\)
\(548\) 22.6751i 0.968631i
\(549\) 0.542783 + 33.9923i 0.0231654 + 1.45076i
\(550\) −0.926629 −0.0395116
\(551\) −17.7883 + 6.47440i −0.757806 + 0.275819i
\(552\) 0.168985 + 21.1670i 0.00719246 + 0.900926i
\(553\) 26.8523 29.1442i 1.14187 1.23934i
\(554\) −11.5350 + 31.6921i −0.490074 + 1.34647i
\(555\) 38.4501 + 21.7918i 1.63212 + 0.925010i
\(556\) −39.7829 + 47.4114i −1.68717 + 2.01069i
\(557\) 40.7044i 1.72470i −0.506313 0.862350i \(-0.668992\pi\)
0.506313 0.862350i \(-0.331008\pi\)
\(558\) 32.8457 + 11.3643i 1.39047 + 0.481090i
\(559\) 6.53128 + 3.77084i 0.276244 + 0.159489i
\(560\) −87.8738 56.3192i −3.71335 2.37992i
\(561\) 0.178417 + 0.966661i 0.00753277 + 0.0408125i
\(562\) −32.5760 + 27.3345i −1.37413 + 1.15304i
\(563\) 6.08532 + 34.5115i 0.256465 + 1.45449i 0.792283 + 0.610154i \(0.208892\pi\)
−0.535817 + 0.844334i \(0.679996\pi\)
\(564\) −39.8660 + 48.2881i −1.67866 + 2.03329i
\(565\) −2.74914 + 3.27630i −0.115657 + 0.137835i
\(566\) −62.2760 −2.61765
\(567\) −7.82045 22.4909i −0.328428 0.944529i
\(568\) −64.8337 −2.72036
\(569\) 3.89713 4.64442i 0.163376 0.194704i −0.678145 0.734928i \(-0.737216\pi\)
0.841521 + 0.540224i \(0.181660\pi\)
\(570\) −24.8591 + 30.1109i −1.04123 + 1.26121i
\(571\) −1.34728 7.64081i −0.0563819 0.319758i 0.943552 0.331223i \(-0.107461\pi\)
−0.999934 + 0.0114657i \(0.996350\pi\)
\(572\) 1.19716 1.00454i 0.0500557 0.0420017i
\(573\) −4.75712 25.7741i −0.198732 1.07673i
\(574\) 1.06874 + 2.06676i 0.0446082 + 0.0862650i
\(575\) 2.72945 + 1.57585i 0.113826 + 0.0657173i
\(576\) 63.2026 54.7764i 2.63344 2.28235i
\(577\) 28.1574i 1.17221i 0.810236 + 0.586104i \(0.199339\pi\)
−0.810236 + 0.586104i \(0.800661\pi\)
\(578\) −1.72800 + 2.05934i −0.0718751 + 0.0856575i
\(579\) −7.19761 4.07928i −0.299122 0.169529i
\(580\) 31.3431 86.1146i 1.30145 3.57571i
\(581\) −0.811322 2.59786i −0.0336593 0.107778i
\(582\) −0.277540 34.7647i −0.0115044 1.44104i
\(583\) −1.01556 + 0.369632i −0.0420600 + 0.0153086i
\(584\) −39.4551 −1.63266
\(585\) 14.2435 8.52957i 0.588897 0.352654i
\(586\) 89.7913i 3.70924i
\(587\) −14.0329 11.7750i −0.579200 0.486006i 0.305484 0.952197i \(-0.401182\pi\)
−0.884684 + 0.466191i \(0.845626\pi\)
\(588\) −53.8869 37.5292i −2.22226 1.54768i
\(589\) −2.24818 12.7501i −0.0926347 0.525357i
\(590\) −16.3487 + 44.9178i −0.673067 + 1.84924i
\(591\) −13.1655 + 4.91122i −0.541556 + 0.202021i
\(592\) −23.6237 + 133.977i −0.970928 + 5.50641i
\(593\) 10.2123 + 17.6882i 0.419367 + 0.726366i 0.995876 0.0907255i \(-0.0289186\pi\)
−0.576509 + 0.817091i \(0.695585\pi\)
\(594\) 0.641041 1.90176i 0.0263022 0.0780304i
\(595\) 17.4693 + 22.8954i 0.716170 + 0.938619i
\(596\) −42.9697 118.058i −1.76011 4.83586i
\(597\) −6.73380 5.55933i −0.275596 0.227528i
\(598\) −7.16761 + 1.26384i −0.293105 + 0.0516824i
\(599\) −10.4791 + 28.7910i −0.428163 + 1.17637i 0.518763 + 0.854918i \(0.326393\pi\)
−0.946926 + 0.321451i \(0.895830\pi\)
\(600\) −7.01682 38.0171i −0.286460 1.55204i
\(601\) −2.11771 + 2.52379i −0.0863832 + 0.102947i −0.807505 0.589861i \(-0.799182\pi\)
0.721122 + 0.692809i \(0.243627\pi\)
\(602\) 21.2338 16.2015i 0.865426 0.660324i
\(603\) 4.17625 + 3.39216i 0.170070 + 0.138139i
\(604\) 0.623640 1.08018i 0.0253756 0.0439518i
\(605\) 22.8793 + 19.1980i 0.930177 + 0.780511i
\(606\) 16.1205 + 27.4138i 0.654852 + 1.11361i
\(607\) −43.0659 + 7.59367i −1.74799 + 0.308218i −0.954021 0.299741i \(-0.903100\pi\)
−0.793969 + 0.607959i \(0.791989\pi\)
\(608\) −59.7348 21.7417i −2.42256 0.881741i
\(609\) 10.7697 26.3919i 0.436410 1.06945i
\(610\) −14.5769 + 82.6699i −0.590203 + 3.34721i
\(611\) −11.7606 6.78997i −0.475782 0.274693i
\(612\) −60.7362 + 23.2109i −2.45511 + 0.938244i
\(613\) 10.4406 + 18.0837i 0.421694 + 0.730395i 0.996105 0.0881718i \(-0.0281025\pi\)
−0.574412 + 0.818567i \(0.694769\pi\)
\(614\) 7.40212 41.9795i 0.298725 1.69415i
\(615\) −0.508940 + 1.43381i −0.0205224 + 0.0578169i
\(616\) −1.04064 3.33215i −0.0419286 0.134256i
\(617\) 13.6109 + 16.2208i 0.547954 + 0.653026i 0.966951 0.254961i \(-0.0820627\pi\)
−0.418997 + 0.907988i \(0.637618\pi\)
\(618\) −34.4655 + 41.7468i −1.38641 + 1.67930i
\(619\) 3.76408 + 0.663709i 0.151291 + 0.0266767i 0.248781 0.968560i \(-0.419970\pi\)
−0.0974896 + 0.995237i \(0.531081\pi\)
\(620\) 54.2794 + 31.3382i 2.17991 + 1.25857i
\(621\) −5.12242 + 4.51160i −0.205555 + 0.181044i
\(622\) 72.4539i 2.90514i
\(623\) 0.634173 13.6696i 0.0254076 0.547660i
\(624\) 39.4092 + 32.5357i 1.57763 + 1.30247i
\(625\) 29.3558 + 10.6847i 1.17423 + 0.427386i
\(626\) 79.8459 + 29.0615i 3.19128 + 1.16153i
\(627\) −0.735159 + 0.135689i −0.0293594 + 0.00541888i
\(628\) 52.4830 + 9.25417i 2.09430 + 0.369282i
\(629\) 18.7688 32.5085i 0.748360 1.29620i
\(630\) −8.44560 58.1868i −0.336481 2.31822i
\(631\) −20.3234 35.2011i −0.809061 1.40133i −0.913515 0.406805i \(-0.866643\pi\)
0.104454 0.994530i \(-0.466690\pi\)
\(632\) 47.6586 + 130.941i 1.89576 + 5.20856i
\(633\) 4.63358 + 2.62610i 0.184168 + 0.104378i
\(634\) 25.8232 21.6682i 1.02557 0.860554i
\(635\) −8.53758 48.4190i −0.338803 1.92145i
\(636\) −36.2358 61.6209i −1.43684 2.44343i
\(637\) 6.08892 12.8740i 0.241252 0.510086i
\(638\) 2.08056 1.20121i 0.0823703 0.0475565i
\(639\) −13.6928 15.7991i −0.541677 0.625003i
\(640\) 80.4357 46.4396i 3.17950 1.83569i
\(641\) −3.63686 9.99218i −0.143647 0.394667i 0.846916 0.531727i \(-0.178457\pi\)
−0.990563 + 0.137060i \(0.956235\pi\)
\(642\) 54.6924 + 64.1330i 2.15854 + 2.53113i
\(643\) 41.6989 7.35263i 1.64444 0.289960i 0.726646 0.687012i \(-0.241078\pi\)
0.917796 + 0.397052i \(0.129967\pi\)
\(644\) −4.12446 + 18.3671i −0.162527 + 0.723766i
\(645\) 17.2233 + 2.89536i 0.678168 + 0.114005i
\(646\) 25.4050 + 21.3173i 0.999547 + 0.838720i
\(647\) 20.0622 34.7487i 0.788726 1.36611i −0.138021 0.990429i \(-0.544074\pi\)
0.926748 0.375685i \(-0.122592\pi\)
\(648\) 82.8785 + 11.8992i 3.25578 + 0.467446i
\(649\) −0.792565 + 0.457588i −0.0311109 + 0.0179619i
\(650\) 12.4908 4.54627i 0.489928 0.178319i
\(651\) 16.4970 + 10.3882i 0.646568 + 0.407147i
\(652\) −2.26227 + 1.89827i −0.0885974 + 0.0743420i
\(653\) 14.3339 + 17.0825i 0.560929 + 0.668489i 0.969743 0.244129i \(-0.0785019\pi\)
−0.408814 + 0.912618i \(0.634057\pi\)
\(654\) −42.1611 14.9653i −1.64863 0.585190i
\(655\) 14.0174 5.10191i 0.547704 0.199348i
\(656\) −4.68333 −0.182853
\(657\) −8.33284 9.61468i −0.325095 0.375104i
\(658\) −38.2348 + 29.1733i −1.49055 + 1.13729i
\(659\) −14.8769 2.62320i −0.579522 0.102185i −0.123800 0.992307i \(-0.539508\pi\)
−0.455723 + 0.890122i \(0.650619\pi\)
\(660\) 1.78446 3.14856i 0.0694601 0.122558i
\(661\) −12.8484 15.3122i −0.499746 0.595575i 0.455922 0.890020i \(-0.349310\pi\)
−0.955668 + 0.294445i \(0.904865\pi\)
\(662\) 33.2813 + 39.6632i 1.29352 + 1.54155i
\(663\) −7.14770 12.1550i −0.277594 0.472063i
\(664\) 9.42449 + 1.66179i 0.365741 + 0.0644900i
\(665\) −17.4122 + 13.2856i −0.675218 + 0.515194i
\(666\) −65.7500 + 39.3737i −2.54776 + 1.52570i
\(667\) −8.17125 −0.316392
\(668\) −65.1400 + 23.7090i −2.52034 + 0.917329i
\(669\) −5.59141 30.2942i −0.216176 1.17124i
\(670\) 8.53956 + 10.1771i 0.329912 + 0.393174i
\(671\) −1.23118 + 1.03308i −0.0475292 + 0.0398818i
\(672\) 84.6725 44.6450i 3.26631 1.72222i
\(673\) 38.6509 14.0678i 1.48988 0.542273i 0.536463 0.843924i \(-0.319760\pi\)
0.953418 + 0.301651i \(0.0975377\pi\)
\(674\) 57.2443 33.0500i 2.20497 1.27304i
\(675\) 7.78231 9.73904i 0.299541 0.374856i
\(676\) 23.9962 41.5626i 0.922930 1.59856i
\(677\) −15.9513 13.3847i −0.613059 0.514418i 0.282554 0.959251i \(-0.408818\pi\)
−0.895613 + 0.444834i \(0.853263\pi\)
\(678\) −2.59209 6.94859i −0.0995485 0.266859i
\(679\) 4.27262 19.0269i 0.163968 0.730185i
\(680\) −99.7258 + 17.5844i −3.82431 + 0.674329i
\(681\) 12.3211 2.27410i 0.472145 0.0871439i
\(682\) 0.561972 + 1.54401i 0.0215190 + 0.0591231i
\(683\) −22.6357 + 13.0687i −0.866129 + 0.500060i −0.866060 0.499940i \(-0.833355\pi\)
−6.93731e−5 1.00000i \(0.500022\pi\)
\(684\) −17.6522 46.1907i −0.674949 1.76615i
\(685\) −9.86230 + 5.69400i −0.376819 + 0.217557i
\(686\) −33.7685 37.4625i −1.28929 1.43032i
\(687\) −12.9743 + 22.8923i −0.495002 + 0.873397i
\(688\) 9.33540 + 52.9437i 0.355909 + 2.01846i
\(689\) 11.8760 9.96513i 0.452439 0.379641i
\(690\) −14.5290 + 8.54367i −0.553108 + 0.325252i
\(691\) −10.6128 29.1584i −0.403730 1.10924i −0.960429 0.278525i \(-0.910155\pi\)
0.556699 0.830714i \(-0.312068\pi\)
\(692\) −9.10745 15.7746i −0.346213 0.599659i
\(693\) 0.592217 0.957333i 0.0224965 0.0363661i
\(694\) 41.5058 71.8901i 1.57554 2.72891i
\(695\) −30.6111 5.39757i −1.16115 0.204741i
\(696\) 65.0374 + 76.2638i 2.46524 + 2.89077i
\(697\) 1.21431 + 0.441972i 0.0459951 + 0.0167409i
\(698\) −23.0143 8.37652i −0.871104 0.317056i
\(699\) 20.1087 7.50129i 0.760579 0.283725i
\(700\) 1.59327 34.3429i 0.0602200 1.29804i
\(701\) 35.8873i 1.35545i 0.735317 + 0.677723i \(0.237033\pi\)
−0.735317 + 0.677723i \(0.762967\pi\)
\(702\) 0.689417 + 28.7805i 0.0260204 + 1.08625i
\(703\) 24.7232 + 14.2739i 0.932451 + 0.538351i
\(704\) 3.89384 + 0.686590i 0.146755 + 0.0258768i
\(705\) −31.0133 5.21355i −1.16803 0.196354i
\(706\) −31.4134 37.4370i −1.18226 1.40896i
\(707\) 5.31772 + 17.0274i 0.199994 + 0.640381i
\(708\) −39.2799 46.0601i −1.47623 1.73105i
\(709\) −8.77896 + 49.7879i −0.329701 + 1.86983i 0.144640 + 0.989484i \(0.453798\pi\)
−0.474341 + 0.880341i \(0.657314\pi\)
\(710\) −25.8120 44.7078i −0.968709 1.67785i
\(711\) −21.8431 + 39.2683i −0.819182 + 1.47268i
\(712\) 41.6709 + 24.0587i 1.56168 + 0.901639i
\(713\) 0.970447 5.50368i 0.0363435 0.206114i
\(714\) −49.4761 + 6.77843i −1.85160 + 0.253676i
\(715\) 0.737535 + 0.268441i 0.0275822 + 0.0100391i
\(716\) 7.11458 1.25449i 0.265884 0.0468826i
\(717\) −13.7952 + 0.110132i −0.515190 + 0.00411297i
\(718\) 56.3429 + 47.2773i 2.10270 + 1.76437i
\(719\) 20.9466 36.2805i 0.781175 1.35303i −0.150083 0.988673i \(-0.547954\pi\)
0.931258 0.364361i \(-0.118713\pi\)
\(720\) 111.842 + 38.6965i 4.16812 + 1.44213i
\(721\) −24.1409 + 18.4196i −0.899055 + 0.685983i
\(722\) 17.0470 20.3158i 0.634424 0.756077i
\(723\) −0.722658 + 0.616280i −0.0268760 + 0.0229197i
\(724\) 5.66149 15.5548i 0.210408 0.578091i
\(725\) 14.6967 2.59143i 0.545822 0.0962431i
\(726\) −48.5240 + 18.1013i −1.80089 + 0.671801i
\(727\) −4.61680 12.6846i −0.171228 0.470444i 0.824162 0.566354i \(-0.191646\pi\)
−0.995390 + 0.0959094i \(0.969424\pi\)
\(728\) 30.3760 + 39.8110i 1.12581 + 1.47549i
\(729\) 14.6041 + 22.7095i 0.540893 + 0.841092i
\(730\) −15.7081 27.2073i −0.581384 1.00699i
\(731\) 2.57585 14.6084i 0.0952713 0.540311i
\(732\) −81.9799 67.6815i −3.03007 2.50158i
\(733\) −9.35508 + 25.7029i −0.345538 + 0.949357i 0.638220 + 0.769854i \(0.279671\pi\)
−0.983757 + 0.179503i \(0.942551\pi\)
\(734\) −7.59979 43.1006i −0.280513 1.59087i
\(735\) 2.79126 32.8616i 0.102957 1.21212i
\(736\) −21.0201 17.6380i −0.774813 0.650145i
\(737\) 0.254355i 0.00936929i
\(738\) −1.72790 1.99370i −0.0636049 0.0733891i
\(739\) 17.0676 0.627840 0.313920 0.949449i \(-0.398358\pi\)
0.313920 + 0.949449i \(0.398358\pi\)
\(740\) −129.868 + 47.2681i −4.77404 + 1.73761i
\(741\) 9.24408 5.43593i 0.339590 0.199694i
\(742\) −16.3671 52.4076i −0.600855 1.92394i
\(743\) 2.70067 7.42004i 0.0990781 0.272215i −0.880244 0.474521i \(-0.842621\pi\)
0.979322 + 0.202306i \(0.0648436\pi\)
\(744\) −59.0909 + 34.7481i −2.16638 + 1.27393i
\(745\) 40.5581 48.3352i 1.48593 1.77087i
\(746\) 53.3565i 1.95352i
\(747\) 1.58548 + 2.64759i 0.0580096 + 0.0968702i
\(748\) −2.66202 1.53692i −0.0973331 0.0561953i
\(749\) 21.7161 + 41.9955i 0.793490 + 1.53448i
\(750\) −25.3907 + 21.6531i −0.927137 + 0.790658i
\(751\) −4.90779 + 4.11813i −0.179088 + 0.150273i −0.727925 0.685657i \(-0.759515\pi\)
0.548837 + 0.835929i \(0.315071\pi\)
\(752\) −16.8098 95.3333i −0.612991 3.47645i
\(753\) 10.7348 + 28.7766i 0.391196 + 1.04868i
\(754\) −22.1521 + 26.3999i −0.806732 + 0.961426i
\(755\) 0.626416 0.0227976
\(756\) 69.3814 + 27.0284i 2.52338 + 0.983012i
\(757\) −31.0889 −1.12994 −0.564972 0.825110i \(-0.691113\pi\)
−0.564972 + 0.825110i \(0.691113\pi\)
\(758\) 7.01248 8.35715i 0.254705 0.303545i
\(759\) −0.318233 0.0534971i −0.0115511 0.00194182i
\(760\) −13.3731 75.8429i −0.485095 2.75111i
\(761\) 7.52660 6.31557i 0.272839 0.228939i −0.496093 0.868269i \(-0.665233\pi\)
0.768932 + 0.639330i \(0.220788\pi\)
\(762\) 80.3444 + 28.5187i 2.91057 + 1.03312i
\(763\) −21.1276 13.5409i −0.764871 0.490214i
\(764\) 70.9773 + 40.9788i 2.56787 + 1.48256i
\(765\) −25.3470 20.5880i −0.916422 0.744362i
\(766\) 57.6900i 2.08442i
\(767\) 8.43858 10.0567i 0.304700 0.363127i
\(768\)