Properties

Label 189.2.ba.a.131.22
Level $189$
Weight $2$
Character 189.131
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 131.22
Character \(\chi\) \(=\) 189.131
Dual form 189.2.ba.a.101.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.75048 + 2.08614i) q^{2} +(-1.10271 - 1.33567i) q^{3} +(-0.940509 + 5.33389i) q^{4} +(2.08375 + 1.74847i) q^{5} +(0.856127 - 4.63849i) q^{6} +(-0.122613 - 2.64291i) q^{7} +(-8.05677 + 4.65158i) q^{8} +(-0.568048 + 2.94573i) q^{9} +O(q^{10})\) \(q+(1.75048 + 2.08614i) q^{2} +(-1.10271 - 1.33567i) q^{3} +(-0.940509 + 5.33389i) q^{4} +(2.08375 + 1.74847i) q^{5} +(0.856127 - 4.63849i) q^{6} +(-0.122613 - 2.64291i) q^{7} +(-8.05677 + 4.65158i) q^{8} +(-0.568048 + 2.94573i) q^{9} +7.40767i q^{10} +(0.0911635 + 0.108644i) q^{11} +(8.16145 - 4.62554i) q^{12} +(-0.695830 - 1.91178i) q^{13} +(5.29885 - 4.88215i) q^{14} +(0.0376120 - 4.71128i) q^{15} +(-13.6280 - 4.96018i) q^{16} +4.00161 q^{17} +(-7.13957 + 3.97142i) q^{18} -3.04328i q^{19} +(-11.2860 + 9.47004i) q^{20} +(-3.39486 + 3.07814i) q^{21} +(-0.0670678 + 0.380360i) q^{22} +(-0.449297 - 1.23443i) q^{23} +(15.0973 + 5.63186i) q^{24} +(0.416612 + 2.36273i) q^{25} +(2.77020 - 4.79813i) q^{26} +(4.56093 - 2.48957i) q^{27} +(14.2123 + 1.83168i) q^{28} +(2.12744 - 5.84511i) q^{29} +(9.89423 - 8.16854i) q^{30} +(-4.18959 - 0.738737i) q^{31} +(-7.14417 - 19.6284i) q^{32} +(0.0445863 - 0.241568i) q^{33} +(7.00474 + 8.34792i) q^{34} +(4.36556 - 5.72155i) q^{35} +(-15.1779 - 5.80039i) q^{36} +(4.69031 + 8.12386i) q^{37} +(6.34871 - 5.32720i) q^{38} +(-1.78621 + 3.03754i) q^{39} +(-24.9215 - 4.39432i) q^{40} +(0.303455 - 0.110449i) q^{41} +(-12.3641 - 1.69393i) q^{42} +(0.643705 + 3.65063i) q^{43} +(-0.665238 + 0.384075i) q^{44} +(-6.33420 + 5.14495i) q^{45} +(1.78872 - 3.09815i) q^{46} +(-1.15909 - 6.57353i) q^{47} +(8.40258 + 23.6722i) q^{48} +(-6.96993 + 0.648108i) q^{49} +(-4.19971 + 5.00502i) q^{50} +(-4.41262 - 5.34484i) q^{51} +(10.8516 - 1.91344i) q^{52} +(-6.59926 + 3.81008i) q^{53} +(13.1774 + 5.15680i) q^{54} +0.385785i q^{55} +(13.2816 + 20.7230i) q^{56} +(-4.06482 + 3.35586i) q^{57} +(15.9178 - 5.79360i) q^{58} +(-6.06369 + 2.20700i) q^{59} +(25.0941 + 4.63162i) q^{60} +(-11.1600 + 1.96782i) q^{61} +(-5.79268 - 10.0332i) q^{62} +(7.85494 + 1.14011i) q^{63} +(13.9394 - 24.1437i) q^{64} +(1.89276 - 5.20030i) q^{65} +(0.581994 - 0.329848i) q^{66} +(-1.37385 - 1.15280i) q^{67} +(-3.76355 + 21.3441i) q^{68} +(-1.15335 + 1.96134i) q^{69} +(19.5778 - 0.908274i) q^{70} +(6.03534 + 3.48450i) q^{71} +(-9.12566 - 26.3754i) q^{72} +(3.67285 + 2.12052i) q^{73} +(-8.73722 + 24.0053i) q^{74} +(2.69643 - 3.16187i) q^{75} +(16.2325 + 2.86223i) q^{76} +(0.275960 - 0.254258i) q^{77} +(-9.46347 + 1.59087i) q^{78} +(-11.4740 + 9.62781i) q^{79} +(-19.7246 - 34.1640i) q^{80} +(-8.35464 - 3.34663i) q^{81} +(0.761604 + 0.439712i) q^{82} +(-0.966634 - 0.351826i) q^{83} +(-13.2256 - 21.0028i) q^{84} +(8.33835 + 6.99670i) q^{85} +(-6.48894 + 7.73322i) q^{86} +(-10.1531 + 3.60390i) q^{87} +(-1.23985 - 0.451269i) q^{88} -5.17217 q^{89} +(-21.8210 - 4.20791i) q^{90} +(-4.96733 + 2.07342i) q^{91} +(7.00690 - 1.23551i) q^{92} +(3.63320 + 6.41053i) q^{93} +(11.6843 - 13.9249i) q^{94} +(5.32109 - 6.34143i) q^{95} +(-18.3392 + 31.1868i) q^{96} +(-7.25860 + 1.27989i) q^{97} +(-13.5528 - 13.4058i) q^{98} +(-0.371822 + 0.206828i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75048 + 2.08614i 1.23778 + 1.47513i 0.825831 + 0.563917i \(0.190706\pi\)
0.411946 + 0.911208i \(0.364849\pi\)
\(3\) −1.10271 1.33567i −0.636652 0.771152i
\(4\) −0.940509 + 5.33389i −0.470255 + 2.66695i
\(5\) 2.08375 + 1.74847i 0.931881 + 0.781941i 0.976154 0.217078i \(-0.0696526\pi\)
−0.0442728 + 0.999019i \(0.514097\pi\)
\(6\) 0.856127 4.63849i 0.349512 1.89365i
\(7\) −0.122613 2.64291i −0.0463432 0.998926i
\(8\) −8.05677 + 4.65158i −2.84850 + 1.64458i
\(9\) −0.568048 + 2.94573i −0.189349 + 0.981910i
\(10\) 7.40767i 2.34251i
\(11\) 0.0911635 + 0.108644i 0.0274868 + 0.0327575i 0.779613 0.626262i \(-0.215416\pi\)
−0.752126 + 0.659019i \(0.770971\pi\)
\(12\) 8.16145 4.62554i 2.35601 1.33528i
\(13\) −0.695830 1.91178i −0.192988 0.530231i 0.805024 0.593242i \(-0.202152\pi\)
−0.998013 + 0.0630103i \(0.979930\pi\)
\(14\) 5.29885 4.88215i 1.41618 1.30481i
\(15\) 0.0376120 4.71128i 0.00971138 1.21645i
\(16\) −13.6280 4.96018i −3.40700 1.24005i
\(17\) 4.00161 0.970532 0.485266 0.874367i \(-0.338723\pi\)
0.485266 + 0.874367i \(0.338723\pi\)
\(18\) −7.13957 + 3.97142i −1.68281 + 0.936072i
\(19\) 3.04328i 0.698176i −0.937090 0.349088i \(-0.886491\pi\)
0.937090 0.349088i \(-0.113509\pi\)
\(20\) −11.2860 + 9.47004i −2.52362 + 2.11757i
\(21\) −3.39486 + 3.07814i −0.740818 + 0.671705i
\(22\) −0.0670678 + 0.380360i −0.0142989 + 0.0810931i
\(23\) −0.449297 1.23443i −0.0936849 0.257397i 0.883995 0.467496i \(-0.154844\pi\)
−0.977680 + 0.210099i \(0.932621\pi\)
\(24\) 15.0973 + 5.63186i 3.08172 + 1.14960i
\(25\) 0.416612 + 2.36273i 0.0833225 + 0.472545i
\(26\) 2.77020 4.79813i 0.543281 0.940990i
\(27\) 4.56093 2.48957i 0.877751 0.479118i
\(28\) 14.2123 + 1.83168i 2.68587 + 0.346154i
\(29\) 2.12744 5.84511i 0.395056 1.08541i −0.569605 0.821918i \(-0.692904\pi\)
0.964662 0.263491i \(-0.0848738\pi\)
\(30\) 9.89423 8.16854i 1.80643 1.49136i
\(31\) −4.18959 0.738737i −0.752472 0.132681i −0.215760 0.976446i \(-0.569223\pi\)
−0.536712 + 0.843765i \(0.680334\pi\)
\(32\) −7.14417 19.6284i −1.26292 3.46985i
\(33\) 0.0445863 0.241568i 0.00776148 0.0420517i
\(34\) 7.00474 + 8.34792i 1.20130 + 1.43166i
\(35\) 4.36556 5.72155i 0.737915 0.967118i
\(36\) −15.1779 5.80039i −2.52966 0.966732i
\(37\) 4.69031 + 8.12386i 0.771083 + 1.33555i 0.936970 + 0.349409i \(0.113618\pi\)
−0.165888 + 0.986145i \(0.553049\pi\)
\(38\) 6.34871 5.32720i 1.02990 0.864186i
\(39\) −1.78621 + 3.03754i −0.286022 + 0.486396i
\(40\) −24.9215 4.39432i −3.94043 0.694804i
\(41\) 0.303455 0.110449i 0.0473917 0.0172492i −0.318216 0.948018i \(-0.603084\pi\)
0.365607 + 0.930769i \(0.380861\pi\)
\(42\) −12.3641 1.69393i −1.90782 0.261379i
\(43\) 0.643705 + 3.65063i 0.0981640 + 0.556716i 0.993732 + 0.111791i \(0.0356586\pi\)
−0.895568 + 0.444925i \(0.853230\pi\)
\(44\) −0.665238 + 0.384075i −0.100288 + 0.0579015i
\(45\) −6.33420 + 5.14495i −0.944247 + 0.766963i
\(46\) 1.78872 3.09815i 0.263732 0.456797i
\(47\) −1.15909 6.57353i −0.169071 0.958847i −0.944767 0.327741i \(-0.893713\pi\)
0.775697 0.631106i \(-0.217399\pi\)
\(48\) 8.40258 + 23.6722i 1.21281 + 3.41679i
\(49\) −6.96993 + 0.648108i −0.995705 + 0.0925868i
\(50\) −4.19971 + 5.00502i −0.593929 + 0.707817i
\(51\) −4.41262 5.34484i −0.617891 0.748427i
\(52\) 10.8516 1.91344i 1.50485 0.265346i
\(53\) −6.59926 + 3.81008i −0.906477 + 0.523355i −0.879296 0.476276i \(-0.841986\pi\)
−0.0271813 + 0.999631i \(0.508653\pi\)
\(54\) 13.1774 + 5.15680i 1.79322 + 0.701752i
\(55\) 0.385785i 0.0520192i
\(56\) 13.2816 + 20.7230i 1.77482 + 2.76922i
\(57\) −4.06482 + 3.35586i −0.538399 + 0.444495i
\(58\) 15.9178 5.79360i 2.09011 0.760736i
\(59\) −6.06369 + 2.20700i −0.789425 + 0.287327i −0.705097 0.709111i \(-0.749096\pi\)
−0.0843278 + 0.996438i \(0.526874\pi\)
\(60\) 25.0941 + 4.63162i 3.23963 + 0.597939i
\(61\) −11.1600 + 1.96782i −1.42890 + 0.251953i −0.833963 0.551821i \(-0.813933\pi\)
−0.594935 + 0.803774i \(0.702822\pi\)
\(62\) −5.79268 10.0332i −0.735671 1.27422i
\(63\) 7.85494 + 1.14011i 0.989630 + 0.143641i
\(64\) 13.9394 24.1437i 1.74242 3.01796i
\(65\) 1.89276 5.20030i 0.234767 0.645018i
\(66\) 0.581994 0.329848i 0.0716385 0.0406014i
\(67\) −1.37385 1.15280i −0.167843 0.140837i 0.554997 0.831852i \(-0.312719\pi\)
−0.722840 + 0.691015i \(0.757164\pi\)
\(68\) −3.76355 + 21.3441i −0.456397 + 2.58836i
\(69\) −1.15335 + 1.96134i −0.138848 + 0.236118i
\(70\) 19.5778 0.908274i 2.33999 0.108560i
\(71\) 6.03534 + 3.48450i 0.716263 + 0.413534i 0.813376 0.581739i \(-0.197627\pi\)
−0.0971130 + 0.995273i \(0.530961\pi\)
\(72\) −9.12566 26.3754i −1.07547 3.10837i
\(73\) 3.67285 + 2.12052i 0.429875 + 0.248188i 0.699293 0.714835i \(-0.253498\pi\)
−0.269418 + 0.963023i \(0.586831\pi\)
\(74\) −8.73722 + 24.0053i −1.01568 + 2.79056i
\(75\) 2.69643 3.16187i 0.311357 0.365101i
\(76\) 16.2325 + 2.86223i 1.86200 + 0.328320i
\(77\) 0.275960 0.254258i 0.0314485 0.0289754i
\(78\) −9.46347 + 1.59087i −1.07153 + 0.180131i
\(79\) −11.4740 + 9.62781i −1.29092 + 1.08321i −0.299284 + 0.954164i \(0.596748\pi\)
−0.991638 + 0.129049i \(0.958808\pi\)
\(80\) −19.7246 34.1640i −2.20528 3.81965i
\(81\) −8.35464 3.34663i −0.928294 0.371848i
\(82\) 0.761604 + 0.439712i 0.0841050 + 0.0485581i
\(83\) −0.966634 0.351826i −0.106102 0.0386179i 0.288424 0.957503i \(-0.406869\pi\)
−0.394526 + 0.918885i \(0.629091\pi\)
\(84\) −13.2256 21.0028i −1.44303 2.29160i
\(85\) 8.33835 + 6.99670i 0.904421 + 0.758899i
\(86\) −6.48894 + 7.73322i −0.699721 + 0.833895i
\(87\) −10.1531 + 3.60390i −1.08853 + 0.386379i
\(88\) −1.23985 0.451269i −0.132169 0.0481054i
\(89\) −5.17217 −0.548249 −0.274124 0.961694i \(-0.588388\pi\)
−0.274124 + 0.961694i \(0.588388\pi\)
\(90\) −21.8210 4.20791i −2.30013 0.443553i
\(91\) −4.96733 + 2.07342i −0.520718 + 0.217354i
\(92\) 7.00690 1.23551i 0.730520 0.128810i
\(93\) 3.63320 + 6.41053i 0.376745 + 0.664741i
\(94\) 11.6843 13.9249i 1.20515 1.43624i
\(95\) 5.32109 6.34143i 0.545932 0.650617i
\(96\) −18.3392 + 31.1868i −1.87174 + 3.18299i
\(97\) −7.25860 + 1.27989i −0.736999 + 0.129953i −0.529533 0.848289i \(-0.677633\pi\)
−0.207466 + 0.978242i \(0.566522\pi\)
\(98\) −13.5528 13.4058i −1.36904 1.35419i
\(99\) −0.371822 + 0.206828i −0.0373696 + 0.0207870i
\(100\) −12.9944 −1.29944
\(101\) 6.33569 + 2.30600i 0.630425 + 0.229456i 0.637416 0.770520i \(-0.280003\pi\)
−0.00699121 + 0.999976i \(0.502225\pi\)
\(102\) 3.42588 18.5614i 0.339213 1.83785i
\(103\) 7.37734 8.79197i 0.726911 0.866299i −0.268372 0.963315i \(-0.586486\pi\)
0.995283 + 0.0970166i \(0.0309300\pi\)
\(104\) 14.4989 + 12.1660i 1.42174 + 1.19298i
\(105\) −12.4561 + 0.478257i −1.21559 + 0.0466731i
\(106\) −19.5002 7.09751i −1.89403 0.689371i
\(107\) 15.4754 + 8.93470i 1.49606 + 0.863750i 0.999990 0.00453289i \(-0.00144287\pi\)
0.496069 + 0.868283i \(0.334776\pi\)
\(108\) 8.98949 + 26.6690i 0.865014 + 2.56622i
\(109\) −4.74241 8.21409i −0.454240 0.786768i 0.544404 0.838823i \(-0.316756\pi\)
−0.998644 + 0.0520558i \(0.983423\pi\)
\(110\) −0.804802 + 0.675309i −0.0767349 + 0.0643882i
\(111\) 5.67876 15.2230i 0.539004 1.44490i
\(112\) −11.4383 + 36.6257i −1.08082 + 3.46081i
\(113\) −1.54842 0.273029i −0.145663 0.0256844i 0.100341 0.994953i \(-0.468007\pi\)
−0.246004 + 0.969269i \(0.579118\pi\)
\(114\) −14.1162 2.60543i −1.32210 0.244021i
\(115\) 1.22215 3.35783i 0.113966 0.313120i
\(116\) 29.1763 + 16.8449i 2.70895 + 1.56401i
\(117\) 6.02684 0.963745i 0.557182 0.0890983i
\(118\) −15.2185 8.78640i −1.40098 0.808853i
\(119\) −0.490647 10.5759i −0.0449776 0.969489i
\(120\) 21.6118 + 38.1326i 1.97288 + 3.48101i
\(121\) 1.90664 10.8131i 0.173331 0.983007i
\(122\) −23.6406 19.8368i −2.14032 1.79594i
\(123\) −0.482147 0.283524i −0.0434737 0.0255645i
\(124\) 7.88069 21.6520i 0.707707 1.94441i
\(125\) 3.53731 6.12679i 0.316386 0.547997i
\(126\) 11.3715 + 18.3823i 1.01305 + 1.63762i
\(127\) 9.03739 + 15.6532i 0.801938 + 1.38900i 0.918339 + 0.395795i \(0.129531\pi\)
−0.116400 + 0.993202i \(0.537136\pi\)
\(128\) 33.6262 5.92921i 2.97217 0.524073i
\(129\) 4.16623 4.88538i 0.366816 0.430134i
\(130\) 14.1618 5.15448i 1.24207 0.452077i
\(131\) 5.15318 1.87560i 0.450235 0.163872i −0.106943 0.994265i \(-0.534106\pi\)
0.557178 + 0.830393i \(0.311884\pi\)
\(132\) 1.24657 + 0.465016i 0.108500 + 0.0404744i
\(133\) −8.04310 + 0.373144i −0.697425 + 0.0323557i
\(134\) 4.88401i 0.421914i
\(135\) 13.8568 + 2.78702i 1.19260 + 0.239869i
\(136\) −32.2400 + 18.6138i −2.76456 + 1.59612i
\(137\) −4.12294 + 0.726986i −0.352247 + 0.0621106i −0.346972 0.937875i \(-0.612790\pi\)
−0.00527469 + 0.999986i \(0.501679\pi\)
\(138\) −6.11056 + 1.02723i −0.520165 + 0.0874434i
\(139\) −7.34520 + 8.75367i −0.623012 + 0.742477i −0.981585 0.191025i \(-0.938819\pi\)
0.358573 + 0.933502i \(0.383263\pi\)
\(140\) 26.4123 + 28.6666i 2.23224 + 2.42277i
\(141\) −7.50194 + 8.79688i −0.631777 + 0.740831i
\(142\) 3.29557 + 18.6901i 0.276558 + 1.56844i
\(143\) 0.144270 0.249882i 0.0120644 0.0208962i
\(144\) 22.3527 37.3268i 1.86273 3.11056i
\(145\) 14.6531 8.45996i 1.21687 0.702561i
\(146\) 2.00555 + 11.3740i 0.165980 + 0.941322i
\(147\) 8.55150 + 8.59488i 0.705315 + 0.708894i
\(148\) −47.7431 + 17.3771i −3.92446 + 1.42839i
\(149\) 22.8439 + 4.02799i 1.87144 + 0.329986i 0.989860 0.142044i \(-0.0453674\pi\)
0.881583 + 0.472030i \(0.156478\pi\)
\(150\) 11.3162 + 0.0903414i 0.923960 + 0.00737635i
\(151\) 0.176411 0.148026i 0.0143561 0.0120462i −0.635581 0.772034i \(-0.719240\pi\)
0.649937 + 0.759988i \(0.274795\pi\)
\(152\) 14.1560 + 24.5190i 1.14821 + 1.98875i
\(153\) −2.27310 + 11.7876i −0.183770 + 0.952975i
\(154\) 1.01348 + 0.130617i 0.0816686 + 0.0105254i
\(155\) −7.43839 8.86472i −0.597466 0.712032i
\(156\) −14.5220 12.3843i −1.16269 0.991536i
\(157\) −3.36532 9.24614i −0.268582 0.737922i −0.998519 0.0544079i \(-0.982673\pi\)
0.729937 0.683514i \(-0.239549\pi\)
\(158\) −40.1699 7.08305i −3.19575 0.563497i
\(159\) 12.3661 + 4.61302i 0.980696 + 0.365837i
\(160\) 19.4332 53.3921i 1.53633 4.22102i
\(161\) −3.20740 + 1.33881i −0.252779 + 0.105513i
\(162\) −7.64310 23.2872i −0.600499 1.82961i
\(163\) −0.272626 + 0.472203i −0.0213537 + 0.0369858i −0.876505 0.481393i \(-0.840131\pi\)
0.855151 + 0.518379i \(0.173464\pi\)
\(164\) 0.303719 + 1.72247i 0.0237164 + 0.134503i
\(165\) 0.515283 0.425410i 0.0401147 0.0331181i
\(166\) −0.958116 2.63240i −0.0743642 0.204314i
\(167\) −2.22249 + 12.6044i −0.171981 + 0.975354i 0.769590 + 0.638539i \(0.220461\pi\)
−0.941571 + 0.336815i \(0.890650\pi\)
\(168\) 13.0334 40.5913i 1.00555 3.13169i
\(169\) 6.78787 5.69570i 0.522144 0.438131i
\(170\) 29.6426i 2.27348i
\(171\) 8.96467 + 1.72873i 0.685545 + 0.132199i
\(172\) −20.0775 −1.53089
\(173\) 3.16024 + 1.15023i 0.240269 + 0.0874506i 0.459348 0.888256i \(-0.348083\pi\)
−0.219079 + 0.975707i \(0.570305\pi\)
\(174\) −25.2911 14.8723i −1.91731 1.12746i
\(175\) 6.19339 1.39077i 0.468176 0.105132i
\(176\) −0.703479 1.93279i −0.0530268 0.145690i
\(177\) 9.63434 + 5.66542i 0.724161 + 0.425839i
\(178\) −9.05378 10.7899i −0.678610 0.808736i
\(179\) 1.33384i 0.0996962i −0.998757 0.0498481i \(-0.984126\pi\)
0.998757 0.0498481i \(-0.0158737\pi\)
\(180\) −21.4852 38.6248i −1.60141 2.87892i
\(181\) 2.64678 1.52812i 0.196733 0.113584i −0.398398 0.917213i \(-0.630434\pi\)
0.595131 + 0.803629i \(0.297100\pi\)
\(182\) −13.0207 6.73308i −0.965157 0.499089i
\(183\) 14.9347 + 12.7362i 1.10400 + 0.941490i
\(184\) 9.36194 + 7.85560i 0.690171 + 0.579123i
\(185\) −4.43092 + 25.1290i −0.325768 + 1.84752i
\(186\) −7.01344 + 18.8009i −0.514250 + 1.37855i
\(187\) 0.364800 + 0.434752i 0.0266769 + 0.0317922i
\(188\) 36.1526 2.63670
\(189\) −7.13893 11.7489i −0.519281 0.854604i
\(190\) 22.5436 1.63548
\(191\) −9.72666 11.5918i −0.703797 0.838752i 0.289154 0.957283i \(-0.406626\pi\)
−0.992950 + 0.118530i \(0.962182\pi\)
\(192\) −47.6192 + 8.00513i −3.43662 + 0.577720i
\(193\) 0.829438 4.70398i 0.0597042 0.338600i −0.940294 0.340363i \(-0.889450\pi\)
0.999998 + 0.00176318i \(0.000561238\pi\)
\(194\) −15.3761 12.9021i −1.10394 0.926314i
\(195\) −9.03307 + 3.20634i −0.646872 + 0.229611i
\(196\) 3.09835 37.7864i 0.221310 2.69903i
\(197\) 7.02585 4.05638i 0.500571 0.289005i −0.228378 0.973572i \(-0.573342\pi\)
0.728949 + 0.684568i \(0.240009\pi\)
\(198\) −1.08234 0.413626i −0.0769186 0.0293951i
\(199\) 5.04150i 0.357382i −0.983905 0.178691i \(-0.942814\pi\)
0.983905 0.178691i \(-0.0571863\pi\)
\(200\) −14.3470 17.0980i −1.01448 1.20901i
\(201\) −0.0247983 + 3.10623i −0.00174914 + 0.219096i
\(202\) 6.27986 + 17.2538i 0.441850 + 1.21397i
\(203\) −15.7089 4.90596i −1.10255 0.344331i
\(204\) 32.6589 18.5096i 2.28658 1.29593i
\(205\) 0.825441 + 0.300436i 0.0576513 + 0.0209833i
\(206\) 31.2552 2.17765
\(207\) 3.89153 0.622290i 0.270480 0.0432521i
\(208\) 29.5051i 2.04581i
\(209\) 0.330635 0.277436i 0.0228705 0.0191906i
\(210\) −22.8019 25.1480i −1.57348 1.73538i
\(211\) −0.533965 + 3.02827i −0.0367597 + 0.208474i −0.997656 0.0684355i \(-0.978199\pi\)
0.960896 + 0.276910i \(0.0893104\pi\)
\(212\) −14.1159 38.7831i −0.969484 2.66364i
\(213\) −2.00109 11.9036i −0.137112 0.815624i
\(214\) 8.45026 + 47.9238i 0.577648 + 3.27600i
\(215\) −5.04171 + 8.73250i −0.343842 + 0.595552i
\(216\) −25.1659 + 41.2734i −1.71232 + 2.80830i
\(217\) −1.43872 + 11.1633i −0.0976666 + 0.757812i
\(218\) 8.83427 24.2720i 0.598332 1.64390i
\(219\) −1.21778 7.24406i −0.0822898 0.489508i
\(220\) −2.05774 0.362834i −0.138732 0.0244623i
\(221\) −2.78444 7.65017i −0.187301 0.514606i
\(222\) 41.6979 14.8009i 2.79858 0.993372i
\(223\) −11.4325 13.6247i −0.765576 0.912378i 0.232611 0.972570i \(-0.425273\pi\)
−0.998187 + 0.0601917i \(0.980829\pi\)
\(224\) −51.0002 + 21.2881i −3.40759 + 1.42237i
\(225\) −7.19661 0.114914i −0.479774 0.00766095i
\(226\) −2.14091 3.70816i −0.142411 0.246663i
\(227\) −5.54136 + 4.64975i −0.367793 + 0.308615i −0.807888 0.589336i \(-0.799389\pi\)
0.440095 + 0.897951i \(0.354945\pi\)
\(228\) −14.0768 24.8376i −0.932259 1.64491i
\(229\) 14.9612 + 2.63807i 0.988665 + 0.174328i 0.644519 0.764588i \(-0.277057\pi\)
0.344146 + 0.938916i \(0.388169\pi\)
\(230\) 9.14427 3.32824i 0.602956 0.219458i
\(231\) −0.643910 0.0882183i −0.0423662 0.00580434i
\(232\) 10.0486 + 56.9886i 0.659725 + 3.74149i
\(233\) −10.7311 + 6.19561i −0.703019 + 0.405888i −0.808471 0.588536i \(-0.799704\pi\)
0.105452 + 0.994424i \(0.466371\pi\)
\(234\) 12.5604 + 10.8858i 0.821098 + 0.711629i
\(235\) 9.07838 15.7242i 0.592208 1.02574i
\(236\) −6.06895 34.4187i −0.395055 2.24047i
\(237\) 25.5121 + 4.70877i 1.65719 + 0.305868i
\(238\) 21.2039 19.5364i 1.37445 1.26636i
\(239\) 5.11974 6.10146i 0.331168 0.394671i −0.574607 0.818430i \(-0.694845\pi\)
0.905775 + 0.423759i \(0.139290\pi\)
\(240\) −23.8814 + 64.0187i −1.54154 + 4.13239i
\(241\) 0.540011 0.0952186i 0.0347852 0.00613357i −0.156229 0.987721i \(-0.549934\pi\)
0.191014 + 0.981587i \(0.438823\pi\)
\(242\) 25.8952 14.9506i 1.66460 0.961059i
\(243\) 4.74277 + 14.8494i 0.304249 + 0.952593i
\(244\) 61.3772i 3.92927i
\(245\) −15.6568 10.8363i −1.00028 0.692303i
\(246\) −0.252518 1.50213i −0.0161000 0.0957723i
\(247\) −5.81806 + 2.11760i −0.370195 + 0.134740i
\(248\) 37.1908 13.5363i 2.36162 0.859559i
\(249\) 0.595995 + 1.67907i 0.0377697 + 0.106407i
\(250\) 18.9734 3.34551i 1.19998 0.211589i
\(251\) 8.86627 + 15.3568i 0.559634 + 0.969314i 0.997527 + 0.0702870i \(0.0223915\pi\)
−0.437893 + 0.899027i \(0.644275\pi\)
\(252\) −13.4689 + 40.8251i −0.848461 + 2.57174i
\(253\) 0.0931548 0.161349i 0.00585659 0.0101439i
\(254\) −16.8351 + 46.2539i −1.05633 + 2.90223i
\(255\) 0.150508 18.8527i 0.00942520 1.18060i
\(256\) 28.5185 + 23.9299i 1.78241 + 1.49562i
\(257\) −4.85836 + 27.5531i −0.303056 + 1.71872i 0.329460 + 0.944169i \(0.393133\pi\)
−0.632516 + 0.774547i \(0.717978\pi\)
\(258\) 17.4845 + 0.139586i 1.08854 + 0.00869024i
\(259\) 20.8955 13.3922i 1.29838 0.832148i
\(260\) 25.9577 + 14.9867i 1.60983 + 0.929435i
\(261\) 16.0096 + 9.58717i 0.990970 + 0.593431i
\(262\) 12.9333 + 7.46705i 0.799023 + 0.461316i
\(263\) 3.81588 10.4841i 0.235297 0.646475i −0.764700 0.644386i \(-0.777113\pi\)
0.999998 0.00208847i \(-0.000664780\pi\)
\(264\) 0.764452 + 2.15366i 0.0470488 + 0.132548i
\(265\) −20.4130 3.59937i −1.25396 0.221107i
\(266\) −14.8577 16.1259i −0.910986 0.988741i
\(267\) 5.70342 + 6.90833i 0.349043 + 0.422783i
\(268\) 7.44103 6.24377i 0.454533 0.381399i
\(269\) 2.38895 + 4.13779i 0.145657 + 0.252286i 0.929618 0.368525i \(-0.120137\pi\)
−0.783961 + 0.620810i \(0.786804\pi\)
\(270\) 18.4419 + 33.7858i 1.12234 + 2.05614i
\(271\) −18.5269 10.6965i −1.12543 0.649766i −0.182647 0.983179i \(-0.558467\pi\)
−0.942781 + 0.333412i \(0.891800\pi\)
\(272\) −54.5339 19.8487i −3.30660 1.20350i
\(273\) 8.24696 + 4.34834i 0.499129 + 0.263174i
\(274\) −8.73373 7.32847i −0.527624 0.442729i
\(275\) −0.218717 + 0.260657i −0.0131892 + 0.0157182i
\(276\) −9.37683 7.99652i −0.564419 0.481334i
\(277\) −11.6375 4.23571i −0.699231 0.254499i −0.0321485 0.999483i \(-0.510235\pi\)
−0.667083 + 0.744984i \(0.732457\pi\)
\(278\) −31.1191 −1.86640
\(279\) 4.55600 11.9217i 0.272761 0.713736i
\(280\) −8.55811 + 66.4039i −0.511445 + 3.96839i
\(281\) −15.3782 + 2.71159i −0.917385 + 0.161760i −0.612355 0.790583i \(-0.709778\pi\)
−0.305030 + 0.952343i \(0.598667\pi\)
\(282\) −31.4835 0.251346i −1.87482 0.0149674i
\(283\) −14.6993 + 17.5180i −0.873785 + 1.04134i 0.125005 + 0.992156i \(0.460105\pi\)
−0.998790 + 0.0491805i \(0.984339\pi\)
\(284\) −24.2622 + 28.9146i −1.43970 + 1.71577i
\(285\) −14.3377 0.114464i −0.849293 0.00678025i
\(286\) 0.773831 0.136447i 0.0457576 0.00806830i
\(287\) −0.329113 0.788461i −0.0194269 0.0465414i
\(288\) 61.8783 9.89489i 3.64621 0.583062i
\(289\) −0.987154 −0.0580679
\(290\) 43.2986 + 15.7594i 2.54258 + 0.925424i
\(291\) 9.71366 + 8.28377i 0.569425 + 0.485603i
\(292\) −14.7650 + 17.5962i −0.864056 + 1.02974i
\(293\) 25.2580 + 21.1939i 1.47559 + 1.23816i 0.910749 + 0.412960i \(0.135505\pi\)
0.564837 + 0.825203i \(0.308939\pi\)
\(294\) −2.96090 + 32.8848i −0.172683 + 1.91788i
\(295\) −16.4941 6.00336i −0.960323 0.349529i
\(296\) −75.5775 43.6347i −4.39285 2.53622i
\(297\) 0.686268 + 0.268562i 0.0398213 + 0.0155835i
\(298\) 31.5848 + 54.7065i 1.82966 + 3.16906i
\(299\) −2.04733 + 1.71791i −0.118400 + 0.0993493i
\(300\) 14.3290 + 17.3562i 0.827288 + 1.00206i
\(301\) 9.56936 2.14887i 0.551569 0.123859i
\(302\) 0.617608 + 0.108901i 0.0355393 + 0.00626654i
\(303\) −3.90638 11.0053i −0.224416 0.632237i
\(304\) −15.0952 + 41.4738i −0.865770 + 2.37868i
\(305\) −26.6954 15.4126i −1.52858 0.882523i
\(306\) −28.5697 + 15.8920i −1.63322 + 0.908487i
\(307\) 13.5558 + 7.82647i 0.773672 + 0.446680i 0.834183 0.551488i \(-0.185940\pi\)
−0.0605107 + 0.998168i \(0.519273\pi\)
\(308\) 1.09664 + 1.71107i 0.0624870 + 0.0974973i
\(309\) −19.8783 0.158696i −1.13084 0.00902793i
\(310\) 5.47232 31.0351i 0.310807 1.76267i
\(311\) −20.3810 17.1017i −1.15570 0.969749i −0.155864 0.987778i \(-0.549816\pi\)
−0.999837 + 0.0180296i \(0.994261\pi\)
\(312\) 0.261708 32.7815i 0.0148163 1.85588i
\(313\) 10.6716 29.3199i 0.603193 1.65726i −0.141569 0.989928i \(-0.545215\pi\)
0.744762 0.667330i \(-0.232563\pi\)
\(314\) 13.3978 23.2057i 0.756084 1.30958i
\(315\) 14.3743 + 16.1099i 0.809899 + 0.907689i
\(316\) −40.5623 70.2560i −2.28181 3.95221i
\(317\) 12.1904 2.14949i 0.684679 0.120727i 0.179521 0.983754i \(-0.442545\pi\)
0.505158 + 0.863027i \(0.331434\pi\)
\(318\) 12.0232 + 33.8725i 0.674229 + 1.89947i
\(319\) 0.828984 0.301725i 0.0464142 0.0168934i
\(320\) 71.2608 25.9368i 3.98360 1.44991i
\(321\) −5.13103 30.5224i −0.286386 1.70360i
\(322\) −8.40745 4.34754i −0.468529 0.242279i
\(323\) 12.1780i 0.677602i
\(324\) 25.7082 41.4152i 1.42823 2.30085i
\(325\) 4.22711 2.44053i 0.234478 0.135376i
\(326\) −1.46231 + 0.257845i −0.0809898 + 0.0142807i
\(327\) −5.74183 + 15.3921i −0.317524 + 0.851185i
\(328\) −1.93111 + 2.30140i −0.106627 + 0.127074i
\(329\) −17.2311 + 3.86937i −0.949982 + 0.213325i
\(330\) 1.78946 + 0.330281i 0.0985065 + 0.0181814i
\(331\) −3.30152 18.7238i −0.181468 1.02916i −0.930410 0.366520i \(-0.880549\pi\)
0.748942 0.662635i \(-0.230562\pi\)
\(332\) 2.78573 4.82503i 0.152887 0.264808i
\(333\) −26.5950 + 9.20165i −1.45740 + 0.504247i
\(334\) −30.1849 + 17.4273i −1.65164 + 0.953577i
\(335\) −0.847127 4.80430i −0.0462835 0.262487i
\(336\) 61.5332 25.1098i 3.35691 1.36985i
\(337\) 22.8085 8.30162i 1.24246 0.452218i 0.364612 0.931159i \(-0.381201\pi\)
0.877847 + 0.478941i \(0.158979\pi\)
\(338\) 23.7641 + 4.19025i 1.29260 + 0.227919i
\(339\) 1.34279 + 2.36926i 0.0729303 + 0.128681i
\(340\) −45.1619 + 37.8954i −2.44925 + 2.05517i
\(341\) −0.301678 0.522521i −0.0163368 0.0282961i
\(342\) 12.0861 + 21.7277i 0.653542 + 1.17490i
\(343\) 2.56749 + 18.3414i 0.138632 + 0.990344i
\(344\) −22.1674 26.4180i −1.19518 1.42437i
\(345\) −5.83265 + 2.07033i −0.314019 + 0.111463i
\(346\) 3.13239 + 8.60617i 0.168398 + 0.462671i
\(347\) 30.0193 + 5.29321i 1.61152 + 0.284154i 0.905598 0.424137i \(-0.139422\pi\)
0.705921 + 0.708291i \(0.250534\pi\)
\(348\) −9.67373 57.5451i −0.518566 3.08474i
\(349\) −3.07591 + 8.45099i −0.164650 + 0.452371i −0.994390 0.105779i \(-0.966266\pi\)
0.829740 + 0.558150i \(0.188489\pi\)
\(350\) 13.7428 + 10.4858i 0.734581 + 0.560488i
\(351\) −7.93312 6.98716i −0.423439 0.372947i
\(352\) 1.48123 2.56557i 0.0789500 0.136745i
\(353\) 3.11622 + 17.6729i 0.165860 + 0.940636i 0.948174 + 0.317752i \(0.102928\pi\)
−0.782314 + 0.622884i \(0.785961\pi\)
\(354\) 5.04587 + 30.0158i 0.268185 + 1.59532i
\(355\) 6.48357 + 17.8135i 0.344112 + 0.945440i
\(356\) 4.86447 27.5878i 0.257816 1.46215i
\(357\) −13.5849 + 12.3175i −0.718988 + 0.651911i
\(358\) 2.78259 2.33487i 0.147064 0.123402i
\(359\) 27.0082i 1.42544i −0.701450 0.712719i \(-0.747464\pi\)
0.701450 0.712719i \(-0.252536\pi\)
\(360\) 27.1011 70.9157i 1.42835 3.73758i
\(361\) 9.73847 0.512551
\(362\) 7.82100 + 2.84661i 0.411063 + 0.149615i
\(363\) −16.5452 + 9.37708i −0.868399 + 0.492169i
\(364\) −6.38759 28.4453i −0.334801 1.49094i
\(365\) 3.94563 + 10.8405i 0.206524 + 0.567419i
\(366\) −0.426716 + 53.4504i −0.0223048 + 2.79390i
\(367\) 10.3302 + 12.3111i 0.539232 + 0.642632i 0.965015 0.262193i \(-0.0844458\pi\)
−0.425783 + 0.904825i \(0.640001\pi\)
\(368\) 19.0514i 0.993125i
\(369\) 0.152975 + 0.956636i 0.00796354 + 0.0498005i
\(370\) −60.1789 + 34.7443i −3.12855 + 1.80627i
\(371\) 10.8789 + 16.9741i 0.564802 + 0.881250i
\(372\) −37.6102 + 13.3499i −1.95000 + 0.692161i
\(373\) −15.0090 12.5940i −0.777136 0.652095i 0.165390 0.986228i \(-0.447112\pi\)
−0.942526 + 0.334134i \(0.891556\pi\)
\(374\) −0.268379 + 1.52205i −0.0138775 + 0.0787034i
\(375\) −12.0840 + 2.03141i −0.624017 + 0.104902i
\(376\) 39.9158 + 47.5698i 2.05850 + 2.45322i
\(377\) −12.6549 −0.651759
\(378\) 12.0132 35.4590i 0.617894 1.82381i
\(379\) 4.00603 0.205776 0.102888 0.994693i \(-0.467192\pi\)
0.102888 + 0.994693i \(0.467192\pi\)
\(380\) 28.8200 + 34.3463i 1.47843 + 1.76193i
\(381\) 10.9419 29.3320i 0.560572 1.50272i
\(382\) 7.15577 40.5824i 0.366121 2.07638i
\(383\) −16.2280 13.6169i −0.829211 0.695791i 0.125899 0.992043i \(-0.459819\pi\)
−0.955110 + 0.296253i \(0.904263\pi\)
\(384\) −44.9996 38.3754i −2.29637 1.95834i
\(385\) 1.01959 0.0473021i 0.0519633 0.00241074i
\(386\) 11.2651 6.50390i 0.573377 0.331040i
\(387\) −11.1194 0.177553i −0.565232 0.00902553i
\(388\) 39.9203i 2.02665i
\(389\) 11.4973 + 13.7019i 0.582936 + 0.694716i 0.974232 0.225549i \(-0.0724175\pi\)
−0.391296 + 0.920265i \(0.627973\pi\)
\(390\) −22.5011 13.2316i −1.13939 0.670010i
\(391\) −1.79791 4.93971i −0.0909242 0.249812i
\(392\) 53.1404 37.6428i 2.68400 1.90125i
\(393\) −8.18767 4.81471i −0.413013 0.242870i
\(394\) 20.7608 + 7.55631i 1.04591 + 0.380681i
\(395\) −40.7429 −2.05000
\(396\) −0.753495 2.17778i −0.0378645 0.109438i
\(397\) 16.1300i 0.809544i −0.914418 0.404772i \(-0.867351\pi\)
0.914418 0.404772i \(-0.132649\pi\)
\(398\) 10.5173 8.82505i 0.527184 0.442360i
\(399\) 9.36763 + 10.3315i 0.468968 + 0.517221i
\(400\) 6.04197 34.2657i 0.302098 1.71328i
\(401\) −1.01818 2.79743i −0.0508456 0.139697i 0.911670 0.410923i \(-0.134793\pi\)
−0.962516 + 0.271225i \(0.912571\pi\)
\(402\) −6.52344 + 5.38566i −0.325360 + 0.268612i
\(403\) 1.50294 + 8.52358i 0.0748667 + 0.424590i
\(404\) −18.2588 + 31.6251i −0.908407 + 1.57341i
\(405\) −11.5575 21.5814i −0.574296 1.07239i
\(406\) −17.2637 41.3589i −0.856781 2.05261i
\(407\) −0.455027 + 1.25018i −0.0225548 + 0.0619689i
\(408\) 60.4134 + 22.5365i 2.99091 + 1.11572i
\(409\) −22.7127 4.00487i −1.12307 0.198028i −0.418883 0.908040i \(-0.637578\pi\)
−0.704189 + 0.710012i \(0.748689\pi\)
\(410\) 0.818166 + 2.24789i 0.0404064 + 0.111016i
\(411\) 5.51744 + 4.70525i 0.272155 + 0.232093i
\(412\) 39.9570 + 47.6189i 1.96854 + 2.34601i
\(413\) 6.57639 + 15.7552i 0.323603 + 0.775261i
\(414\) 8.11023 + 7.02898i 0.398596 + 0.345455i
\(415\) −1.39906 2.42325i −0.0686774 0.118953i
\(416\) −32.5541 + 27.3161i −1.59609 + 1.33928i
\(417\) 19.7917 + 0.158005i 0.969204 + 0.00773755i
\(418\) 1.15754 + 0.204106i 0.0566172 + 0.00998314i
\(419\) −7.21684 + 2.62672i −0.352566 + 0.128323i −0.512231 0.858848i \(-0.671181\pi\)
0.159665 + 0.987171i \(0.448959\pi\)
\(420\) 9.16409 66.8892i 0.447162 3.26386i
\(421\) 6.15920 + 34.9305i 0.300181 + 1.70241i 0.645364 + 0.763875i \(0.276706\pi\)
−0.345183 + 0.938535i \(0.612183\pi\)
\(422\) −7.25209 + 4.18700i −0.353026 + 0.203820i
\(423\) 20.0222 + 0.319712i 0.973515 + 0.0155449i
\(424\) 35.4458 61.3939i 1.72140 2.98155i
\(425\) 1.66712 + 9.45470i 0.0808671 + 0.458620i
\(426\) 21.3298 25.0117i 1.03343 1.21182i
\(427\) 6.56912 + 29.2537i 0.317902 + 1.41569i
\(428\) −62.2114 + 74.1407i −3.00710 + 3.58373i
\(429\) −0.492849 + 0.0828514i −0.0237950 + 0.00400010i
\(430\) −27.0427 + 4.76835i −1.30411 + 0.229950i
\(431\) −12.6881 + 7.32548i −0.611164 + 0.352856i −0.773421 0.633893i \(-0.781456\pi\)
0.162257 + 0.986749i \(0.448123\pi\)
\(432\) −74.5050 + 11.3048i −3.58462 + 0.543901i
\(433\) 20.7962i 0.999403i 0.866198 + 0.499701i \(0.166557\pi\)
−0.866198 + 0.499701i \(0.833443\pi\)
\(434\) −25.8066 + 16.5397i −1.23876 + 0.793932i
\(435\) −27.4579 10.2428i −1.31650 0.491106i
\(436\) 48.2734 17.5701i 2.31187 0.841454i
\(437\) −3.75672 + 1.36733i −0.179708 + 0.0654085i
\(438\) 12.9805 15.2211i 0.620230 0.727290i
\(439\) −25.8246 + 4.55358i −1.23254 + 0.217331i −0.751717 0.659486i \(-0.770774\pi\)
−0.480826 + 0.876816i \(0.659663\pi\)
\(440\) −1.79451 3.10818i −0.0855498 0.148177i
\(441\) 2.05010 20.8997i 0.0976240 0.995223i
\(442\) 11.0852 19.2002i 0.527272 0.913261i
\(443\) −0.0493954 + 0.135713i −0.00234684 + 0.00644790i −0.940861 0.338794i \(-0.889981\pi\)
0.938514 + 0.345242i \(0.112203\pi\)
\(444\) 75.8570 + 44.6072i 3.60001 + 2.11697i
\(445\) −10.7775 9.04340i −0.510903 0.428698i
\(446\) 8.41073 47.6996i 0.398260 2.25864i
\(447\) −19.8102 34.9537i −0.936988 1.65325i
\(448\) −65.5188 33.8802i −3.09547 1.60069i
\(449\) 15.6193 + 9.01783i 0.737122 + 0.425578i 0.821022 0.570897i \(-0.193404\pi\)
−0.0838999 + 0.996474i \(0.526738\pi\)
\(450\) −12.3578 15.2143i −0.582552 0.717209i
\(451\) 0.0396636 + 0.0228998i 0.00186769 + 0.00107831i
\(452\) 2.91261 8.00233i 0.136998 0.376398i
\(453\) −0.392245 0.0723968i −0.0184293 0.00340150i
\(454\) −19.4001 3.42076i −0.910492 0.160544i
\(455\) −13.9760 4.36476i −0.655205 0.204623i
\(456\) 17.1393 45.9452i 0.802621 2.15158i
\(457\) −14.9995 + 12.5861i −0.701647 + 0.588752i −0.922242 0.386614i \(-0.873645\pi\)
0.220595 + 0.975366i \(0.429200\pi\)
\(458\) 20.6860 + 35.8291i 0.966591 + 1.67418i
\(459\) 18.2510 9.96227i 0.851885 0.464999i
\(460\) 16.7609 + 9.67690i 0.781480 + 0.451188i
\(461\) 12.6847 + 4.61684i 0.590784 + 0.215028i 0.620074 0.784543i \(-0.287102\pi\)
−0.0292902 + 0.999571i \(0.509325\pi\)
\(462\) −0.943117 1.49771i −0.0438778 0.0696799i
\(463\) −6.46334 5.42339i −0.300377 0.252046i 0.480124 0.877200i \(-0.340592\pi\)
−0.780501 + 0.625154i \(0.785036\pi\)
\(464\) −57.9856 + 69.1045i −2.69191 + 3.20810i
\(465\) −3.63797 + 19.7105i −0.168707 + 0.914053i
\(466\) −31.7096 11.5413i −1.46892 0.534642i
\(467\) 13.9457 0.645328 0.322664 0.946514i \(-0.395422\pi\)
0.322664 + 0.946514i \(0.395422\pi\)
\(468\) −0.527783 + 33.0529i −0.0243968 + 1.52787i
\(469\) −2.87829 + 3.77232i −0.132907 + 0.174189i
\(470\) 48.6945 8.58616i 2.24611 0.396050i
\(471\) −8.63884 + 14.6908i −0.398057 + 0.676917i
\(472\) 38.5877 45.9870i 1.77614 2.11672i
\(473\) −0.337938 + 0.402739i −0.0155384 + 0.0185180i
\(474\) 34.8353 + 61.4645i 1.60004 + 2.82316i
\(475\) 7.19043 1.26787i 0.329920 0.0581737i
\(476\) 56.8720 + 7.32965i 2.60673 + 0.335954i
\(477\) −7.47478 21.6039i −0.342247 0.989176i
\(478\) 21.6905 0.992102
\(479\) −20.5798 7.49045i −0.940317 0.342247i −0.174026 0.984741i \(-0.555678\pi\)
−0.766291 + 0.642494i \(0.777900\pi\)
\(480\) −92.7437 + 32.9199i −4.23315 + 1.50258i
\(481\) 12.2673 14.6196i 0.559343 0.666599i
\(482\) 1.14392 + 0.959862i 0.0521041 + 0.0437205i
\(483\) 5.32506 + 2.80772i 0.242298 + 0.127756i
\(484\) 55.8826 + 20.3396i 2.54012 + 0.924527i
\(485\) −17.3630 10.0245i −0.788411 0.455189i
\(486\) −22.6759 + 35.8878i −1.02860 + 1.62790i
\(487\) 4.85645 + 8.41162i 0.220067 + 0.381167i 0.954828 0.297159i \(-0.0960392\pi\)
−0.734761 + 0.678326i \(0.762706\pi\)
\(488\) 80.7604 67.7660i 3.65585 3.06762i
\(489\) 0.931337 0.156564i 0.0421165 0.00708008i
\(490\) −4.80097 51.6310i −0.216886 2.33245i
\(491\) 26.7581 + 4.71818i 1.20758 + 0.212928i 0.740971 0.671537i \(-0.234366\pi\)
0.466606 + 0.884465i \(0.345477\pi\)
\(492\) 1.96575 2.30506i 0.0886228 0.103920i
\(493\) 8.51319 23.3898i 0.383415 1.05342i
\(494\) −14.6020 8.43049i −0.656976 0.379306i
\(495\) −1.13642 0.219144i −0.0510782 0.00984981i
\(496\) 53.4314 + 30.8486i 2.39914 + 1.38514i
\(497\) 8.46921 16.3781i 0.379896 0.734658i
\(498\) −2.45950 + 4.18251i −0.110213 + 0.187423i
\(499\) −5.63790 + 31.9741i −0.252387 + 1.43136i 0.550305 + 0.834964i \(0.314512\pi\)
−0.802692 + 0.596394i \(0.796600\pi\)
\(500\) 29.3528 + 24.6299i 1.31270 + 1.10148i
\(501\) 19.2861 10.9305i 0.861638 0.488337i
\(502\) −16.5163 + 45.3781i −0.737158 + 2.02532i
\(503\) 12.9131 22.3661i 0.575764 0.997253i −0.420194 0.907434i \(-0.638038\pi\)
0.995958 0.0898189i \(-0.0286288\pi\)
\(504\) −68.5888 + 27.3522i −3.05519 + 1.21837i
\(505\) 9.17002 + 15.8829i 0.408060 + 0.706781i
\(506\) 0.499663 0.0881040i 0.0222127 0.00391670i
\(507\) −15.0927 2.78566i −0.670289 0.123715i
\(508\) −91.9923 + 33.4824i −4.08150 + 1.48554i
\(509\) 27.4413 9.98782i 1.21631 0.442702i 0.347425 0.937708i \(-0.387056\pi\)
0.868890 + 0.495006i \(0.164834\pi\)
\(510\) 39.5928 32.6873i 1.75320 1.44742i
\(511\) 5.15401 9.96702i 0.228000 0.440915i
\(512\) 33.0926i 1.46250i
\(513\) −7.57644 13.8802i −0.334508 0.612824i
\(514\) −65.9842 + 38.0960i −2.91044 + 1.68034i
\(515\) 30.7451 5.42119i 1.35479 0.238886i
\(516\) 22.1397 + 26.8170i 0.974646 + 1.18055i
\(517\) 0.608510 0.725194i 0.0267623 0.0318940i
\(518\) 64.5152 + 20.1483i 2.83463 + 0.885267i
\(519\) −1.94850 5.48943i −0.0855297 0.240959i
\(520\) 8.94012 + 50.7019i 0.392050 + 2.22343i
\(521\) −1.43518 + 2.48580i −0.0628763 + 0.108905i −0.895750 0.444558i \(-0.853361\pi\)
0.832874 + 0.553463i \(0.186694\pi\)
\(522\) 8.02431 + 50.1805i 0.351214 + 2.19634i
\(523\) 6.72356 3.88185i 0.294001 0.169742i −0.345744 0.938329i \(-0.612373\pi\)
0.639745 + 0.768587i \(0.279040\pi\)
\(524\) 5.15765 + 29.2505i 0.225313 + 1.27781i
\(525\) −8.68714 6.73873i −0.379138 0.294102i
\(526\) 28.5509 10.3917i 1.24488 0.453098i
\(527\) −16.7651 2.95613i −0.730298 0.128771i
\(528\) −1.80585 + 3.07094i −0.0785894 + 0.133645i
\(529\) 16.2971 13.6749i 0.708568 0.594559i
\(530\) −28.2238 48.8851i −1.22596 2.12343i
\(531\) −3.05676 19.1157i −0.132652 0.829549i
\(532\) 5.57430 43.2520i 0.241677 1.87521i
\(533\) −0.422306 0.503284i −0.0182921 0.0217997i
\(534\) −4.42803 + 23.9910i −0.191620 + 1.03819i
\(535\) 16.6247 + 45.6759i 0.718748 + 1.97474i
\(536\) 16.4312 + 2.89726i 0.709718 + 0.125142i
\(537\) −1.78158 + 1.47085i −0.0768809 + 0.0634718i
\(538\) −4.45020 + 12.2268i −0.191862 + 0.527136i
\(539\) −0.705817 0.698161i −0.0304017 0.0300719i
\(540\) −27.8981 + 71.2893i −1.20054 + 3.06780i
\(541\) 0.0411054 0.0711966i 0.00176726 0.00306098i −0.865140 0.501530i \(-0.832771\pi\)
0.866908 + 0.498469i \(0.166104\pi\)
\(542\) −10.1165 57.3738i −0.434543 2.46441i
\(543\) −4.95970 1.85015i −0.212841 0.0793977i
\(544\) −28.5881 78.5453i −1.22571 3.36760i
\(545\) 4.48013 25.4081i 0.191908 1.08836i
\(546\) 5.36488 + 24.8160i 0.229596 + 1.06203i
\(547\) 0.989409 0.830213i 0.0423041 0.0354973i −0.621390 0.783501i \(-0.713432\pi\)
0.663695 + 0.748004i \(0.268987\pi\)
\(548\) 22.6751i 0.968631i
\(549\) 0.542783 33.9923i 0.0231654 1.45076i
\(550\) −0.926629 −0.0395116
\(551\) −17.7883 6.47440i −0.757806 0.275819i
\(552\) 0.168985 21.1670i 0.00719246 0.900926i
\(553\) 26.8523 + 29.1442i 1.14187 + 1.23934i
\(554\) −11.5350 31.6921i −0.490074 1.34647i
\(555\) 38.4501 21.7918i 1.63212 0.925010i
\(556\) −39.7829 47.4114i −1.68717 2.01069i
\(557\) 40.7044i 1.72470i 0.506313 + 0.862350i \(0.331008\pi\)
−0.506313 + 0.862350i \(0.668992\pi\)
\(558\) 32.8457 11.3643i 1.39047 0.481090i
\(559\) 6.53128 3.77084i 0.276244 0.159489i
\(560\) −87.8738 + 56.3192i −3.71335 + 2.37992i
\(561\) 0.178417 0.966661i 0.00753277 0.0408125i
\(562\) −32.5760 27.3345i −1.37413 1.15304i
\(563\) 6.08532 34.5115i 0.256465 1.45449i −0.535817 0.844334i \(-0.679996\pi\)
0.792283 0.610154i \(-0.208892\pi\)
\(564\) −39.8660 48.2881i −1.67866 2.03329i
\(565\) −2.74914 3.27630i −0.115657 0.137835i
\(566\) −62.2760 −2.61765
\(567\) −7.82045 + 22.4909i −0.328428 + 0.944529i
\(568\) −64.8337 −2.72036
\(569\) 3.89713 + 4.64442i 0.163376 + 0.194704i 0.841521 0.540224i \(-0.181660\pi\)
−0.678145 + 0.734928i \(0.737216\pi\)
\(570\) −24.8591 30.1109i −1.04123 1.26121i
\(571\) −1.34728 + 7.64081i −0.0563819 + 0.319758i −0.999934 0.0114657i \(-0.996350\pi\)
0.943552 + 0.331223i \(0.107461\pi\)
\(572\) 1.19716 + 1.00454i 0.0500557 + 0.0420017i
\(573\) −4.75712 + 25.7741i −0.198732 + 1.07673i
\(574\) 1.06874 2.06676i 0.0446082 0.0862650i
\(575\) 2.72945 1.57585i 0.113826 0.0657173i
\(576\) 63.2026 + 54.7764i 2.63344 + 2.28235i
\(577\) 28.1574i 1.17221i −0.810236 0.586104i \(-0.800661\pi\)
0.810236 0.586104i \(-0.199339\pi\)
\(578\) −1.72800 2.05934i −0.0718751 0.0856575i
\(579\) −7.19761 + 4.07928i −0.299122 + 0.169529i
\(580\) 31.3431 + 86.1146i 1.30145 + 3.57571i
\(581\) −0.811322 + 2.59786i −0.0336593 + 0.107778i
\(582\) −0.277540 + 34.7647i −0.0115044 + 1.44104i
\(583\) −1.01556 0.369632i −0.0420600 0.0153086i
\(584\) −39.4551 −1.63266
\(585\) 14.2435 + 8.52957i 0.588897 + 0.352654i
\(586\) 89.7913i 3.70924i
\(587\) −14.0329 + 11.7750i −0.579200 + 0.486006i −0.884684 0.466191i \(-0.845626\pi\)
0.305484 + 0.952197i \(0.401182\pi\)
\(588\) −53.8869 + 37.5292i −2.22226 + 1.54768i
\(589\) −2.24818 + 12.7501i −0.0926347 + 0.525357i
\(590\) −16.3487 44.9178i −0.673067 1.84924i
\(591\) −13.1655 4.91122i −0.541556 0.202021i
\(592\) −23.6237 133.977i −0.970928 5.50641i
\(593\) 10.2123 17.6882i 0.419367 0.726366i −0.576509 0.817091i \(-0.695585\pi\)
0.995876 + 0.0907255i \(0.0289186\pi\)
\(594\) 0.641041 + 1.90176i 0.0263022 + 0.0780304i
\(595\) 17.4693 22.8954i 0.716170 0.938619i
\(596\) −42.9697 + 118.058i −1.76011 + 4.83586i
\(597\) −6.73380 + 5.55933i −0.275596 + 0.227528i
\(598\) −7.16761 1.26384i −0.293105 0.0516824i
\(599\) −10.4791 28.7910i −0.428163 1.17637i −0.946926 0.321451i \(-0.895830\pi\)
0.518763 0.854918i \(-0.326393\pi\)
\(600\) −7.01682 + 38.0171i −0.286460 + 1.55204i
\(601\) −2.11771 2.52379i −0.0863832 0.102947i 0.721122 0.692809i \(-0.243627\pi\)
−0.807505 + 0.589861i \(0.799182\pi\)
\(602\) 21.2338 + 16.2015i 0.865426 + 0.660324i
\(603\) 4.17625 3.39216i 0.170070 0.138139i
\(604\) 0.623640 + 1.08018i 0.0253756 + 0.0439518i
\(605\) 22.8793 19.1980i 0.930177 0.780511i
\(606\) 16.1205 27.4138i 0.654852 1.11361i
\(607\) −43.0659 7.59367i −1.74799 0.308218i −0.793969 0.607959i \(-0.791989\pi\)
−0.954021 + 0.299741i \(0.903100\pi\)
\(608\) −59.7348 + 21.7417i −2.42256 + 0.881741i
\(609\) 10.7697 + 26.3919i 0.436410 + 1.06945i
\(610\) −14.5769 82.6699i −0.590203 3.34721i
\(611\) −11.7606 + 6.78997i −0.475782 + 0.274693i
\(612\) −60.7362 23.2109i −2.45511 0.938244i
\(613\) 10.4406 18.0837i 0.421694 0.730395i −0.574412 0.818567i \(-0.694769\pi\)
0.996105 + 0.0881718i \(0.0281025\pi\)
\(614\) 7.40212 + 41.9795i 0.298725 + 1.69415i
\(615\) −0.508940 1.43381i −0.0205224 0.0578169i
\(616\) −1.04064 + 3.33215i −0.0419286 + 0.134256i
\(617\) 13.6109 16.2208i 0.547954 0.653026i −0.418997 0.907988i \(-0.637618\pi\)
0.966951 + 0.254961i \(0.0820627\pi\)
\(618\) −34.4655 41.7468i −1.38641 1.67930i
\(619\) 3.76408 0.663709i 0.151291 0.0266767i −0.0974896 0.995237i \(-0.531081\pi\)
0.248781 + 0.968560i \(0.419970\pi\)
\(620\) 54.2794 31.3382i 2.17991 1.25857i
\(621\) −5.12242 4.51160i −0.205555 0.181044i
\(622\) 72.4539i 2.90514i
\(623\) 0.634173 + 13.6696i 0.0254076 + 0.547660i
\(624\) 39.4092 32.5357i 1.57763 1.30247i
\(625\) 29.3558 10.6847i 1.17423 0.427386i
\(626\) 79.8459 29.0615i 3.19128 1.16153i
\(627\) −0.735159 0.135689i −0.0293594 0.00541888i
\(628\) 52.4830 9.25417i 2.09430 0.369282i
\(629\) 18.7688 + 32.5085i 0.748360 + 1.29620i
\(630\) −8.44560 + 58.1868i −0.336481 + 2.31822i
\(631\) −20.3234 + 35.2011i −0.809061 + 1.40133i 0.104454 + 0.994530i \(0.466690\pi\)
−0.913515 + 0.406805i \(0.866643\pi\)
\(632\) 47.6586 130.941i 1.89576 5.20856i
\(633\) 4.63358 2.62610i 0.184168 0.104378i
\(634\) 25.8232 + 21.6682i 1.02557 + 0.860554i
\(635\) −8.53758 + 48.4190i −0.338803 + 1.92145i
\(636\) −36.2358 + 61.6209i −1.43684 + 2.44343i
\(637\) 6.08892 + 12.8740i 0.241252 + 0.510086i
\(638\) 2.08056 + 1.20121i 0.0823703 + 0.0475565i
\(639\) −13.6928 + 15.7991i −0.541677 + 0.625003i
\(640\) 80.4357 + 46.4396i 3.17950 + 1.83569i
\(641\) −3.63686 + 9.99218i −0.143647 + 0.394667i −0.990563 0.137060i \(-0.956235\pi\)
0.846916 + 0.531727i \(0.178457\pi\)
\(642\) 54.6924 64.1330i 2.15854 2.53113i
\(643\) 41.6989 + 7.35263i 1.64444 + 0.289960i 0.917796 0.397052i \(-0.129967\pi\)
0.726646 + 0.687012i \(0.241078\pi\)
\(644\) −4.12446 18.3671i −0.162527 0.723766i
\(645\) 17.2233 2.89536i 0.678168 0.114005i
\(646\) 25.4050 21.3173i 0.999547 0.838720i
\(647\) 20.0622 + 34.7487i 0.788726 + 1.36611i 0.926748 + 0.375685i \(0.122592\pi\)
−0.138021 + 0.990429i \(0.544074\pi\)
\(648\) 82.8785 11.8992i 3.25578 0.467446i
\(649\) −0.792565 0.457588i −0.0311109 0.0179619i
\(650\) 12.4908 + 4.54627i 0.489928 + 0.178319i
\(651\) 16.4970 10.3882i 0.646568 0.407147i
\(652\) −2.26227 1.89827i −0.0885974 0.0743420i
\(653\) 14.3339 17.0825i 0.560929 0.668489i −0.408814 0.912618i \(-0.634057\pi\)
0.969743 + 0.244129i \(0.0785019\pi\)
\(654\) −42.1611 + 14.9653i −1.64863 + 0.585190i
\(655\) 14.0174 + 5.10191i 0.547704 + 0.199348i
\(656\) −4.68333 −0.182853
\(657\) −8.33284 + 9.61468i −0.325095 + 0.375104i
\(658\) −38.2348 29.1733i −1.49055 1.13729i
\(659\) −14.8769 + 2.62320i −0.579522 + 0.102185i −0.455723 0.890122i \(-0.650619\pi\)
−0.123800 + 0.992307i \(0.539508\pi\)
\(660\) 1.78446 + 3.14856i 0.0694601 + 0.122558i
\(661\) −12.8484 + 15.3122i −0.499746 + 0.595575i −0.955668 0.294445i \(-0.904865\pi\)
0.455922 + 0.890020i \(0.349310\pi\)
\(662\) 33.2813 39.6632i 1.29352 1.54155i
\(663\) −7.14770 + 12.1550i −0.277594 + 0.472063i
\(664\) 9.42449 1.66179i 0.365741 0.0644900i
\(665\) −17.4122 13.2856i −0.675218 0.515194i
\(666\) −65.7500 39.3737i −2.54776 1.52570i
\(667\) −8.17125 −0.316392
\(668\) −65.1400 23.7090i −2.52034 0.917329i
\(669\) −5.59141 + 30.2942i −0.216176 + 1.17124i
\(670\) 8.53956 10.1771i 0.329912 0.393174i
\(671\) −1.23118 1.03308i −0.0475292 0.0398818i
\(672\) 84.6725 + 44.6450i 3.26631 + 1.72222i
\(673\) 38.6509 + 14.0678i 1.48988 + 0.542273i 0.953418 0.301651i \(-0.0975377\pi\)
0.536463 + 0.843924i \(0.319760\pi\)
\(674\) 57.2443 + 33.0500i 2.20497 + 1.27304i
\(675\) 7.78231 + 9.73904i 0.299541 + 0.374856i
\(676\) 23.9962 + 41.5626i 0.922930 + 1.59856i
\(677\) −15.9513 + 13.3847i −0.613059 + 0.514418i −0.895613 0.444834i \(-0.853263\pi\)
0.282554 + 0.959251i \(0.408818\pi\)
\(678\) −2.59209 + 6.94859i −0.0995485 + 0.266859i
\(679\) 4.27262 + 19.0269i 0.163968 + 0.730185i
\(680\) −99.7258 17.5844i −3.82431 0.674329i
\(681\) 12.3211 + 2.27410i 0.472145 + 0.0871439i
\(682\) 0.561972 1.54401i 0.0215190 0.0591231i
\(683\) −22.6357 13.0687i −0.866129 0.500060i −6.93731e−5 1.00000i \(-0.500022\pi\)
−0.866060 + 0.499940i \(0.833355\pi\)
\(684\) −17.6522 + 46.1907i −0.674949 + 1.76615i
\(685\) −9.86230 5.69400i −0.376819 0.217557i
\(686\) −33.7685 + 37.4625i −1.28929 + 1.43032i
\(687\) −12.9743 22.8923i −0.495002 0.873397i
\(688\) 9.33540 52.9437i 0.355909 2.01846i
\(689\) 11.8760 + 9.96513i 0.452439 + 0.379641i
\(690\) −14.5290 8.54367i −0.553108 0.325252i
\(691\) −10.6128 + 29.1584i −0.403730 + 1.10924i 0.556699 + 0.830714i \(0.312068\pi\)
−0.960429 + 0.278525i \(0.910155\pi\)
\(692\) −9.10745 + 15.7746i −0.346213 + 0.599659i
\(693\) 0.592217 + 0.957333i 0.0224965 + 0.0363661i
\(694\) 41.5058 + 71.8901i 1.57554 + 2.72891i
\(695\) −30.6111 + 5.39757i −1.16115 + 0.204741i
\(696\) 65.0374 76.2638i 2.46524 2.89077i
\(697\) 1.21431 0.441972i 0.0459951 0.0167409i
\(698\) −23.0143 + 8.37652i −0.871104 + 0.317056i
\(699\) 20.1087 + 7.50129i 0.760579 + 0.283725i
\(700\) 1.59327 + 34.3429i 0.0602200 + 1.29804i
\(701\) 35.8873i 1.35545i −0.735317 0.677723i \(-0.762967\pi\)
0.735317 0.677723i \(-0.237033\pi\)
\(702\) 0.689417 28.7805i 0.0260204 1.08625i
\(703\) 24.7232 14.2739i 0.932451 0.538351i
\(704\) 3.89384 0.686590i 0.146755 0.0258768i
\(705\) −31.0133 + 5.21355i −1.16803 + 0.196354i
\(706\) −31.4134 + 37.4370i −1.18226 + 1.40896i
\(707\) 5.31772 17.0274i 0.199994 0.640381i
\(708\) −39.2799 + 46.0601i −1.47623 + 1.73105i
\(709\) −8.77896 49.7879i −0.329701 1.86983i −0.474341 0.880341i \(-0.657314\pi\)
0.144640 0.989484i \(-0.453798\pi\)
\(710\) −25.8120 + 44.7078i −0.968709 + 1.67785i
\(711\) −21.8431 39.2683i −0.819182 1.47268i
\(712\) 41.6709 24.0587i 1.56168 0.901639i
\(713\) 0.970447 + 5.50368i 0.0363435 + 0.206114i
\(714\) −49.4761 6.77843i −1.85160 0.253676i
\(715\) 0.737535 0.268441i 0.0275822 0.0100391i
\(716\) 7.11458 + 1.25449i 0.265884 + 0.0468826i
\(717\) −13.7952 0.110132i −0.515190 0.00411297i
\(718\) 56.3429 47.2773i 2.10270 1.76437i
\(719\) 20.9466 + 36.2805i 0.781175 + 1.35303i 0.931258 + 0.364361i \(0.118713\pi\)
−0.150083 + 0.988673i \(0.547954\pi\)
\(720\) 111.842 38.6965i 4.16812 1.44213i
\(721\) −24.1409 18.4196i −0.899055 0.685983i
\(722\) 17.0470 + 20.3158i 0.634424 + 0.756077i
\(723\) −0.722658 0.616280i −0.0268760 0.0229197i
\(724\) 5.66149 + 15.5548i 0.210408 + 0.578091i
\(725\) 14.6967 + 2.59143i 0.545822 + 0.0962431i
\(726\) −48.5240 18.1013i −1.80089 0.671801i
\(727\) −4.61680 + 12.6846i −0.171228 + 0.470444i −0.995390 0.0959094i \(-0.969424\pi\)
0.824162 + 0.566354i \(0.191646\pi\)
\(728\) 30.3760 39.8110i 1.12581 1.47549i
\(729\) 14.6041 22.7095i 0.540893 0.841092i
\(730\) −15.7081 + 27.2073i −0.581384 + 1.00699i
\(731\) 2.57585 + 14.6084i 0.0952713 + 0.540311i
\(732\) −81.9799 + 67.6815i −3.03007 + 2.50158i
\(733\) −9.35508 25.7029i −0.345538 0.949357i −0.983757 0.179503i \(-0.942551\pi\)
0.638220 0.769854i \(-0.279671\pi\)
\(734\) −7.59979 + 43.1006i −0.280513 + 1.59087i
\(735\) 2.79126 + 32.8616i 0.102957 + 1.21212i
\(736\) −21.0201 + 17.6380i −0.774813 + 0.650145i
\(737\) 0.254355i 0.00936929i
\(738\) −1.72790 + 1.99370i −0.0636049 + 0.0733891i
\(739\) 17.0676 0.627840 0.313920 0.949449i \(-0.398358\pi\)
0.313920 + 0.949449i \(0.398358\pi\)
\(740\) −129.868 47.2681i −4.77404 1.73761i
\(741\) 9.24408 + 5.43593i 0.339590 + 0.199694i
\(742\) −16.3671 + 52.4076i −0.600855 + 1.92394i
\(743\) 2.70067 + 7.42004i 0.0990781 + 0.272215i 0.979322 0.202306i \(-0.0648436\pi\)
−0.880244 + 0.474521i \(0.842621\pi\)
\(744\) −59.0909 34.7481i −2.16638 1.27393i
\(745\) 40.5581 + 48.3352i 1.48593 + 1.77087i
\(746\) 53.3565i 1.95352i
\(747\) 1.58548 2.64759i 0.0580096 0.0968702i
\(748\) −2.66202 + 1.53692i −0.0973331 + 0.0561953i
\(749\) 21.7161 41.9955i 0.793490 1.53448i
\(750\) −25.3907 21.6531i −0.927137 0.790658i
\(751\) −4.90779 4.11813i −0.179088 0.150273i 0.548837 0.835929i \(-0.315071\pi\)
−0.727925 + 0.685657i \(0.759515\pi\)
\(752\) −16.8098 + 95.3333i −0.612991 + 3.47645i
\(753\) 10.7348 28.7766i 0.391196 1.04868i
\(754\) −22.1521 26.3999i −0.806732 0.961426i
\(755\) 0.626416 0.0227976
\(756\) 69.3814 27.0284i 2.52338 0.983012i
\(757\) −31.0889 −1.12994 −0.564972 0.825110i \(-0.691113\pi\)
−0.564972 + 0.825110i \(0.691113\pi\)
\(758\) 7.01248 + 8.35715i 0.254705 + 0.303545i
\(759\) −0.318233 + 0.0534971i −0.0115511 + 0.00194182i
\(760\) −13.3731 + 75.8429i −0.485095 + 2.75111i
\(761\) 7.52660 + 6.31557i 0.272839 + 0.228939i 0.768932 0.639330i \(-0.220788\pi\)
−0.496093 + 0.868269i \(0.665233\pi\)
\(762\) 80.3444 28.5187i 2.91057 1.03312i
\(763\) −21.1276 + 13.5409i −0.764871 + 0.490214i
\(764\) 70.9773 40.9788i 2.56787 1.48256i
\(765\) −25.3470 + 20.5880i −0.916422 + 0.744362i
\(766\) 57.6900i 2.08442i
\(767\) 8.43858 + 10.0567i 0.304700 + 0.363127i