Properties

Label 189.2.a
Level $189$
Weight $2$
Character orbit 189.a
Rep. character $\chi_{189}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $6$
Sturm bound $48$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(48\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(189))\).

Total New Old
Modular forms 30 8 22
Cusp forms 19 8 11
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(6\)

Trace form

\( 8 q + 12 q^{4} - 4 q^{10} - 12 q^{13} + 12 q^{16} + 12 q^{19} - 4 q^{22} - 16 q^{28} + 20 q^{31} - 36 q^{34} - 40 q^{37} - 48 q^{40} + 28 q^{43} - 12 q^{46} + 8 q^{49} - 8 q^{52} + 52 q^{55} + 8 q^{58}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(189))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
189.2.a.a 189.a 1.a $1$ $1.509$ \(\Q\) None 189.2.a.a \(-2\) \(0\) \(-1\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-q^{5}-q^{7}+2q^{10}+\cdots\)
189.2.a.b 189.a 1.a $1$ $1.509$ \(\Q\) None 189.2.a.b \(0\) \(0\) \(-3\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}-3q^{5}+q^{7}-6q^{11}-4q^{13}+\cdots\)
189.2.a.c 189.a 1.a $1$ $1.509$ \(\Q\) None 189.2.a.b \(0\) \(0\) \(3\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}+3q^{5}+q^{7}+6q^{11}-4q^{13}+\cdots\)
189.2.a.d 189.a 1.a $1$ $1.509$ \(\Q\) None 189.2.a.a \(2\) \(0\) \(1\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+q^{5}-q^{7}+2q^{10}+\cdots\)
189.2.a.e 189.a 1.a $2$ $1.509$ \(\Q(\sqrt{3}) \) None 189.2.a.e \(0\) \(0\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}+\beta q^{5}+q^{7}-\beta q^{8}+3q^{10}+\cdots\)
189.2.a.f 189.a 1.a $2$ $1.509$ \(\Q(\sqrt{7}) \) None 189.2.a.f \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+5q^{4}-\beta q^{5}-q^{7}+3\beta q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(189))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(189)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)