# Properties

 Label 189.2.a.f Level $189$ Weight $2$ Character orbit 189.a Self dual yes Analytic conductor $1.509$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [189,2,Mod(1,189)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(189, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("189.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$189 = 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 189.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.50917259820$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{7})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 7$$ x^2 - 7 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{7}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{2} + 5 q^{4} - \beta q^{5} - q^{7} + 3 \beta q^{8} +O(q^{10})$$ q + b * q^2 + 5 * q^4 - b * q^5 - q^7 + 3*b * q^8 $$q + \beta q^{2} + 5 q^{4} - \beta q^{5} - q^{7} + 3 \beta q^{8} - 7 q^{10} - \beta q^{11} - 2 q^{13} - \beta q^{14} + 11 q^{16} + 7 q^{19} - 5 \beta q^{20} - 7 q^{22} - 3 \beta q^{23} + 2 q^{25} - 2 \beta q^{26} - 5 q^{28} + 2 \beta q^{29} + 3 q^{31} + 5 \beta q^{32} + \beta q^{35} - 3 q^{37} + 7 \beta q^{38} - 21 q^{40} + \beta q^{41} + 8 q^{43} - 5 \beta q^{44} - 21 q^{46} + q^{49} + 2 \beta q^{50} - 10 q^{52} + 7 q^{55} - 3 \beta q^{56} + 14 q^{58} - 8 q^{61} + 3 \beta q^{62} + 13 q^{64} + 2 \beta q^{65} - 2 q^{67} + 7 q^{70} + 3 \beta q^{71} - 3 \beta q^{74} + 35 q^{76} + \beta q^{77} - 4 q^{79} - 11 \beta q^{80} + 7 q^{82} + 6 \beta q^{83} + 8 \beta q^{86} - 21 q^{88} - 7 \beta q^{89} + 2 q^{91} - 15 \beta q^{92} - 7 \beta q^{95} - 12 q^{97} + \beta q^{98} +O(q^{100})$$ q + b * q^2 + 5 * q^4 - b * q^5 - q^7 + 3*b * q^8 - 7 * q^10 - b * q^11 - 2 * q^13 - b * q^14 + 11 * q^16 + 7 * q^19 - 5*b * q^20 - 7 * q^22 - 3*b * q^23 + 2 * q^25 - 2*b * q^26 - 5 * q^28 + 2*b * q^29 + 3 * q^31 + 5*b * q^32 + b * q^35 - 3 * q^37 + 7*b * q^38 - 21 * q^40 + b * q^41 + 8 * q^43 - 5*b * q^44 - 21 * q^46 + q^49 + 2*b * q^50 - 10 * q^52 + 7 * q^55 - 3*b * q^56 + 14 * q^58 - 8 * q^61 + 3*b * q^62 + 13 * q^64 + 2*b * q^65 - 2 * q^67 + 7 * q^70 + 3*b * q^71 - 3*b * q^74 + 35 * q^76 + b * q^77 - 4 * q^79 - 11*b * q^80 + 7 * q^82 + 6*b * q^83 + 8*b * q^86 - 21 * q^88 - 7*b * q^89 + 2 * q^91 - 15*b * q^92 - 7*b * q^95 - 12 * q^97 + b * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 10 q^{4} - 2 q^{7}+O(q^{10})$$ 2 * q + 10 * q^4 - 2 * q^7 $$2 q + 10 q^{4} - 2 q^{7} - 14 q^{10} - 4 q^{13} + 22 q^{16} + 14 q^{19} - 14 q^{22} + 4 q^{25} - 10 q^{28} + 6 q^{31} - 6 q^{37} - 42 q^{40} + 16 q^{43} - 42 q^{46} + 2 q^{49} - 20 q^{52} + 14 q^{55} + 28 q^{58} - 16 q^{61} + 26 q^{64} - 4 q^{67} + 14 q^{70} + 70 q^{76} - 8 q^{79} + 14 q^{82} - 42 q^{88} + 4 q^{91} - 24 q^{97}+O(q^{100})$$ 2 * q + 10 * q^4 - 2 * q^7 - 14 * q^10 - 4 * q^13 + 22 * q^16 + 14 * q^19 - 14 * q^22 + 4 * q^25 - 10 * q^28 + 6 * q^31 - 6 * q^37 - 42 * q^40 + 16 * q^43 - 42 * q^46 + 2 * q^49 - 20 * q^52 + 14 * q^55 + 28 * q^58 - 16 * q^61 + 26 * q^64 - 4 * q^67 + 14 * q^70 + 70 * q^76 - 8 * q^79 + 14 * q^82 - 42 * q^88 + 4 * q^91 - 24 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −2.64575 2.64575
−2.64575 0 5.00000 2.64575 0 −1.00000 −7.93725 0 −7.00000
1.2 2.64575 0 5.00000 −2.64575 0 −1.00000 7.93725 0 −7.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$7$$ $$1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.2.a.f 2
3.b odd 2 1 inner 189.2.a.f 2
4.b odd 2 1 3024.2.a.bi 2
5.b even 2 1 4725.2.a.bb 2
7.b odd 2 1 1323.2.a.w 2
9.c even 3 2 567.2.f.i 4
9.d odd 6 2 567.2.f.i 4
12.b even 2 1 3024.2.a.bi 2
15.d odd 2 1 4725.2.a.bb 2
21.c even 2 1 1323.2.a.w 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.a.f 2 1.a even 1 1 trivial
189.2.a.f 2 3.b odd 2 1 inner
567.2.f.i 4 9.c even 3 2
567.2.f.i 4 9.d odd 6 2
1323.2.a.w 2 7.b odd 2 1
1323.2.a.w 2 21.c even 2 1
3024.2.a.bi 2 4.b odd 2 1
3024.2.a.bi 2 12.b even 2 1
4725.2.a.bb 2 5.b even 2 1
4725.2.a.bb 2 15.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(189))$$:

 $$T_{2}^{2} - 7$$ T2^2 - 7 $$T_{5}^{2} - 7$$ T5^2 - 7

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - 7$$
$3$ $$T^{2}$$
$5$ $$T^{2} - 7$$
$7$ $$(T + 1)^{2}$$
$11$ $$T^{2} - 7$$
$13$ $$(T + 2)^{2}$$
$17$ $$T^{2}$$
$19$ $$(T - 7)^{2}$$
$23$ $$T^{2} - 63$$
$29$ $$T^{2} - 28$$
$31$ $$(T - 3)^{2}$$
$37$ $$(T + 3)^{2}$$
$41$ $$T^{2} - 7$$
$43$ $$(T - 8)^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$(T + 8)^{2}$$
$67$ $$(T + 2)^{2}$$
$71$ $$T^{2} - 63$$
$73$ $$T^{2}$$
$79$ $$(T + 4)^{2}$$
$83$ $$T^{2} - 252$$
$89$ $$T^{2} - 343$$
$97$ $$(T + 12)^{2}$$