Properties

Label 187.4.a.d.1.3
Level $187$
Weight $4$
Character 187.1
Self dual yes
Analytic conductor $11.033$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [187,4,Mod(1,187)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("187.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(187, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 187 = 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 187.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.0333571711\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} - 55 x^{8} + 72 x^{7} + 1037 x^{6} - 812 x^{5} - 7851 x^{4} + 2526 x^{3} + 20108 x^{2} + \cdots - 5760 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.27779\) of defining polynomial
Character \(\chi\) \(=\) 187.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.27779 q^{2} +2.36616 q^{3} +10.2995 q^{4} -19.2230 q^{5} -10.1219 q^{6} +31.3553 q^{7} -9.83664 q^{8} -21.4013 q^{9} +82.2318 q^{10} +11.0000 q^{11} +24.3701 q^{12} +9.57258 q^{13} -134.131 q^{14} -45.4846 q^{15} -40.3167 q^{16} -17.0000 q^{17} +91.5503 q^{18} +63.4395 q^{19} -197.986 q^{20} +74.1916 q^{21} -47.0557 q^{22} +54.7491 q^{23} -23.2750 q^{24} +244.523 q^{25} -40.9495 q^{26} -114.525 q^{27} +322.943 q^{28} -269.083 q^{29} +194.573 q^{30} -284.119 q^{31} +251.159 q^{32} +26.0277 q^{33} +72.7224 q^{34} -602.743 q^{35} -220.422 q^{36} -31.1211 q^{37} -271.381 q^{38} +22.6502 q^{39} +189.090 q^{40} -435.326 q^{41} -317.376 q^{42} -521.820 q^{43} +113.294 q^{44} +411.397 q^{45} -234.205 q^{46} +291.633 q^{47} -95.3956 q^{48} +640.156 q^{49} -1046.02 q^{50} -40.2246 q^{51} +98.5925 q^{52} -213.400 q^{53} +489.914 q^{54} -211.453 q^{55} -308.431 q^{56} +150.108 q^{57} +1151.08 q^{58} -662.285 q^{59} -468.467 q^{60} -280.731 q^{61} +1215.40 q^{62} -671.045 q^{63} -751.873 q^{64} -184.013 q^{65} -111.341 q^{66} -714.408 q^{67} -175.091 q^{68} +129.545 q^{69} +2578.41 q^{70} +535.414 q^{71} +210.517 q^{72} +1233.31 q^{73} +133.130 q^{74} +578.579 q^{75} +653.393 q^{76} +344.909 q^{77} -96.8928 q^{78} -366.474 q^{79} +775.007 q^{80} +306.851 q^{81} +1862.23 q^{82} +536.211 q^{83} +764.134 q^{84} +326.791 q^{85} +2232.24 q^{86} -636.693 q^{87} -108.203 q^{88} -159.938 q^{89} -1759.87 q^{90} +300.151 q^{91} +563.887 q^{92} -672.270 q^{93} -1247.54 q^{94} -1219.50 q^{95} +594.282 q^{96} -979.902 q^{97} -2738.45 q^{98} -235.414 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8 q^{2} - 9 q^{3} + 40 q^{4} - 41 q^{5} + 31 q^{6} - 63 q^{7} - 96 q^{8} + 61 q^{9} - 47 q^{10} + 110 q^{11} - 171 q^{12} - 99 q^{13} - 95 q^{14} - 150 q^{15} + 180 q^{16} - 170 q^{17} - 207 q^{18}+ \cdots + 671 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.27779 −1.51243 −0.756213 0.654325i \(-0.772953\pi\)
−0.756213 + 0.654325i \(0.772953\pi\)
\(3\) 2.36616 0.455367 0.227683 0.973735i \(-0.426885\pi\)
0.227683 + 0.973735i \(0.426885\pi\)
\(4\) 10.2995 1.28743
\(5\) −19.2230 −1.71936 −0.859678 0.510837i \(-0.829336\pi\)
−0.859678 + 0.510837i \(0.829336\pi\)
\(6\) −10.1219 −0.688709
\(7\) 31.3553 1.69303 0.846514 0.532366i \(-0.178697\pi\)
0.846514 + 0.532366i \(0.178697\pi\)
\(8\) −9.83664 −0.434722
\(9\) −21.4013 −0.792641
\(10\) 82.2318 2.60040
\(11\) 11.0000 0.301511
\(12\) 24.3701 0.586255
\(13\) 9.57258 0.204227 0.102114 0.994773i \(-0.467439\pi\)
0.102114 + 0.994773i \(0.467439\pi\)
\(14\) −134.131 −2.56058
\(15\) −45.4846 −0.782937
\(16\) −40.3167 −0.629948
\(17\) −17.0000 −0.242536
\(18\) 91.5503 1.19881
\(19\) 63.4395 0.766001 0.383001 0.923748i \(-0.374891\pi\)
0.383001 + 0.923748i \(0.374891\pi\)
\(20\) −197.986 −2.21356
\(21\) 74.1916 0.770949
\(22\) −47.0557 −0.456014
\(23\) 54.7491 0.496347 0.248174 0.968716i \(-0.420170\pi\)
0.248174 + 0.968716i \(0.420170\pi\)
\(24\) −23.2750 −0.197958
\(25\) 244.523 1.95618
\(26\) −40.9495 −0.308879
\(27\) −114.525 −0.816309
\(28\) 322.943 2.17966
\(29\) −269.083 −1.72302 −0.861508 0.507743i \(-0.830480\pi\)
−0.861508 + 0.507743i \(0.830480\pi\)
\(30\) 194.573 1.18414
\(31\) −284.119 −1.64611 −0.823053 0.567964i \(-0.807731\pi\)
−0.823053 + 0.567964i \(0.807731\pi\)
\(32\) 251.159 1.38747
\(33\) 26.0277 0.137298
\(34\) 72.7224 0.366817
\(35\) −602.743 −2.91092
\(36\) −220.422 −1.02047
\(37\) −31.1211 −0.138278 −0.0691390 0.997607i \(-0.522025\pi\)
−0.0691390 + 0.997607i \(0.522025\pi\)
\(38\) −271.381 −1.15852
\(39\) 22.6502 0.0929983
\(40\) 189.090 0.747442
\(41\) −435.326 −1.65821 −0.829104 0.559095i \(-0.811149\pi\)
−0.829104 + 0.559095i \(0.811149\pi\)
\(42\) −317.376 −1.16600
\(43\) −521.820 −1.85062 −0.925312 0.379206i \(-0.876197\pi\)
−0.925312 + 0.379206i \(0.876197\pi\)
\(44\) 113.294 0.388176
\(45\) 411.397 1.36283
\(46\) −234.205 −0.750689
\(47\) 291.633 0.905085 0.452542 0.891743i \(-0.350517\pi\)
0.452542 + 0.891743i \(0.350517\pi\)
\(48\) −95.3956 −0.286858
\(49\) 640.156 1.86634
\(50\) −1046.02 −2.95858
\(51\) −40.2246 −0.110443
\(52\) 98.5925 0.262929
\(53\) −213.400 −0.553071 −0.276536 0.961004i \(-0.589186\pi\)
−0.276536 + 0.961004i \(0.589186\pi\)
\(54\) 489.914 1.23461
\(55\) −211.453 −0.518405
\(56\) −308.431 −0.735997
\(57\) 150.108 0.348811
\(58\) 1151.08 2.60594
\(59\) −662.285 −1.46139 −0.730696 0.682703i \(-0.760804\pi\)
−0.730696 + 0.682703i \(0.760804\pi\)
\(60\) −468.467 −1.00798
\(61\) −280.731 −0.589244 −0.294622 0.955614i \(-0.595194\pi\)
−0.294622 + 0.955614i \(0.595194\pi\)
\(62\) 1215.40 2.48961
\(63\) −671.045 −1.34196
\(64\) −751.873 −1.46850
\(65\) −184.013 −0.351139
\(66\) −111.341 −0.207654
\(67\) −714.408 −1.30267 −0.651334 0.758791i \(-0.725790\pi\)
−0.651334 + 0.758791i \(0.725790\pi\)
\(68\) −175.091 −0.312249
\(69\) 129.545 0.226020
\(70\) 2578.41 4.40255
\(71\) 535.414 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(72\) 210.517 0.344579
\(73\) 1233.31 1.97738 0.988688 0.149986i \(-0.0479229\pi\)
0.988688 + 0.149986i \(0.0479229\pi\)
\(74\) 133.130 0.209135
\(75\) 578.579 0.890781
\(76\) 653.393 0.986176
\(77\) 344.909 0.510467
\(78\) −96.8928 −0.140653
\(79\) −366.474 −0.521918 −0.260959 0.965350i \(-0.584039\pi\)
−0.260959 + 0.965350i \(0.584039\pi\)
\(80\) 775.007 1.08310
\(81\) 306.851 0.420921
\(82\) 1862.23 2.50792
\(83\) 536.211 0.709118 0.354559 0.935034i \(-0.384631\pi\)
0.354559 + 0.935034i \(0.384631\pi\)
\(84\) 764.134 0.992546
\(85\) 326.791 0.417005
\(86\) 2232.24 2.79893
\(87\) −636.693 −0.784605
\(88\) −108.203 −0.131074
\(89\) −159.938 −0.190487 −0.0952436 0.995454i \(-0.530363\pi\)
−0.0952436 + 0.995454i \(0.530363\pi\)
\(90\) −1759.87 −2.06118
\(91\) 300.151 0.345763
\(92\) 563.887 0.639014
\(93\) −672.270 −0.749582
\(94\) −1247.54 −1.36887
\(95\) −1219.50 −1.31703
\(96\) 594.282 0.631809
\(97\) −979.902 −1.02571 −0.512855 0.858475i \(-0.671412\pi\)
−0.512855 + 0.858475i \(0.671412\pi\)
\(98\) −2738.45 −2.82271
\(99\) −235.414 −0.238990
\(100\) 2518.46 2.51846
\(101\) 665.028 0.655176 0.327588 0.944821i \(-0.393764\pi\)
0.327588 + 0.944821i \(0.393764\pi\)
\(102\) 172.072 0.167036
\(103\) −1147.02 −1.09728 −0.548639 0.836059i \(-0.684854\pi\)
−0.548639 + 0.836059i \(0.684854\pi\)
\(104\) −94.1620 −0.0887821
\(105\) −1426.18 −1.32554
\(106\) 912.881 0.836479
\(107\) 82.4252 0.0744705 0.0372352 0.999307i \(-0.488145\pi\)
0.0372352 + 0.999307i \(0.488145\pi\)
\(108\) −1179.55 −1.05094
\(109\) 637.329 0.560047 0.280023 0.959993i \(-0.409658\pi\)
0.280023 + 0.959993i \(0.409658\pi\)
\(110\) 904.550 0.784050
\(111\) −73.6375 −0.0629672
\(112\) −1264.14 −1.06652
\(113\) 602.312 0.501422 0.250711 0.968062i \(-0.419336\pi\)
0.250711 + 0.968062i \(0.419336\pi\)
\(114\) −642.129 −0.527552
\(115\) −1052.44 −0.853397
\(116\) −2771.41 −2.21827
\(117\) −204.866 −0.161879
\(118\) 2833.11 2.21025
\(119\) −533.040 −0.410620
\(120\) 447.415 0.340360
\(121\) 121.000 0.0909091
\(122\) 1200.91 0.891188
\(123\) −1030.05 −0.755093
\(124\) −2926.28 −2.11925
\(125\) −2297.59 −1.64402
\(126\) 2870.59 2.02962
\(127\) −375.777 −0.262557 −0.131279 0.991346i \(-0.541908\pi\)
−0.131279 + 0.991346i \(0.541908\pi\)
\(128\) 1207.08 0.833529
\(129\) −1234.71 −0.842713
\(130\) 787.170 0.531072
\(131\) 420.274 0.280302 0.140151 0.990130i \(-0.455241\pi\)
0.140151 + 0.990130i \(0.455241\pi\)
\(132\) 268.072 0.176762
\(133\) 1989.17 1.29686
\(134\) 3056.08 1.97019
\(135\) 2201.51 1.40353
\(136\) 167.223 0.105436
\(137\) −822.546 −0.512955 −0.256478 0.966550i \(-0.582562\pi\)
−0.256478 + 0.966550i \(0.582562\pi\)
\(138\) −554.166 −0.341839
\(139\) 709.771 0.433108 0.216554 0.976271i \(-0.430518\pi\)
0.216554 + 0.976271i \(0.430518\pi\)
\(140\) −6207.93 −3.74761
\(141\) 690.048 0.412146
\(142\) −2290.39 −1.35356
\(143\) 105.298 0.0615768
\(144\) 862.830 0.499323
\(145\) 5172.58 2.96248
\(146\) −5275.85 −2.99064
\(147\) 1514.71 0.849871
\(148\) −320.531 −0.178024
\(149\) 917.357 0.504381 0.252191 0.967678i \(-0.418849\pi\)
0.252191 + 0.967678i \(0.418849\pi\)
\(150\) −2475.04 −1.34724
\(151\) −1948.37 −1.05004 −0.525021 0.851090i \(-0.675942\pi\)
−0.525021 + 0.851090i \(0.675942\pi\)
\(152\) −624.032 −0.332998
\(153\) 363.822 0.192244
\(154\) −1475.45 −0.772044
\(155\) 5461.62 2.83024
\(156\) 233.285 0.119729
\(157\) −1393.18 −0.708203 −0.354101 0.935207i \(-0.615213\pi\)
−0.354101 + 0.935207i \(0.615213\pi\)
\(158\) 1567.70 0.789362
\(159\) −504.938 −0.251850
\(160\) −4828.03 −2.38556
\(161\) 1716.68 0.840330
\(162\) −1312.64 −0.636612
\(163\) 1559.08 0.749180 0.374590 0.927191i \(-0.377784\pi\)
0.374590 + 0.927191i \(0.377784\pi\)
\(164\) −4483.63 −2.13483
\(165\) −500.330 −0.236065
\(166\) −2293.80 −1.07249
\(167\) −3146.52 −1.45800 −0.728998 0.684516i \(-0.760014\pi\)
−0.728998 + 0.684516i \(0.760014\pi\)
\(168\) −729.796 −0.335149
\(169\) −2105.37 −0.958291
\(170\) −1397.94 −0.630689
\(171\) −1357.69 −0.607164
\(172\) −5374.47 −2.38256
\(173\) −3719.03 −1.63441 −0.817205 0.576347i \(-0.804478\pi\)
−0.817205 + 0.576347i \(0.804478\pi\)
\(174\) 2723.64 1.18666
\(175\) 7667.09 3.31187
\(176\) −443.484 −0.189937
\(177\) −1567.07 −0.665469
\(178\) 684.179 0.288098
\(179\) 1495.57 0.624494 0.312247 0.950001i \(-0.398918\pi\)
0.312247 + 0.950001i \(0.398918\pi\)
\(180\) 4237.17 1.75456
\(181\) 492.669 0.202319 0.101160 0.994870i \(-0.467745\pi\)
0.101160 + 0.994870i \(0.467745\pi\)
\(182\) −1283.98 −0.522940
\(183\) −664.253 −0.268322
\(184\) −538.548 −0.215773
\(185\) 598.241 0.237749
\(186\) 2875.83 1.13369
\(187\) −187.000 −0.0731272
\(188\) 3003.66 1.16524
\(189\) −3590.97 −1.38203
\(190\) 5216.75 1.99191
\(191\) 1218.14 0.461473 0.230737 0.973016i \(-0.425886\pi\)
0.230737 + 0.973016i \(0.425886\pi\)
\(192\) −1779.05 −0.668707
\(193\) −639.615 −0.238552 −0.119276 0.992861i \(-0.538057\pi\)
−0.119276 + 0.992861i \(0.538057\pi\)
\(194\) 4191.81 1.55131
\(195\) −435.404 −0.159897
\(196\) 6593.27 2.40279
\(197\) −2419.57 −0.875063 −0.437531 0.899203i \(-0.644147\pi\)
−0.437531 + 0.899203i \(0.644147\pi\)
\(198\) 1007.05 0.361455
\(199\) 2711.32 0.965830 0.482915 0.875667i \(-0.339578\pi\)
0.482915 + 0.875667i \(0.339578\pi\)
\(200\) −2405.28 −0.850396
\(201\) −1690.40 −0.593192
\(202\) −2844.85 −0.990905
\(203\) −8437.19 −2.91712
\(204\) −414.292 −0.142188
\(205\) 8368.26 2.85105
\(206\) 4906.73 1.65955
\(207\) −1171.70 −0.393425
\(208\) −385.935 −0.128653
\(209\) 697.835 0.230958
\(210\) 6100.91 2.00477
\(211\) 824.475 0.269001 0.134500 0.990914i \(-0.457057\pi\)
0.134500 + 0.990914i \(0.457057\pi\)
\(212\) −2197.91 −0.712042
\(213\) 1266.87 0.407534
\(214\) −352.597 −0.112631
\(215\) 10030.9 3.18188
\(216\) 1126.54 0.354868
\(217\) −8908.65 −2.78690
\(218\) −2726.36 −0.847029
\(219\) 2918.21 0.900432
\(220\) −2177.85 −0.667412
\(221\) −162.734 −0.0495324
\(222\) 315.005 0.0952333
\(223\) 2300.63 0.690859 0.345430 0.938445i \(-0.387733\pi\)
0.345430 + 0.938445i \(0.387733\pi\)
\(224\) 7875.18 2.34903
\(225\) −5233.11 −1.55055
\(226\) −2576.56 −0.758364
\(227\) −4787.87 −1.39992 −0.699960 0.714182i \(-0.746799\pi\)
−0.699960 + 0.714182i \(0.746799\pi\)
\(228\) 1546.03 0.449072
\(229\) −1918.32 −0.553564 −0.276782 0.960933i \(-0.589268\pi\)
−0.276782 + 0.960933i \(0.589268\pi\)
\(230\) 4502.12 1.29070
\(231\) 816.107 0.232450
\(232\) 2646.87 0.749034
\(233\) −319.028 −0.0897006 −0.0448503 0.998994i \(-0.514281\pi\)
−0.0448503 + 0.998994i \(0.514281\pi\)
\(234\) 876.372 0.244830
\(235\) −5606.05 −1.55616
\(236\) −6821.18 −1.88145
\(237\) −867.134 −0.237664
\(238\) 2280.23 0.621032
\(239\) −813.866 −0.220270 −0.110135 0.993917i \(-0.535128\pi\)
−0.110135 + 0.993917i \(0.535128\pi\)
\(240\) 1833.79 0.493210
\(241\) −1970.26 −0.526620 −0.263310 0.964711i \(-0.584814\pi\)
−0.263310 + 0.964711i \(0.584814\pi\)
\(242\) −517.612 −0.137493
\(243\) 3818.23 1.00798
\(244\) −2891.38 −0.758613
\(245\) −12305.7 −3.20891
\(246\) 4406.33 1.14202
\(247\) 607.279 0.156438
\(248\) 2794.78 0.715599
\(249\) 1268.76 0.322909
\(250\) 9828.58 2.48646
\(251\) 4130.76 1.03877 0.519386 0.854540i \(-0.326161\pi\)
0.519386 + 0.854540i \(0.326161\pi\)
\(252\) −6911.41 −1.72769
\(253\) 602.241 0.149654
\(254\) 1607.49 0.397099
\(255\) 773.237 0.189890
\(256\) 851.359 0.207851
\(257\) 1742.43 0.422918 0.211459 0.977387i \(-0.432178\pi\)
0.211459 + 0.977387i \(0.432178\pi\)
\(258\) 5281.82 1.27454
\(259\) −975.813 −0.234108
\(260\) −1895.24 −0.452069
\(261\) 5758.73 1.36573
\(262\) −1797.84 −0.423936
\(263\) −2845.63 −0.667183 −0.333592 0.942718i \(-0.608261\pi\)
−0.333592 + 0.942718i \(0.608261\pi\)
\(264\) −256.025 −0.0596866
\(265\) 4102.19 0.950926
\(266\) −8509.23 −1.96141
\(267\) −378.437 −0.0867415
\(268\) −7358.02 −1.67710
\(269\) 1951.30 0.442277 0.221139 0.975242i \(-0.429023\pi\)
0.221139 + 0.975242i \(0.429023\pi\)
\(270\) −9417.60 −2.12273
\(271\) 3004.76 0.673528 0.336764 0.941589i \(-0.390668\pi\)
0.336764 + 0.941589i \(0.390668\pi\)
\(272\) 685.384 0.152785
\(273\) 710.204 0.157449
\(274\) 3518.68 0.775807
\(275\) 2689.75 0.589811
\(276\) 1334.24 0.290986
\(277\) 2080.17 0.451211 0.225605 0.974219i \(-0.427564\pi\)
0.225605 + 0.974219i \(0.427564\pi\)
\(278\) −3036.25 −0.655044
\(279\) 6080.52 1.30477
\(280\) 5928.96 1.26544
\(281\) −1288.97 −0.273643 −0.136822 0.990596i \(-0.543689\pi\)
−0.136822 + 0.990596i \(0.543689\pi\)
\(282\) −2951.88 −0.623340
\(283\) 3292.43 0.691571 0.345786 0.938314i \(-0.387612\pi\)
0.345786 + 0.938314i \(0.387612\pi\)
\(284\) 5514.48 1.15220
\(285\) −2885.52 −0.599731
\(286\) −450.444 −0.0931305
\(287\) −13649.8 −2.80739
\(288\) −5375.14 −1.09977
\(289\) 289.000 0.0588235
\(290\) −22127.2 −4.48053
\(291\) −2318.60 −0.467075
\(292\) 12702.5 2.54574
\(293\) 3409.31 0.679775 0.339887 0.940466i \(-0.389611\pi\)
0.339887 + 0.940466i \(0.389611\pi\)
\(294\) −6479.60 −1.28537
\(295\) 12731.1 2.51265
\(296\) 306.128 0.0601125
\(297\) −1259.78 −0.246127
\(298\) −3924.26 −0.762840
\(299\) 524.090 0.101368
\(300\) 5959.06 1.14682
\(301\) −16361.8 −3.13316
\(302\) 8334.72 1.58811
\(303\) 1573.56 0.298345
\(304\) −2557.67 −0.482541
\(305\) 5396.48 1.01312
\(306\) −1556.35 −0.290754
\(307\) −6048.51 −1.12445 −0.562226 0.826984i \(-0.690055\pi\)
−0.562226 + 0.826984i \(0.690055\pi\)
\(308\) 3552.37 0.657193
\(309\) −2714.04 −0.499664
\(310\) −23363.6 −4.28053
\(311\) −4320.03 −0.787673 −0.393837 0.919181i \(-0.628852\pi\)
−0.393837 + 0.919181i \(0.628852\pi\)
\(312\) −222.802 −0.0404284
\(313\) 4330.89 0.782097 0.391049 0.920370i \(-0.372112\pi\)
0.391049 + 0.920370i \(0.372112\pi\)
\(314\) 5959.72 1.07110
\(315\) 12899.5 2.30731
\(316\) −3774.48 −0.671935
\(317\) 2937.44 0.520452 0.260226 0.965548i \(-0.416203\pi\)
0.260226 + 0.965548i \(0.416203\pi\)
\(318\) 2160.02 0.380905
\(319\) −2959.91 −0.519509
\(320\) 14453.2 2.52488
\(321\) 195.031 0.0339114
\(322\) −7343.58 −1.27094
\(323\) −1078.47 −0.185783
\(324\) 3160.41 0.541908
\(325\) 2340.71 0.399506
\(326\) −6669.40 −1.13308
\(327\) 1508.02 0.255027
\(328\) 4282.15 0.720860
\(329\) 9144.23 1.53233
\(330\) 2140.31 0.357030
\(331\) 361.577 0.0600425 0.0300213 0.999549i \(-0.490443\pi\)
0.0300213 + 0.999549i \(0.490443\pi\)
\(332\) 5522.69 0.912943
\(333\) 666.033 0.109605
\(334\) 13460.2 2.20511
\(335\) 13733.0 2.23975
\(336\) −2991.16 −0.485658
\(337\) −104.623 −0.0169115 −0.00845576 0.999964i \(-0.502692\pi\)
−0.00845576 + 0.999964i \(0.502692\pi\)
\(338\) 9006.31 1.44934
\(339\) 1425.16 0.228331
\(340\) 3365.77 0.536866
\(341\) −3125.31 −0.496320
\(342\) 5807.90 0.918291
\(343\) 9317.43 1.46675
\(344\) 5132.96 0.804508
\(345\) −2490.24 −0.388609
\(346\) 15909.2 2.47192
\(347\) −4014.72 −0.621099 −0.310550 0.950557i \(-0.600513\pi\)
−0.310550 + 0.950557i \(0.600513\pi\)
\(348\) −6557.60 −1.01013
\(349\) 6529.95 1.00155 0.500774 0.865578i \(-0.333049\pi\)
0.500774 + 0.865578i \(0.333049\pi\)
\(350\) −32798.2 −5.00896
\(351\) −1096.30 −0.166713
\(352\) 2762.75 0.418339
\(353\) 11703.9 1.76469 0.882347 0.470599i \(-0.155962\pi\)
0.882347 + 0.470599i \(0.155962\pi\)
\(354\) 6703.59 1.00647
\(355\) −10292.2 −1.53875
\(356\) −1647.27 −0.245240
\(357\) −1261.26 −0.186983
\(358\) −6397.75 −0.944501
\(359\) −1225.85 −0.180217 −0.0901084 0.995932i \(-0.528721\pi\)
−0.0901084 + 0.995932i \(0.528721\pi\)
\(360\) −4046.76 −0.592453
\(361\) −2834.43 −0.413242
\(362\) −2107.53 −0.305993
\(363\) 286.305 0.0413970
\(364\) 3091.40 0.445146
\(365\) −23708.0 −3.39981
\(366\) 2841.53 0.405818
\(367\) 6298.77 0.895894 0.447947 0.894060i \(-0.352155\pi\)
0.447947 + 0.894060i \(0.352155\pi\)
\(368\) −2207.30 −0.312673
\(369\) 9316.55 1.31436
\(370\) −2559.15 −0.359578
\(371\) −6691.23 −0.936365
\(372\) −6924.02 −0.965038
\(373\) −302.467 −0.0419870 −0.0209935 0.999780i \(-0.506683\pi\)
−0.0209935 + 0.999780i \(0.506683\pi\)
\(374\) 799.946 0.110600
\(375\) −5436.44 −0.748631
\(376\) −2868.68 −0.393460
\(377\) −2575.82 −0.351887
\(378\) 15361.4 2.09023
\(379\) −10438.7 −1.41477 −0.707387 0.706826i \(-0.750126\pi\)
−0.707387 + 0.706826i \(0.750126\pi\)
\(380\) −12560.2 −1.69559
\(381\) −889.146 −0.119560
\(382\) −5210.94 −0.697944
\(383\) 6429.05 0.857726 0.428863 0.903370i \(-0.358914\pi\)
0.428863 + 0.903370i \(0.358914\pi\)
\(384\) 2856.13 0.379561
\(385\) −6630.17 −0.877675
\(386\) 2736.14 0.360792
\(387\) 11167.6 1.46688
\(388\) −10092.5 −1.32053
\(389\) 8007.61 1.04371 0.521853 0.853035i \(-0.325241\pi\)
0.521853 + 0.853035i \(0.325241\pi\)
\(390\) 1862.57 0.241833
\(391\) −930.735 −0.120382
\(392\) −6296.99 −0.811341
\(393\) 994.435 0.127640
\(394\) 10350.4 1.32347
\(395\) 7044.72 0.897362
\(396\) −2424.64 −0.307684
\(397\) −13505.0 −1.70730 −0.853648 0.520851i \(-0.825615\pi\)
−0.853648 + 0.520851i \(0.825615\pi\)
\(398\) −11598.4 −1.46075
\(399\) 4706.68 0.590548
\(400\) −9858.35 −1.23229
\(401\) 11304.3 1.40775 0.703877 0.710322i \(-0.251451\pi\)
0.703877 + 0.710322i \(0.251451\pi\)
\(402\) 7231.17 0.897159
\(403\) −2719.75 −0.336180
\(404\) 6849.43 0.843495
\(405\) −5898.60 −0.723713
\(406\) 36092.5 4.41192
\(407\) −342.333 −0.0416924
\(408\) 395.675 0.0480119
\(409\) 13859.0 1.67551 0.837757 0.546043i \(-0.183867\pi\)
0.837757 + 0.546043i \(0.183867\pi\)
\(410\) −35797.6 −4.31200
\(411\) −1946.27 −0.233583
\(412\) −11813.7 −1.41267
\(413\) −20766.2 −2.47418
\(414\) 5012.30 0.595027
\(415\) −10307.6 −1.21923
\(416\) 2404.24 0.283360
\(417\) 1679.43 0.197223
\(418\) −2985.19 −0.349307
\(419\) −4739.28 −0.552575 −0.276287 0.961075i \(-0.589104\pi\)
−0.276287 + 0.961075i \(0.589104\pi\)
\(420\) −14688.9 −1.70654
\(421\) −10855.0 −1.25663 −0.628316 0.777958i \(-0.716256\pi\)
−0.628316 + 0.777958i \(0.716256\pi\)
\(422\) −3526.93 −0.406844
\(423\) −6241.32 −0.717407
\(424\) 2099.14 0.240432
\(425\) −4156.89 −0.474444
\(426\) −5419.41 −0.616365
\(427\) −8802.40 −0.997607
\(428\) 848.935 0.0958758
\(429\) 249.152 0.0280401
\(430\) −42910.2 −4.81236
\(431\) 7947.95 0.888259 0.444129 0.895963i \(-0.353513\pi\)
0.444129 + 0.895963i \(0.353513\pi\)
\(432\) 4617.27 0.514233
\(433\) 10532.1 1.16892 0.584459 0.811423i \(-0.301307\pi\)
0.584459 + 0.811423i \(0.301307\pi\)
\(434\) 38109.3 4.21499
\(435\) 12239.1 1.34901
\(436\) 6564.15 0.721023
\(437\) 3473.26 0.380202
\(438\) −12483.5 −1.36184
\(439\) −7274.01 −0.790819 −0.395409 0.918505i \(-0.629397\pi\)
−0.395409 + 0.918505i \(0.629397\pi\)
\(440\) 2079.98 0.225362
\(441\) −13700.2 −1.47934
\(442\) 696.141 0.0749141
\(443\) 15150.8 1.62492 0.812458 0.583019i \(-0.198129\pi\)
0.812458 + 0.583019i \(0.198129\pi\)
\(444\) −758.427 −0.0810661
\(445\) 3074.48 0.327515
\(446\) −9841.61 −1.04487
\(447\) 2170.61 0.229678
\(448\) −23575.2 −2.48622
\(449\) 1323.63 0.139122 0.0695612 0.997578i \(-0.477840\pi\)
0.0695612 + 0.997578i \(0.477840\pi\)
\(450\) 22386.1 2.34509
\(451\) −4788.59 −0.499968
\(452\) 6203.49 0.645548
\(453\) −4610.15 −0.478154
\(454\) 20481.5 2.11728
\(455\) −5769.80 −0.594489
\(456\) −1476.56 −0.151636
\(457\) −2436.93 −0.249442 −0.124721 0.992192i \(-0.539804\pi\)
−0.124721 + 0.992192i \(0.539804\pi\)
\(458\) 8206.17 0.837225
\(459\) 1946.93 0.197984
\(460\) −10839.6 −1.09869
\(461\) −8748.14 −0.883821 −0.441911 0.897059i \(-0.645699\pi\)
−0.441911 + 0.897059i \(0.645699\pi\)
\(462\) −3491.13 −0.351563
\(463\) −7776.39 −0.780560 −0.390280 0.920696i \(-0.627622\pi\)
−0.390280 + 0.920696i \(0.627622\pi\)
\(464\) 10848.5 1.08541
\(465\) 12923.0 1.28880
\(466\) 1364.73 0.135665
\(467\) 4940.70 0.489568 0.244784 0.969578i \(-0.421283\pi\)
0.244784 + 0.969578i \(0.421283\pi\)
\(468\) −2110.01 −0.208408
\(469\) −22400.5 −2.20545
\(470\) 23981.5 2.35358
\(471\) −3296.48 −0.322492
\(472\) 6514.66 0.635300
\(473\) −5740.02 −0.557984
\(474\) 3709.41 0.359449
\(475\) 15512.4 1.49844
\(476\) −5490.03 −0.528646
\(477\) 4567.04 0.438387
\(478\) 3481.54 0.333143
\(479\) −14961.9 −1.42720 −0.713599 0.700554i \(-0.752936\pi\)
−0.713599 + 0.700554i \(0.752936\pi\)
\(480\) −11423.9 −1.08630
\(481\) −297.910 −0.0282401
\(482\) 8428.34 0.796473
\(483\) 4061.92 0.382658
\(484\) 1246.24 0.117039
\(485\) 18836.6 1.76356
\(486\) −16333.6 −1.52450
\(487\) 1391.71 0.129495 0.0647477 0.997902i \(-0.479376\pi\)
0.0647477 + 0.997902i \(0.479376\pi\)
\(488\) 2761.45 0.256158
\(489\) 3689.02 0.341152
\(490\) 52641.2 4.85324
\(491\) 11733.9 1.07850 0.539249 0.842146i \(-0.318708\pi\)
0.539249 + 0.842146i \(0.318708\pi\)
\(492\) −10609.0 −0.972132
\(493\) 4574.41 0.417893
\(494\) −2597.81 −0.236601
\(495\) 4525.37 0.410909
\(496\) 11454.7 1.03696
\(497\) 16788.1 1.51519
\(498\) −5427.48 −0.488376
\(499\) −19284.7 −1.73007 −0.865034 0.501713i \(-0.832703\pi\)
−0.865034 + 0.501713i \(0.832703\pi\)
\(500\) −23663.9 −2.11656
\(501\) −7445.17 −0.663923
\(502\) −17670.5 −1.57106
\(503\) 5487.36 0.486420 0.243210 0.969974i \(-0.421800\pi\)
0.243210 + 0.969974i \(0.421800\pi\)
\(504\) 6600.83 0.583381
\(505\) −12783.8 −1.12648
\(506\) −2576.26 −0.226341
\(507\) −4981.62 −0.436374
\(508\) −3870.30 −0.338025
\(509\) −368.970 −0.0321303 −0.0160651 0.999871i \(-0.505114\pi\)
−0.0160651 + 0.999871i \(0.505114\pi\)
\(510\) −3307.75 −0.287195
\(511\) 38671.0 3.34775
\(512\) −13298.6 −1.14789
\(513\) −7265.41 −0.625294
\(514\) −7453.76 −0.639633
\(515\) 22049.2 1.88661
\(516\) −12716.8 −1.08494
\(517\) 3207.96 0.272893
\(518\) 4174.32 0.354072
\(519\) −8799.81 −0.744256
\(520\) 1810.07 0.152648
\(521\) 5539.84 0.465844 0.232922 0.972495i \(-0.425171\pi\)
0.232922 + 0.972495i \(0.425171\pi\)
\(522\) −24634.6 −2.06557
\(523\) 13532.6 1.13143 0.565717 0.824600i \(-0.308600\pi\)
0.565717 + 0.824600i \(0.308600\pi\)
\(524\) 4328.60 0.360870
\(525\) 18141.5 1.50812
\(526\) 12173.0 1.00907
\(527\) 4830.03 0.399239
\(528\) −1049.35 −0.0864908
\(529\) −9169.53 −0.753639
\(530\) −17548.3 −1.43821
\(531\) 14173.8 1.15836
\(532\) 20487.4 1.66962
\(533\) −4167.19 −0.338651
\(534\) 1618.87 0.131190
\(535\) −1584.46 −0.128041
\(536\) 7027.37 0.566299
\(537\) 3538.76 0.284374
\(538\) −8347.23 −0.668912
\(539\) 7041.72 0.562724
\(540\) 22674.4 1.80695
\(541\) −22756.5 −1.80846 −0.904231 0.427045i \(-0.859555\pi\)
−0.904231 + 0.427045i \(0.859555\pi\)
\(542\) −12853.7 −1.01866
\(543\) 1165.73 0.0921295
\(544\) −4269.71 −0.336512
\(545\) −12251.4 −0.962919
\(546\) −3038.10 −0.238130
\(547\) −9579.40 −0.748785 −0.374393 0.927270i \(-0.622149\pi\)
−0.374393 + 0.927270i \(0.622149\pi\)
\(548\) −8471.79 −0.660396
\(549\) 6008.01 0.467059
\(550\) −11506.2 −0.892046
\(551\) −17070.5 −1.31983
\(552\) −1274.29 −0.0982559
\(553\) −11490.9 −0.883622
\(554\) −8898.53 −0.682423
\(555\) 1415.53 0.108263
\(556\) 7310.26 0.557598
\(557\) 7566.06 0.575555 0.287778 0.957697i \(-0.407084\pi\)
0.287778 + 0.957697i \(0.407084\pi\)
\(558\) −26011.2 −1.97337
\(559\) −4995.16 −0.377948
\(560\) 24300.6 1.83373
\(561\) −442.471 −0.0332997
\(562\) 5513.96 0.413865
\(563\) −448.746 −0.0335922 −0.0167961 0.999859i \(-0.505347\pi\)
−0.0167961 + 0.999859i \(0.505347\pi\)
\(564\) 7107.13 0.530610
\(565\) −11578.2 −0.862123
\(566\) −14084.3 −1.04595
\(567\) 9621.42 0.712631
\(568\) −5266.67 −0.389058
\(569\) 20307.4 1.49619 0.748095 0.663592i \(-0.230969\pi\)
0.748095 + 0.663592i \(0.230969\pi\)
\(570\) 12343.6 0.907049
\(571\) −20122.7 −1.47479 −0.737397 0.675460i \(-0.763945\pi\)
−0.737397 + 0.675460i \(0.763945\pi\)
\(572\) 1084.52 0.0792761
\(573\) 2882.30 0.210140
\(574\) 58390.9 4.24597
\(575\) 13387.4 0.970946
\(576\) 16091.1 1.16399
\(577\) 4031.89 0.290901 0.145450 0.989366i \(-0.453537\pi\)
0.145450 + 0.989366i \(0.453537\pi\)
\(578\) −1236.28 −0.0889663
\(579\) −1513.43 −0.108628
\(580\) 53274.8 3.81399
\(581\) 16813.1 1.20056
\(582\) 9918.48 0.706416
\(583\) −2347.40 −0.166757
\(584\) −12131.7 −0.859609
\(585\) 3938.13 0.278327
\(586\) −14584.3 −1.02811
\(587\) −11047.0 −0.776758 −0.388379 0.921500i \(-0.626965\pi\)
−0.388379 + 0.921500i \(0.626965\pi\)
\(588\) 15600.7 1.09415
\(589\) −18024.4 −1.26092
\(590\) −54460.9 −3.80020
\(591\) −5725.08 −0.398475
\(592\) 1254.70 0.0871080
\(593\) 22153.4 1.53412 0.767058 0.641578i \(-0.221720\pi\)
0.767058 + 0.641578i \(0.221720\pi\)
\(594\) 5389.05 0.372248
\(595\) 10246.6 0.706001
\(596\) 9448.29 0.649357
\(597\) 6415.40 0.439807
\(598\) −2241.95 −0.153311
\(599\) 2802.41 0.191158 0.0955789 0.995422i \(-0.469530\pi\)
0.0955789 + 0.995422i \(0.469530\pi\)
\(600\) −5691.28 −0.387242
\(601\) 5827.74 0.395538 0.197769 0.980249i \(-0.436630\pi\)
0.197769 + 0.980249i \(0.436630\pi\)
\(602\) 69992.5 4.73867
\(603\) 15289.3 1.03255
\(604\) −20067.2 −1.35186
\(605\) −2325.98 −0.156305
\(606\) −6731.35 −0.451225
\(607\) −8011.25 −0.535694 −0.267847 0.963461i \(-0.586312\pi\)
−0.267847 + 0.963461i \(0.586312\pi\)
\(608\) 15933.4 1.06281
\(609\) −19963.7 −1.32836
\(610\) −23085.0 −1.53227
\(611\) 2791.67 0.184843
\(612\) 3747.18 0.247501
\(613\) −3144.06 −0.207158 −0.103579 0.994621i \(-0.533029\pi\)
−0.103579 + 0.994621i \(0.533029\pi\)
\(614\) 25874.2 1.70065
\(615\) 19800.6 1.29827
\(616\) −3392.74 −0.221911
\(617\) −10624.4 −0.693229 −0.346614 0.938008i \(-0.612669\pi\)
−0.346614 + 0.938008i \(0.612669\pi\)
\(618\) 11610.1 0.755706
\(619\) 7215.39 0.468516 0.234258 0.972175i \(-0.424734\pi\)
0.234258 + 0.972175i \(0.424734\pi\)
\(620\) 56251.7 3.64375
\(621\) −6270.15 −0.405173
\(622\) 18480.2 1.19130
\(623\) −5014.90 −0.322500
\(624\) −913.181 −0.0585841
\(625\) 13601.1 0.870469
\(626\) −18526.6 −1.18286
\(627\) 1651.19 0.105171
\(628\) −14349.0 −0.911764
\(629\) 529.059 0.0335373
\(630\) −55181.2 −3.48964
\(631\) −8366.27 −0.527823 −0.263911 0.964547i \(-0.585013\pi\)
−0.263911 + 0.964547i \(0.585013\pi\)
\(632\) 3604.87 0.226889
\(633\) 1950.84 0.122494
\(634\) −12565.8 −0.787145
\(635\) 7223.55 0.451429
\(636\) −5200.59 −0.324240
\(637\) 6127.94 0.381159
\(638\) 12661.9 0.785719
\(639\) −11458.6 −0.709379
\(640\) −23203.6 −1.43313
\(641\) 2949.21 0.181727 0.0908633 0.995863i \(-0.471037\pi\)
0.0908633 + 0.995863i \(0.471037\pi\)
\(642\) −834.300 −0.0512885
\(643\) 2173.33 0.133294 0.0666469 0.997777i \(-0.478770\pi\)
0.0666469 + 0.997777i \(0.478770\pi\)
\(644\) 17680.9 1.08187
\(645\) 23734.8 1.44892
\(646\) 4613.47 0.280982
\(647\) −7493.45 −0.455329 −0.227664 0.973740i \(-0.573109\pi\)
−0.227664 + 0.973740i \(0.573109\pi\)
\(648\) −3018.39 −0.182984
\(649\) −7285.13 −0.440626
\(650\) −10013.1 −0.604223
\(651\) −21079.2 −1.26906
\(652\) 16057.7 0.964519
\(653\) 12606.2 0.755464 0.377732 0.925915i \(-0.376704\pi\)
0.377732 + 0.925915i \(0.376704\pi\)
\(654\) −6450.99 −0.385709
\(655\) −8078.93 −0.481939
\(656\) 17550.9 1.04458
\(657\) −26394.5 −1.56735
\(658\) −39117.1 −2.31754
\(659\) −1850.16 −0.109366 −0.0546829 0.998504i \(-0.517415\pi\)
−0.0546829 + 0.998504i \(0.517415\pi\)
\(660\) −5153.13 −0.303917
\(661\) 1824.25 0.107345 0.0536725 0.998559i \(-0.482907\pi\)
0.0536725 + 0.998559i \(0.482907\pi\)
\(662\) −1546.75 −0.0908099
\(663\) −385.053 −0.0225554
\(664\) −5274.52 −0.308269
\(665\) −38237.7 −2.22977
\(666\) −2849.15 −0.165769
\(667\) −14732.1 −0.855214
\(668\) −32407.5 −1.87707
\(669\) 5443.65 0.314594
\(670\) −58747.0 −3.38746
\(671\) −3088.04 −0.177664
\(672\) 18633.9 1.06967
\(673\) 24526.8 1.40481 0.702407 0.711775i \(-0.252109\pi\)
0.702407 + 0.711775i \(0.252109\pi\)
\(674\) 447.556 0.0255774
\(675\) −28004.0 −1.59685
\(676\) −21684.1 −1.23374
\(677\) −1416.13 −0.0803933 −0.0401966 0.999192i \(-0.512798\pi\)
−0.0401966 + 0.999192i \(0.512798\pi\)
\(678\) −6096.55 −0.345334
\(679\) −30725.1 −1.73656
\(680\) −3214.52 −0.181281
\(681\) −11328.8 −0.637478
\(682\) 13369.4 0.750647
\(683\) −7548.58 −0.422896 −0.211448 0.977389i \(-0.567818\pi\)
−0.211448 + 0.977389i \(0.567818\pi\)
\(684\) −13983.5 −0.781683
\(685\) 15811.8 0.881952
\(686\) −39858.0 −2.21834
\(687\) −4539.04 −0.252075
\(688\) 21038.1 1.16580
\(689\) −2042.79 −0.112952
\(690\) 10652.7 0.587742
\(691\) 31187.4 1.71697 0.858484 0.512840i \(-0.171407\pi\)
0.858484 + 0.512840i \(0.171407\pi\)
\(692\) −38304.1 −2.10419
\(693\) −7381.49 −0.404617
\(694\) 17174.1 0.939367
\(695\) −13643.9 −0.744666
\(696\) 6262.92 0.341085
\(697\) 7400.54 0.402174
\(698\) −27933.8 −1.51477
\(699\) −754.870 −0.0408467
\(700\) 78967.0 4.26382
\(701\) −29758.7 −1.60338 −0.801691 0.597739i \(-0.796066\pi\)
−0.801691 + 0.597739i \(0.796066\pi\)
\(702\) 4689.74 0.252141
\(703\) −1974.31 −0.105921
\(704\) −8270.60 −0.442770
\(705\) −13264.8 −0.708625
\(706\) −50066.9 −2.66897
\(707\) 20852.2 1.10923
\(708\) −16140.0 −0.856748
\(709\) 31626.1 1.67524 0.837618 0.546257i \(-0.183948\pi\)
0.837618 + 0.546257i \(0.183948\pi\)
\(710\) 44028.1 2.32724
\(711\) 7843.02 0.413693
\(712\) 1573.25 0.0828090
\(713\) −15555.3 −0.817040
\(714\) 5395.39 0.282797
\(715\) −2024.15 −0.105872
\(716\) 15403.6 0.803995
\(717\) −1925.73 −0.100304
\(718\) 5243.92 0.272565
\(719\) −10826.3 −0.561550 −0.280775 0.959774i \(-0.590592\pi\)
−0.280775 + 0.959774i \(0.590592\pi\)
\(720\) −16586.2 −0.858513
\(721\) −35965.3 −1.85772
\(722\) 12125.1 0.624999
\(723\) −4661.93 −0.239805
\(724\) 5074.23 0.260473
\(725\) −65797.0 −3.37054
\(726\) −1224.75 −0.0626099
\(727\) 9452.05 0.482197 0.241098 0.970501i \(-0.422492\pi\)
0.241098 + 0.970501i \(0.422492\pi\)
\(728\) −2952.48 −0.150311
\(729\) 749.549 0.0380810
\(730\) 101418. 5.14197
\(731\) 8870.94 0.448842
\(732\) −6841.45 −0.345447
\(733\) −24006.9 −1.20971 −0.604854 0.796337i \(-0.706768\pi\)
−0.604854 + 0.796337i \(0.706768\pi\)
\(734\) −26944.8 −1.35497
\(735\) −29117.2 −1.46123
\(736\) 13750.8 0.688668
\(737\) −7858.48 −0.392769
\(738\) −39854.2 −1.98788
\(739\) 26667.0 1.32742 0.663709 0.747990i \(-0.268981\pi\)
0.663709 + 0.747990i \(0.268981\pi\)
\(740\) 6161.57 0.306086
\(741\) 1436.92 0.0712368
\(742\) 28623.7 1.41618
\(743\) 2551.64 0.125990 0.0629950 0.998014i \(-0.479935\pi\)
0.0629950 + 0.998014i \(0.479935\pi\)
\(744\) 6612.88 0.325860
\(745\) −17634.3 −0.867211
\(746\) 1293.89 0.0635023
\(747\) −11475.6 −0.562076
\(748\) −1926.00 −0.0941465
\(749\) 2584.47 0.126081
\(750\) 23256.0 1.13225
\(751\) 30066.8 1.46092 0.730462 0.682953i \(-0.239305\pi\)
0.730462 + 0.682953i \(0.239305\pi\)
\(752\) −11757.7 −0.570157
\(753\) 9774.03 0.473022
\(754\) 11018.8 0.532203
\(755\) 37453.5 1.80539
\(756\) −36985.1 −1.77928
\(757\) 5853.78 0.281056 0.140528 0.990077i \(-0.455120\pi\)
0.140528 + 0.990077i \(0.455120\pi\)
\(758\) 44654.5 2.13974
\(759\) 1424.99 0.0681476
\(760\) 11995.7 0.572541
\(761\) −2342.76 −0.111596 −0.0557982 0.998442i \(-0.517770\pi\)
−0.0557982 + 0.998442i \(0.517770\pi\)
\(762\) 3803.58 0.180826
\(763\) 19983.7 0.948175
\(764\) 12546.2 0.594116
\(765\) −6993.75 −0.330535
\(766\) −27502.1 −1.29725
\(767\) −6339.77 −0.298456
\(768\) 2014.45 0.0946486
\(769\) 40493.5 1.89887 0.949437 0.313957i \(-0.101655\pi\)
0.949437 + 0.313957i \(0.101655\pi\)
\(770\) 28362.5 1.32742
\(771\) 4122.87 0.192583
\(772\) −6587.69 −0.307119
\(773\) −35472.5 −1.65053 −0.825264 0.564747i \(-0.808974\pi\)
−0.825264 + 0.564747i \(0.808974\pi\)
\(774\) −47772.8 −2.21855
\(775\) −69473.6 −3.22009
\(776\) 9638.94 0.445899
\(777\) −2308.93 −0.106605
\(778\) −34254.8 −1.57853
\(779\) −27616.9 −1.27019
\(780\) −4484.43 −0.205857
\(781\) 5889.55 0.269840
\(782\) 3981.49 0.182069
\(783\) 30816.8 1.40651
\(784\) −25809.0 −1.17570
\(785\) 26781.1 1.21765
\(786\) −4253.98 −0.193046
\(787\) 43218.2 1.95751 0.978757 0.205025i \(-0.0657277\pi\)
0.978757 + 0.205025i \(0.0657277\pi\)
\(788\) −24920.3 −1.12659
\(789\) −6733.21 −0.303813
\(790\) −30135.8 −1.35719
\(791\) 18885.7 0.848922
\(792\) 2315.69 0.103894
\(793\) −2687.32 −0.120340
\(794\) 57771.5 2.58216
\(795\) 9706.41 0.433020
\(796\) 27925.1 1.24344
\(797\) −36326.6 −1.61450 −0.807249 0.590211i \(-0.799044\pi\)
−0.807249 + 0.590211i \(0.799044\pi\)
\(798\) −20134.2 −0.893160
\(799\) −4957.75 −0.219515
\(800\) 61414.2 2.71415
\(801\) 3422.87 0.150988
\(802\) −48357.4 −2.12912
\(803\) 13566.5 0.596201
\(804\) −17410.2 −0.763695
\(805\) −32999.6 −1.44483
\(806\) 11634.5 0.508447
\(807\) 4617.07 0.201398
\(808\) −6541.64 −0.284819
\(809\) −30002.5 −1.30387 −0.651935 0.758275i \(-0.726042\pi\)
−0.651935 + 0.758275i \(0.726042\pi\)
\(810\) 25232.9 1.09456
\(811\) −44880.2 −1.94323 −0.971613 0.236575i \(-0.923975\pi\)
−0.971613 + 0.236575i \(0.923975\pi\)
\(812\) −86898.6 −3.75559
\(813\) 7109.73 0.306702
\(814\) 1464.43 0.0630566
\(815\) −29970.1 −1.28811
\(816\) 1621.72 0.0695732
\(817\) −33104.0 −1.41758
\(818\) −59286.0 −2.53409
\(819\) −6423.63 −0.274066
\(820\) 86188.7 3.67053
\(821\) 3476.58 0.147788 0.0738938 0.997266i \(-0.476457\pi\)
0.0738938 + 0.997266i \(0.476457\pi\)
\(822\) 8325.74 0.353277
\(823\) −19017.8 −0.805489 −0.402745 0.915312i \(-0.631944\pi\)
−0.402745 + 0.915312i \(0.631944\pi\)
\(824\) 11282.9 0.477011
\(825\) 6364.37 0.268581
\(826\) 88833.2 3.74201
\(827\) 4177.49 0.175654 0.0878269 0.996136i \(-0.472008\pi\)
0.0878269 + 0.996136i \(0.472008\pi\)
\(828\) −12067.9 −0.506509
\(829\) 3643.41 0.152643 0.0763215 0.997083i \(-0.475682\pi\)
0.0763215 + 0.997083i \(0.475682\pi\)
\(830\) 44093.6 1.84399
\(831\) 4922.01 0.205466
\(832\) −7197.36 −0.299908
\(833\) −10882.7 −0.452655
\(834\) −7184.24 −0.298285
\(835\) 60485.6 2.50681
\(836\) 7187.33 0.297343
\(837\) 32538.7 1.34373
\(838\) 20273.6 0.835729
\(839\) 25975.8 1.06887 0.534437 0.845208i \(-0.320524\pi\)
0.534437 + 0.845208i \(0.320524\pi\)
\(840\) 14028.8 0.576240
\(841\) 48016.7 1.96879
\(842\) 46435.5 1.90056
\(843\) −3049.91 −0.124608
\(844\) 8491.66 0.346321
\(845\) 40471.4 1.64764
\(846\) 26699.0 1.08503
\(847\) 3793.99 0.153912
\(848\) 8603.59 0.348406
\(849\) 7790.40 0.314919
\(850\) 17782.3 0.717562
\(851\) −1703.86 −0.0686339
\(852\) 13048.1 0.524672
\(853\) −14464.1 −0.580586 −0.290293 0.956938i \(-0.593753\pi\)
−0.290293 + 0.956938i \(0.593753\pi\)
\(854\) 37654.8 1.50881
\(855\) 26098.8 1.04393
\(856\) −810.787 −0.0323740
\(857\) 24320.5 0.969395 0.484697 0.874682i \(-0.338930\pi\)
0.484697 + 0.874682i \(0.338930\pi\)
\(858\) −1065.82 −0.0424085
\(859\) −17007.9 −0.675553 −0.337777 0.941226i \(-0.609675\pi\)
−0.337777 + 0.941226i \(0.609675\pi\)
\(860\) 103313. 4.09646
\(861\) −32297.5 −1.27839
\(862\) −33999.7 −1.34343
\(863\) 5113.63 0.201703 0.100852 0.994901i \(-0.467843\pi\)
0.100852 + 0.994901i \(0.467843\pi\)
\(864\) −28764.0 −1.13261
\(865\) 71490.9 2.81013
\(866\) −45054.2 −1.76790
\(867\) 683.819 0.0267863
\(868\) −91754.3 −3.58795
\(869\) −4031.21 −0.157364
\(870\) −52356.4 −2.04028
\(871\) −6838.72 −0.266040
\(872\) −6269.18 −0.243465
\(873\) 20971.2 0.813020
\(874\) −14857.9 −0.575028
\(875\) −72041.5 −2.78337
\(876\) 30056.0 1.15925
\(877\) −6992.34 −0.269230 −0.134615 0.990898i \(-0.542980\pi\)
−0.134615 + 0.990898i \(0.542980\pi\)
\(878\) 31116.7 1.19605
\(879\) 8066.96 0.309547
\(880\) 8525.07 0.326568
\(881\) 15036.1 0.575006 0.287503 0.957780i \(-0.407175\pi\)
0.287503 + 0.957780i \(0.407175\pi\)
\(882\) 58606.5 2.23739
\(883\) 19340.5 0.737102 0.368551 0.929608i \(-0.379854\pi\)
0.368551 + 0.929608i \(0.379854\pi\)
\(884\) −1676.07 −0.0637697
\(885\) 30123.7 1.14418
\(886\) −64812.1 −2.45757
\(887\) −52364.7 −1.98223 −0.991113 0.133021i \(-0.957532\pi\)
−0.991113 + 0.133021i \(0.957532\pi\)
\(888\) 724.345 0.0273732
\(889\) −11782.6 −0.444517
\(890\) −13152.0 −0.495343
\(891\) 3375.36 0.126912
\(892\) 23695.3 0.889436
\(893\) 18501.0 0.693296
\(894\) −9285.41 −0.347372
\(895\) −28749.4 −1.07373
\(896\) 37848.3 1.41119
\(897\) 1240.08 0.0461595
\(898\) −5662.21 −0.210413
\(899\) 76451.7 2.83627
\(900\) −53898.2 −1.99623
\(901\) 3627.80 0.134139
\(902\) 20484.6 0.756165
\(903\) −38714.7 −1.42674
\(904\) −5924.72 −0.217979
\(905\) −9470.57 −0.347859
\(906\) 19721.2 0.723173
\(907\) −29867.5 −1.09342 −0.546712 0.837321i \(-0.684121\pi\)
−0.546712 + 0.837321i \(0.684121\pi\)
\(908\) −49312.5 −1.80231
\(909\) −14232.5 −0.519319
\(910\) 24682.0 0.899121
\(911\) −36681.6 −1.33405 −0.667023 0.745037i \(-0.732432\pi\)
−0.667023 + 0.745037i \(0.732432\pi\)
\(912\) −6051.85 −0.219733
\(913\) 5898.32 0.213807
\(914\) 10424.7 0.377262
\(915\) 12768.9 0.461341
\(916\) −19757.7 −0.712677
\(917\) 13177.8 0.474559
\(918\) −8328.53 −0.299436
\(919\) −676.538 −0.0242839 −0.0121420 0.999926i \(-0.503865\pi\)
−0.0121420 + 0.999926i \(0.503865\pi\)
\(920\) 10352.5 0.370991
\(921\) −14311.7 −0.512038
\(922\) 37422.7 1.33671
\(923\) 5125.29 0.182775
\(924\) 8405.47 0.299264
\(925\) −7609.83 −0.270497
\(926\) 33265.7 1.18054
\(927\) 24547.8 0.869748
\(928\) −67582.7 −2.39064
\(929\) −38793.7 −1.37005 −0.685027 0.728518i \(-0.740210\pi\)
−0.685027 + 0.728518i \(0.740210\pi\)
\(930\) −55282.0 −1.94921
\(931\) 40611.2 1.42962
\(932\) −3285.82 −0.115484
\(933\) −10221.9 −0.358680
\(934\) −21135.3 −0.740436
\(935\) 3594.70 0.125732
\(936\) 2015.19 0.0703724
\(937\) 13087.1 0.456281 0.228141 0.973628i \(-0.426735\pi\)
0.228141 + 0.973628i \(0.426735\pi\)
\(938\) 95824.5 3.33559
\(939\) 10247.6 0.356141
\(940\) −57739.3 −2.00346
\(941\) −24931.5 −0.863703 −0.431852 0.901945i \(-0.642140\pi\)
−0.431852 + 0.901945i \(0.642140\pi\)
\(942\) 14101.6 0.487745
\(943\) −23833.7 −0.823046
\(944\) 26701.1 0.920601
\(945\) 69029.1 2.37621
\(946\) 24554.6 0.843910
\(947\) 18201.9 0.624587 0.312293 0.949986i \(-0.398903\pi\)
0.312293 + 0.949986i \(0.398903\pi\)
\(948\) −8931.02 −0.305977
\(949\) 11806.0 0.403834
\(950\) −66358.8 −2.26628
\(951\) 6950.45 0.236997
\(952\) 5243.33 0.178505
\(953\) 23365.4 0.794208 0.397104 0.917774i \(-0.370015\pi\)
0.397104 + 0.917774i \(0.370015\pi\)
\(954\) −19536.8 −0.663028
\(955\) −23416.2 −0.793436
\(956\) −8382.38 −0.283583
\(957\) −7003.62 −0.236567
\(958\) 64004.0 2.15853
\(959\) −25791.2 −0.868447
\(960\) 34198.6 1.14975
\(961\) 50932.7 1.70967
\(962\) 1274.39 0.0427111
\(963\) −1764.01 −0.0590284
\(964\) −20292.6 −0.677988
\(965\) 12295.3 0.410155
\(966\) −17376.1 −0.578743
\(967\) −54197.2 −1.80234 −0.901170 0.433465i \(-0.857291\pi\)
−0.901170 + 0.433465i \(0.857291\pi\)
\(968\) −1190.23 −0.0395202
\(969\) −2551.83 −0.0845992
\(970\) −80579.1 −2.66726
\(971\) −52126.5 −1.72278 −0.861391 0.507943i \(-0.830406\pi\)
−0.861391 + 0.507943i \(0.830406\pi\)
\(972\) 39325.8 1.29771
\(973\) 22255.1 0.733264
\(974\) −5953.43 −0.195852
\(975\) 5538.49 0.181922
\(976\) 11318.1 0.371193
\(977\) −8648.15 −0.283192 −0.141596 0.989925i \(-0.545223\pi\)
−0.141596 + 0.989925i \(0.545223\pi\)
\(978\) −15780.8 −0.515967
\(979\) −1759.31 −0.0574340
\(980\) −126742. −4.13126
\(981\) −13639.7 −0.443916
\(982\) −50195.1 −1.63115
\(983\) 7430.21 0.241085 0.120543 0.992708i \(-0.461537\pi\)
0.120543 + 0.992708i \(0.461537\pi\)
\(984\) 10132.2 0.328256
\(985\) 46511.4 1.50454
\(986\) −19568.4 −0.632032
\(987\) 21636.7 0.697774
\(988\) 6254.66 0.201404
\(989\) −28569.2 −0.918552
\(990\) −19358.6 −0.621470
\(991\) 19080.2 0.611608 0.305804 0.952094i \(-0.401075\pi\)
0.305804 + 0.952094i \(0.401075\pi\)
\(992\) −71359.2 −2.28393
\(993\) 855.547 0.0273414
\(994\) −71815.8 −2.29161
\(995\) −52119.6 −1.66061
\(996\) 13067.5 0.415724
\(997\) 16879.5 0.536189 0.268095 0.963393i \(-0.413606\pi\)
0.268095 + 0.963393i \(0.413606\pi\)
\(998\) 82496.1 2.61660
\(999\) 3564.15 0.112878
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 187.4.a.d.1.3 10
3.2 odd 2 1683.4.a.m.1.8 10
11.10 odd 2 2057.4.a.i.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.a.d.1.3 10 1.1 even 1 trivial
1683.4.a.m.1.8 10 3.2 odd 2
2057.4.a.i.1.8 10 11.10 odd 2