Properties

Label 1860.2.q.h.1141.3
Level $1860$
Weight $2$
Character 1860.1141
Analytic conductor $14.852$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(1141,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.1141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,0,-4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.102293147889.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 9x^{6} + 31x^{4} - 9x^{3} + 45x^{2} + 20x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1141.3
Root \(-0.285090 - 0.493791i\) of defining polynomial
Character \(\chi\) \(=\) 1860.1141
Dual form 1860.2.q.h.1741.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(1.28509 + 2.22584i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-1.07018 + 1.85361i) q^{11} +(-2.98984 + 5.17855i) q^{13} -1.00000 q^{15} +(-2.17021 - 3.75892i) q^{17} +(-1.98984 - 3.44650i) q^{19} +(-1.28509 + 2.22584i) q^{21} -7.65457 q^{23} +(-0.500000 - 0.866025i) q^{25} -1.00000 q^{27} +0.639247 q^{29} +(5.34511 + 1.55879i) q^{31} -2.14036 q^{33} -2.57018 q^{35} +(0.285090 + 0.493791i) q^{37} -5.97967 q^{39} +(0.402947 - 0.697925i) q^{41} +(-3.60769 - 6.24871i) q^{43} +(-0.500000 - 0.866025i) q^{45} -0.229753 q^{47} +(0.197086 - 0.341363i) q^{49} +(2.17021 - 3.75892i) q^{51} +(5.76008 - 9.97676i) q^{53} +(-1.07018 - 1.85361i) q^{55} +(1.98984 - 3.44650i) q^{57} +(2.25242 + 3.90131i) q^{59} +0.358525 q^{61} -2.57018 q^{63} +(-2.98984 - 5.17855i) q^{65} +(-2.12254 + 3.67634i) q^{67} +(-3.82728 - 6.62905i) q^{69} +(-5.55534 + 9.62213i) q^{71} +(-5.50655 + 9.53762i) q^{73} +(0.500000 - 0.866025i) q^{75} -5.50111 q^{77} +(7.60221 + 13.1674i) q^{79} +(-0.500000 - 0.866025i) q^{81} +(5.33027 - 9.23229i) q^{83} +4.34043 q^{85} +(0.319623 + 0.553604i) q^{87} +3.50708 q^{89} -15.3688 q^{91} +(1.32260 + 5.40839i) q^{93} +3.97967 q^{95} -8.22475 q^{97} +(-1.07018 - 1.85361i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 4 q^{5} + 6 q^{7} - 4 q^{9} - q^{13} - 8 q^{15} - 7 q^{17} + 7 q^{19} - 6 q^{21} + 10 q^{23} - 4 q^{25} - 8 q^{27} - 20 q^{29} + 7 q^{31} - 12 q^{35} - 2 q^{37} - 2 q^{39} - 3 q^{41} - 4 q^{43}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.28509 + 2.22584i 0.485718 + 0.841289i 0.999865 0.0164131i \(-0.00522469\pi\)
−0.514147 + 0.857702i \(0.671891\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.07018 + 1.85361i −0.322672 + 0.558884i −0.981038 0.193814i \(-0.937914\pi\)
0.658367 + 0.752697i \(0.271248\pi\)
\(12\) 0 0
\(13\) −2.98984 + 5.17855i −0.829232 + 1.43627i 0.0694101 + 0.997588i \(0.477888\pi\)
−0.898642 + 0.438683i \(0.855445\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −2.17021 3.75892i −0.526354 0.911672i −0.999529 0.0307034i \(-0.990225\pi\)
0.473174 0.880969i \(-0.343108\pi\)
\(18\) 0 0
\(19\) −1.98984 3.44650i −0.456500 0.790681i 0.542273 0.840202i \(-0.317564\pi\)
−0.998773 + 0.0495211i \(0.984230\pi\)
\(20\) 0 0
\(21\) −1.28509 + 2.22584i −0.280430 + 0.485718i
\(22\) 0 0
\(23\) −7.65457 −1.59609 −0.798044 0.602599i \(-0.794132\pi\)
−0.798044 + 0.602599i \(0.794132\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0.639247 0.118705 0.0593526 0.998237i \(-0.481096\pi\)
0.0593526 + 0.998237i \(0.481096\pi\)
\(30\) 0 0
\(31\) 5.34511 + 1.55879i 0.960010 + 0.279967i
\(32\) 0 0
\(33\) −2.14036 −0.372589
\(34\) 0 0
\(35\) −2.57018 −0.434440
\(36\) 0 0
\(37\) 0.285090 + 0.493791i 0.0468686 + 0.0811787i 0.888508 0.458861i \(-0.151742\pi\)
−0.841639 + 0.540040i \(0.818409\pi\)
\(38\) 0 0
\(39\) −5.97967 −0.957514
\(40\) 0 0
\(41\) 0.402947 0.697925i 0.0629298 0.108998i −0.832844 0.553508i \(-0.813289\pi\)
0.895774 + 0.444510i \(0.146622\pi\)
\(42\) 0 0
\(43\) −3.60769 6.24871i −0.550168 0.952919i −0.998262 0.0589327i \(-0.981230\pi\)
0.448094 0.893987i \(-0.352103\pi\)
\(44\) 0 0
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 0 0
\(47\) −0.229753 −0.0335129 −0.0167564 0.999860i \(-0.505334\pi\)
−0.0167564 + 0.999860i \(0.505334\pi\)
\(48\) 0 0
\(49\) 0.197086 0.341363i 0.0281551 0.0487661i
\(50\) 0 0
\(51\) 2.17021 3.75892i 0.303891 0.526354i
\(52\) 0 0
\(53\) 5.76008 9.97676i 0.791208 1.37041i −0.134011 0.990980i \(-0.542786\pi\)
0.925219 0.379433i \(-0.123881\pi\)
\(54\) 0 0
\(55\) −1.07018 1.85361i −0.144303 0.249940i
\(56\) 0 0
\(57\) 1.98984 3.44650i 0.263560 0.456500i
\(58\) 0 0
\(59\) 2.25242 + 3.90131i 0.293241 + 0.507908i 0.974574 0.224066i \(-0.0719330\pi\)
−0.681334 + 0.731973i \(0.738600\pi\)
\(60\) 0 0
\(61\) 0.358525 0.0459044 0.0229522 0.999737i \(-0.492693\pi\)
0.0229522 + 0.999737i \(0.492693\pi\)
\(62\) 0 0
\(63\) −2.57018 −0.323812
\(64\) 0 0
\(65\) −2.98984 5.17855i −0.370844 0.642320i
\(66\) 0 0
\(67\) −2.12254 + 3.67634i −0.259309 + 0.449137i −0.966057 0.258329i \(-0.916828\pi\)
0.706748 + 0.707466i \(0.250162\pi\)
\(68\) 0 0
\(69\) −3.82728 6.62905i −0.460751 0.798044i
\(70\) 0 0
\(71\) −5.55534 + 9.62213i −0.659297 + 1.14194i 0.321501 + 0.946909i \(0.395813\pi\)
−0.980798 + 0.195027i \(0.937521\pi\)
\(72\) 0 0
\(73\) −5.50655 + 9.53762i −0.644493 + 1.11629i 0.339926 + 0.940452i \(0.389598\pi\)
−0.984418 + 0.175842i \(0.943735\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) −5.50111 −0.626910
\(78\) 0 0
\(79\) 7.60221 + 13.1674i 0.855316 + 1.48145i 0.876352 + 0.481671i \(0.159970\pi\)
−0.0210362 + 0.999779i \(0.506697\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 5.33027 9.23229i 0.585073 1.01338i −0.409794 0.912178i \(-0.634399\pi\)
0.994866 0.101197i \(-0.0322673\pi\)
\(84\) 0 0
\(85\) 4.34043 0.470785
\(86\) 0 0
\(87\) 0.319623 + 0.553604i 0.0342672 + 0.0593526i
\(88\) 0 0
\(89\) 3.50708 0.371749 0.185875 0.982573i \(-0.440488\pi\)
0.185875 + 0.982573i \(0.440488\pi\)
\(90\) 0 0
\(91\) −15.3688 −1.61109
\(92\) 0 0
\(93\) 1.32260 + 5.40839i 0.137148 + 0.560824i
\(94\) 0 0
\(95\) 3.97967 0.408306
\(96\) 0 0
\(97\) −8.22475 −0.835097 −0.417548 0.908655i \(-0.637111\pi\)
−0.417548 + 0.908655i \(0.637111\pi\)
\(98\) 0 0
\(99\) −1.07018 1.85361i −0.107557 0.186295i
\(100\) 0 0
\(101\) −17.8793 −1.77906 −0.889529 0.456878i \(-0.848968\pi\)
−0.889529 + 0.456878i \(0.848968\pi\)
\(102\) 0 0
\(103\) −4.61349 + 7.99080i −0.454581 + 0.787357i −0.998664 0.0516745i \(-0.983544\pi\)
0.544083 + 0.839031i \(0.316878\pi\)
\(104\) 0 0
\(105\) −1.28509 2.22584i −0.125412 0.217220i
\(106\) 0 0
\(107\) −8.70804 15.0828i −0.841838 1.45811i −0.888339 0.459188i \(-0.848140\pi\)
0.0465012 0.998918i \(-0.485193\pi\)
\(108\) 0 0
\(109\) −1.82399 −0.174707 −0.0873534 0.996177i \(-0.527841\pi\)
−0.0873534 + 0.996177i \(0.527841\pi\)
\(110\) 0 0
\(111\) −0.285090 + 0.493791i −0.0270596 + 0.0468686i
\(112\) 0 0
\(113\) −5.37608 + 9.31164i −0.505739 + 0.875965i 0.494239 + 0.869326i \(0.335447\pi\)
−0.999978 + 0.00663911i \(0.997887\pi\)
\(114\) 0 0
\(115\) 3.82728 6.62905i 0.356896 0.618162i
\(116\) 0 0
\(117\) −2.98984 5.17855i −0.276411 0.478757i
\(118\) 0 0
\(119\) 5.57784 9.66110i 0.511320 0.885632i
\(120\) 0 0
\(121\) 3.20943 + 5.55889i 0.291766 + 0.505354i
\(122\) 0 0
\(123\) 0.805895 0.0726651
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.1677 + 19.3430i 0.990974 + 1.71642i 0.611580 + 0.791182i \(0.290534\pi\)
0.379394 + 0.925235i \(0.376132\pi\)
\(128\) 0 0
\(129\) 3.60769 6.24871i 0.317640 0.550168i
\(130\) 0 0
\(131\) 3.75524 + 6.50426i 0.328097 + 0.568280i 0.982134 0.188182i \(-0.0602595\pi\)
−0.654038 + 0.756462i \(0.726926\pi\)
\(132\) 0 0
\(133\) 5.11424 8.85813i 0.443461 0.768097i
\(134\) 0 0
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) 0 0
\(137\) 5.74226 9.94589i 0.490594 0.849735i −0.509347 0.860561i \(-0.670113\pi\)
0.999941 + 0.0108268i \(0.00344633\pi\)
\(138\) 0 0
\(139\) 1.20943 0.102582 0.0512911 0.998684i \(-0.483666\pi\)
0.0512911 + 0.998684i \(0.483666\pi\)
\(140\) 0 0
\(141\) −0.114876 0.198972i −0.00967434 0.0167564i
\(142\) 0 0
\(143\) −6.39933 11.0840i −0.535139 0.926888i
\(144\) 0 0
\(145\) −0.319623 + 0.553604i −0.0265433 + 0.0459743i
\(146\) 0 0
\(147\) 0.394172 0.0325108
\(148\) 0 0
\(149\) 2.50187 + 4.33336i 0.204961 + 0.355003i 0.950120 0.311884i \(-0.100960\pi\)
−0.745159 + 0.666886i \(0.767627\pi\)
\(150\) 0 0
\(151\) −1.06567 −0.0867228 −0.0433614 0.999059i \(-0.513807\pi\)
−0.0433614 + 0.999059i \(0.513807\pi\)
\(152\) 0 0
\(153\) 4.34043 0.350903
\(154\) 0 0
\(155\) −4.02250 + 3.84961i −0.323095 + 0.309208i
\(156\) 0 0
\(157\) −22.5842 −1.80242 −0.901209 0.433385i \(-0.857319\pi\)
−0.901209 + 0.433385i \(0.857319\pi\)
\(158\) 0 0
\(159\) 11.5202 0.913609
\(160\) 0 0
\(161\) −9.83681 17.0379i −0.775249 1.34277i
\(162\) 0 0
\(163\) −14.7318 −1.15389 −0.576943 0.816785i \(-0.695754\pi\)
−0.576943 + 0.816785i \(0.695754\pi\)
\(164\) 0 0
\(165\) 1.07018 1.85361i 0.0833134 0.144303i
\(166\) 0 0
\(167\) 0.560018 + 0.969979i 0.0433355 + 0.0750592i 0.886880 0.462001i \(-0.152868\pi\)
−0.843544 + 0.537060i \(0.819535\pi\)
\(168\) 0 0
\(169\) −11.3783 19.7077i −0.875250 1.51598i
\(170\) 0 0
\(171\) 3.97967 0.304333
\(172\) 0 0
\(173\) −5.65128 + 9.78830i −0.429659 + 0.744190i −0.996843 0.0794005i \(-0.974699\pi\)
0.567184 + 0.823591i \(0.308033\pi\)
\(174\) 0 0
\(175\) 1.28509 2.22584i 0.0971437 0.168258i
\(176\) 0 0
\(177\) −2.25242 + 3.90131i −0.169303 + 0.293241i
\(178\) 0 0
\(179\) 3.25572 + 5.63907i 0.243344 + 0.421484i 0.961665 0.274228i \(-0.0884224\pi\)
−0.718321 + 0.695712i \(0.755089\pi\)
\(180\) 0 0
\(181\) 2.57784 4.46495i 0.191609 0.331877i −0.754174 0.656674i \(-0.771963\pi\)
0.945784 + 0.324797i \(0.105296\pi\)
\(182\) 0 0
\(183\) 0.179262 + 0.310491i 0.0132515 + 0.0229522i
\(184\) 0 0
\(185\) −0.570181 −0.0419205
\(186\) 0 0
\(187\) 9.29008 0.679358
\(188\) 0 0
\(189\) −1.28509 2.22584i −0.0934766 0.161906i
\(190\) 0 0
\(191\) −7.22007 + 12.5055i −0.522426 + 0.904868i 0.477234 + 0.878776i \(0.341640\pi\)
−0.999660 + 0.0260917i \(0.991694\pi\)
\(192\) 0 0
\(193\) 9.75822 + 16.9017i 0.702412 + 1.21661i 0.967617 + 0.252421i \(0.0812269\pi\)
−0.265206 + 0.964192i \(0.585440\pi\)
\(194\) 0 0
\(195\) 2.98984 5.17855i 0.214107 0.370844i
\(196\) 0 0
\(197\) −7.11237 + 12.3190i −0.506736 + 0.877692i 0.493234 + 0.869897i \(0.335815\pi\)
−0.999970 + 0.00779527i \(0.997519\pi\)
\(198\) 0 0
\(199\) 9.67489 16.7574i 0.685835 1.18790i −0.287339 0.957829i \(-0.592770\pi\)
0.973174 0.230072i \(-0.0738962\pi\)
\(200\) 0 0
\(201\) −4.24507 −0.299424
\(202\) 0 0
\(203\) 0.821490 + 1.42286i 0.0576573 + 0.0998653i
\(204\) 0 0
\(205\) 0.402947 + 0.697925i 0.0281431 + 0.0487452i
\(206\) 0 0
\(207\) 3.82728 6.62905i 0.266015 0.460751i
\(208\) 0 0
\(209\) 8.51794 0.589198
\(210\) 0 0
\(211\) 10.9229 + 18.9191i 0.751967 + 1.30244i 0.946868 + 0.321622i \(0.104228\pi\)
−0.194901 + 0.980823i \(0.562439\pi\)
\(212\) 0 0
\(213\) −11.1107 −0.761291
\(214\) 0 0
\(215\) 7.21539 0.492085
\(216\) 0 0
\(217\) 3.39933 + 13.9005i 0.230762 + 0.943631i
\(218\) 0 0
\(219\) −11.0131 −0.744196
\(220\) 0 0
\(221\) 25.9543 1.74588
\(222\) 0 0
\(223\) 11.7669 + 20.3809i 0.787973 + 1.36481i 0.927207 + 0.374549i \(0.122203\pi\)
−0.139234 + 0.990259i \(0.544464\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 9.04517 15.6667i 0.600349 1.03984i −0.392419 0.919787i \(-0.628362\pi\)
0.992768 0.120049i \(-0.0383051\pi\)
\(228\) 0 0
\(229\) −4.70943 8.15697i −0.311208 0.539028i 0.667416 0.744685i \(-0.267400\pi\)
−0.978624 + 0.205657i \(0.934067\pi\)
\(230\) 0 0
\(231\) −2.75056 4.76410i −0.180973 0.313455i
\(232\) 0 0
\(233\) −27.7159 −1.81573 −0.907863 0.419267i \(-0.862287\pi\)
−0.907863 + 0.419267i \(0.862287\pi\)
\(234\) 0 0
\(235\) 0.114876 0.198972i 0.00749371 0.0129795i
\(236\) 0 0
\(237\) −7.60221 + 13.1674i −0.493817 + 0.855316i
\(238\) 0 0
\(239\) 7.27774 12.6054i 0.470758 0.815377i −0.528683 0.848820i \(-0.677314\pi\)
0.999441 + 0.0334429i \(0.0106472\pi\)
\(240\) 0 0
\(241\) 6.30807 + 10.9259i 0.406339 + 0.703799i 0.994476 0.104962i \(-0.0334720\pi\)
−0.588138 + 0.808761i \(0.700139\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0.197086 + 0.341363i 0.0125914 + 0.0218089i
\(246\) 0 0
\(247\) 23.7972 1.51418
\(248\) 0 0
\(249\) 10.6605 0.675584
\(250\) 0 0
\(251\) 5.11488 + 8.85923i 0.322848 + 0.559189i 0.981074 0.193631i \(-0.0620264\pi\)
−0.658226 + 0.752820i \(0.728693\pi\)
\(252\) 0 0
\(253\) 8.19177 14.1886i 0.515012 0.892027i
\(254\) 0 0
\(255\) 2.17021 + 3.75892i 0.135904 + 0.235393i
\(256\) 0 0
\(257\) −11.6938 + 20.2542i −0.729438 + 1.26342i 0.227683 + 0.973735i \(0.426885\pi\)
−0.957121 + 0.289688i \(0.906448\pi\)
\(258\) 0 0
\(259\) −0.732733 + 1.26913i −0.0455298 + 0.0788600i
\(260\) 0 0
\(261\) −0.319623 + 0.553604i −0.0197842 + 0.0342672i
\(262\) 0 0
\(263\) 13.8793 0.855835 0.427918 0.903818i \(-0.359247\pi\)
0.427918 + 0.903818i \(0.359247\pi\)
\(264\) 0 0
\(265\) 5.76008 + 9.97676i 0.353839 + 0.612867i
\(266\) 0 0
\(267\) 1.75354 + 3.03722i 0.107315 + 0.185875i
\(268\) 0 0
\(269\) 1.13925 1.97323i 0.0694611 0.120310i −0.829203 0.558947i \(-0.811205\pi\)
0.898664 + 0.438637i \(0.144539\pi\)
\(270\) 0 0
\(271\) −0.135358 −0.00822239 −0.00411119 0.999992i \(-0.501309\pi\)
−0.00411119 + 0.999992i \(0.501309\pi\)
\(272\) 0 0
\(273\) −7.68442 13.3098i −0.465082 0.805546i
\(274\) 0 0
\(275\) 2.14036 0.129069
\(276\) 0 0
\(277\) 6.39980 0.384527 0.192263 0.981343i \(-0.438417\pi\)
0.192263 + 0.981343i \(0.438417\pi\)
\(278\) 0 0
\(279\) −4.02250 + 3.84961i −0.240821 + 0.230470i
\(280\) 0 0
\(281\) −11.6568 −0.695386 −0.347693 0.937608i \(-0.613035\pi\)
−0.347693 + 0.937608i \(0.613035\pi\)
\(282\) 0 0
\(283\) −12.6489 −0.751901 −0.375951 0.926640i \(-0.622684\pi\)
−0.375951 + 0.926640i \(0.622684\pi\)
\(284\) 0 0
\(285\) 1.98984 + 3.44650i 0.117868 + 0.204153i
\(286\) 0 0
\(287\) 2.07129 0.122265
\(288\) 0 0
\(289\) −0.919657 + 1.59289i −0.0540975 + 0.0936995i
\(290\) 0 0
\(291\) −4.11237 7.12284i −0.241072 0.417548i
\(292\) 0 0
\(293\) 0.890918 + 1.54312i 0.0520480 + 0.0901498i 0.890876 0.454247i \(-0.150092\pi\)
−0.838828 + 0.544397i \(0.816758\pi\)
\(294\) 0 0
\(295\) −4.50485 −0.262282
\(296\) 0 0
\(297\) 1.07018 1.85361i 0.0620982 0.107557i
\(298\) 0 0
\(299\) 22.8859 39.6396i 1.32353 2.29242i
\(300\) 0 0
\(301\) 9.27243 16.0603i 0.534454 0.925701i
\(302\) 0 0
\(303\) −8.93966 15.4839i −0.513570 0.889529i
\(304\) 0 0
\(305\) −0.179262 + 0.310491i −0.0102645 + 0.0177787i
\(306\) 0 0
\(307\) 7.91061 + 13.7016i 0.451482 + 0.781990i 0.998478 0.0551449i \(-0.0175621\pi\)
−0.546996 + 0.837135i \(0.684229\pi\)
\(308\) 0 0
\(309\) −9.22698 −0.524904
\(310\) 0 0
\(311\) −9.01905 −0.511424 −0.255712 0.966753i \(-0.582310\pi\)
−0.255712 + 0.966753i \(0.582310\pi\)
\(312\) 0 0
\(313\) 0.146429 + 0.253622i 0.00827664 + 0.0143356i 0.870134 0.492815i \(-0.164032\pi\)
−0.861857 + 0.507151i \(0.830699\pi\)
\(314\) 0 0
\(315\) 1.28509 2.22584i 0.0724066 0.125412i
\(316\) 0 0
\(317\) −5.61722 9.72931i −0.315495 0.546453i 0.664048 0.747690i \(-0.268837\pi\)
−0.979543 + 0.201237i \(0.935504\pi\)
\(318\) 0 0
\(319\) −0.684109 + 1.18491i −0.0383028 + 0.0663423i
\(320\) 0 0
\(321\) 8.70804 15.0828i 0.486035 0.841838i
\(322\) 0 0
\(323\) −8.63674 + 14.9593i −0.480561 + 0.832357i
\(324\) 0 0
\(325\) 5.97967 0.331693
\(326\) 0 0
\(327\) −0.911996 1.57962i −0.0504335 0.0873534i
\(328\) 0 0
\(329\) −0.295253 0.511393i −0.0162778 0.0281940i
\(330\) 0 0
\(331\) −16.5878 + 28.7310i −0.911751 + 1.57920i −0.100160 + 0.994971i \(0.531936\pi\)
−0.811590 + 0.584227i \(0.801398\pi\)
\(332\) 0 0
\(333\) −0.570181 −0.0312457
\(334\) 0 0
\(335\) −2.12254 3.67634i −0.115967 0.200860i
\(336\) 0 0
\(337\) −1.70714 −0.0929940 −0.0464970 0.998918i \(-0.514806\pi\)
−0.0464970 + 0.998918i \(0.514806\pi\)
\(338\) 0 0
\(339\) −10.7522 −0.583977
\(340\) 0 0
\(341\) −8.60961 + 8.23955i −0.466237 + 0.446196i
\(342\) 0 0
\(343\) 19.0044 1.02614
\(344\) 0 0
\(345\) 7.65457 0.412108
\(346\) 0 0
\(347\) 2.35246 + 4.07457i 0.126287 + 0.218735i 0.922235 0.386630i \(-0.126361\pi\)
−0.795949 + 0.605364i \(0.793027\pi\)
\(348\) 0 0
\(349\) 11.9603 0.640221 0.320110 0.947380i \(-0.396280\pi\)
0.320110 + 0.947380i \(0.396280\pi\)
\(350\) 0 0
\(351\) 2.98984 5.17855i 0.159586 0.276411i
\(352\) 0 0
\(353\) 7.60689 + 13.1755i 0.404874 + 0.701262i 0.994307 0.106555i \(-0.0339820\pi\)
−0.589433 + 0.807817i \(0.700649\pi\)
\(354\) 0 0
\(355\) −5.55534 9.62213i −0.294847 0.510689i
\(356\) 0 0
\(357\) 11.1557 0.590421
\(358\) 0 0
\(359\) 14.5145 25.1399i 0.766047 1.32683i −0.173644 0.984808i \(-0.555554\pi\)
0.939691 0.342024i \(-0.111112\pi\)
\(360\) 0 0
\(361\) 1.58110 2.73854i 0.0832155 0.144134i
\(362\) 0 0
\(363\) −3.20943 + 5.55889i −0.168451 + 0.291766i
\(364\) 0 0
\(365\) −5.50655 9.53762i −0.288226 0.499222i
\(366\) 0 0
\(367\) 3.34463 5.79307i 0.174588 0.302396i −0.765430 0.643519i \(-0.777474\pi\)
0.940019 + 0.341123i \(0.110807\pi\)
\(368\) 0 0
\(369\) 0.402947 + 0.697925i 0.0209766 + 0.0363325i
\(370\) 0 0
\(371\) 29.6089 1.53722
\(372\) 0 0
\(373\) −11.4982 −0.595356 −0.297678 0.954666i \(-0.596212\pi\)
−0.297678 + 0.954666i \(0.596212\pi\)
\(374\) 0 0
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) 0 0
\(377\) −1.91124 + 3.31037i −0.0984341 + 0.170493i
\(378\) 0 0
\(379\) 14.3659 + 24.8825i 0.737927 + 1.27813i 0.953427 + 0.301624i \(0.0975286\pi\)
−0.215500 + 0.976504i \(0.569138\pi\)
\(380\) 0 0
\(381\) −11.1677 + 19.3430i −0.572139 + 0.990974i
\(382\) 0 0
\(383\) 2.57375 4.45786i 0.131512 0.227786i −0.792747 0.609550i \(-0.791350\pi\)
0.924260 + 0.381764i \(0.124683\pi\)
\(384\) 0 0
\(385\) 2.75056 4.76410i 0.140181 0.242801i
\(386\) 0 0
\(387\) 7.21539 0.366779
\(388\) 0 0
\(389\) −18.2014 31.5258i −0.922850 1.59842i −0.794983 0.606631i \(-0.792520\pi\)
−0.127867 0.991791i \(-0.540813\pi\)
\(390\) 0 0
\(391\) 16.6121 + 28.7729i 0.840108 + 1.45511i
\(392\) 0 0
\(393\) −3.75524 + 6.50426i −0.189427 + 0.328097i
\(394\) 0 0
\(395\) −15.2044 −0.765018
\(396\) 0 0
\(397\) 10.1696 + 17.6142i 0.510397 + 0.884033i 0.999927 + 0.0120468i \(0.00383469\pi\)
−0.489531 + 0.871986i \(0.662832\pi\)
\(398\) 0 0
\(399\) 10.2285 0.512065
\(400\) 0 0
\(401\) 8.32733 0.415847 0.207924 0.978145i \(-0.433329\pi\)
0.207924 + 0.978145i \(0.433329\pi\)
\(402\) 0 0
\(403\) −24.0533 + 23.0194i −1.19818 + 1.14668i
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −1.22039 −0.0604926
\(408\) 0 0
\(409\) 2.90401 + 5.02990i 0.143594 + 0.248712i 0.928848 0.370462i \(-0.120801\pi\)
−0.785253 + 0.619174i \(0.787467\pi\)
\(410\) 0 0
\(411\) 11.4845 0.566490
\(412\) 0 0
\(413\) −5.78914 + 10.0271i −0.284865 + 0.493400i
\(414\) 0 0
\(415\) 5.33027 + 9.23229i 0.261652 + 0.453195i
\(416\) 0 0
\(417\) 0.604714 + 1.04739i 0.0296130 + 0.0512911i
\(418\) 0 0
\(419\) 27.0410 1.32104 0.660519 0.750810i \(-0.270336\pi\)
0.660519 + 0.750810i \(0.270336\pi\)
\(420\) 0 0
\(421\) 0.114291 0.197958i 0.00557021 0.00964789i −0.863227 0.504816i \(-0.831560\pi\)
0.868797 + 0.495168i \(0.164894\pi\)
\(422\) 0 0
\(423\) 0.114876 0.198972i 0.00558548 0.00967434i
\(424\) 0 0
\(425\) −2.17021 + 3.75892i −0.105271 + 0.182334i
\(426\) 0 0
\(427\) 0.460736 + 0.798019i 0.0222966 + 0.0386188i
\(428\) 0 0
\(429\) 6.39933 11.0840i 0.308963 0.535139i
\(430\) 0 0
\(431\) 7.54768 + 13.0730i 0.363559 + 0.629702i 0.988544 0.150934i \(-0.0482283\pi\)
−0.624985 + 0.780637i \(0.714895\pi\)
\(432\) 0 0
\(433\) −29.6686 −1.42578 −0.712891 0.701274i \(-0.752615\pi\)
−0.712891 + 0.701274i \(0.752615\pi\)
\(434\) 0 0
\(435\) −0.639247 −0.0306495
\(436\) 0 0
\(437\) 15.2313 + 26.3815i 0.728614 + 1.26200i
\(438\) 0 0
\(439\) 1.85399 3.21120i 0.0884861 0.153262i −0.818385 0.574670i \(-0.805130\pi\)
0.906871 + 0.421407i \(0.138464\pi\)
\(440\) 0 0
\(441\) 0.197086 + 0.341363i 0.00938505 + 0.0162554i
\(442\) 0 0
\(443\) −9.54549 + 16.5333i −0.453520 + 0.785519i −0.998602 0.0528635i \(-0.983165\pi\)
0.545082 + 0.838383i \(0.316499\pi\)
\(444\) 0 0
\(445\) −1.75354 + 3.03722i −0.0831257 + 0.143978i
\(446\) 0 0
\(447\) −2.50187 + 4.33336i −0.118334 + 0.204961i
\(448\) 0 0
\(449\) 3.96721 0.187224 0.0936120 0.995609i \(-0.470159\pi\)
0.0936120 + 0.995609i \(0.470159\pi\)
\(450\) 0 0
\(451\) 0.862453 + 1.49381i 0.0406113 + 0.0703409i
\(452\) 0 0
\(453\) −0.532834 0.922895i −0.0250347 0.0433614i
\(454\) 0 0
\(455\) 7.68442 13.3098i 0.360251 0.623973i
\(456\) 0 0
\(457\) 27.2088 1.27277 0.636387 0.771370i \(-0.280428\pi\)
0.636387 + 0.771370i \(0.280428\pi\)
\(458\) 0 0
\(459\) 2.17021 + 3.75892i 0.101297 + 0.175451i
\(460\) 0 0
\(461\) −14.8974 −0.693842 −0.346921 0.937894i \(-0.612773\pi\)
−0.346921 + 0.937894i \(0.612773\pi\)
\(462\) 0 0
\(463\) 29.4042 1.36653 0.683264 0.730172i \(-0.260560\pi\)
0.683264 + 0.730172i \(0.260560\pi\)
\(464\) 0 0
\(465\) −5.34511 1.55879i −0.247873 0.0722871i
\(466\) 0 0
\(467\) −31.3717 −1.45171 −0.725854 0.687848i \(-0.758555\pi\)
−0.725854 + 0.687848i \(0.758555\pi\)
\(468\) 0 0
\(469\) −10.9106 −0.503805
\(470\) 0 0
\(471\) −11.2921 19.5585i −0.520313 0.901209i
\(472\) 0 0
\(473\) 15.4435 0.710095
\(474\) 0 0
\(475\) −1.98984 + 3.44650i −0.0913000 + 0.158136i
\(476\) 0 0
\(477\) 5.76008 + 9.97676i 0.263736 + 0.456804i
\(478\) 0 0
\(479\) 13.3981 + 23.2062i 0.612175 + 1.06032i 0.990873 + 0.134798i \(0.0430387\pi\)
−0.378698 + 0.925520i \(0.623628\pi\)
\(480\) 0 0
\(481\) −3.40949 −0.155460
\(482\) 0 0
\(483\) 9.83681 17.0379i 0.447590 0.775249i
\(484\) 0 0
\(485\) 4.11237 7.12284i 0.186733 0.323432i
\(486\) 0 0
\(487\) 12.4433 21.5524i 0.563859 0.976632i −0.433296 0.901252i \(-0.642650\pi\)
0.997155 0.0753802i \(-0.0240170\pi\)
\(488\) 0 0
\(489\) −7.36591 12.7581i −0.333098 0.576943i
\(490\) 0 0
\(491\) 15.5863 26.9962i 0.703398 1.21832i −0.263869 0.964559i \(-0.584999\pi\)
0.967267 0.253762i \(-0.0816681\pi\)
\(492\) 0 0
\(493\) −1.38730 2.40288i −0.0624809 0.108220i
\(494\) 0 0
\(495\) 2.14036 0.0962021
\(496\) 0 0
\(497\) −28.5564 −1.28093
\(498\) 0 0
\(499\) 1.96733 + 3.40752i 0.0880699 + 0.152542i 0.906695 0.421786i \(-0.138597\pi\)
−0.818625 + 0.574328i \(0.805263\pi\)
\(500\) 0 0
\(501\) −0.560018 + 0.969979i −0.0250197 + 0.0433355i
\(502\) 0 0
\(503\) 16.2749 + 28.1890i 0.725663 + 1.25689i 0.958700 + 0.284418i \(0.0918002\pi\)
−0.233037 + 0.972468i \(0.574866\pi\)
\(504\) 0 0
\(505\) 8.93966 15.4839i 0.397810 0.689026i
\(506\) 0 0
\(507\) 11.3783 19.7077i 0.505326 0.875250i
\(508\) 0 0
\(509\) 4.64019 8.03705i 0.205673 0.356236i −0.744674 0.667428i \(-0.767395\pi\)
0.950347 + 0.311192i \(0.100728\pi\)
\(510\) 0 0
\(511\) −28.3056 −1.25217
\(512\) 0 0
\(513\) 1.98984 + 3.44650i 0.0878535 + 0.152167i
\(514\) 0 0
\(515\) −4.61349 7.99080i −0.203295 0.352117i
\(516\) 0 0
\(517\) 0.245877 0.425871i 0.0108137 0.0187298i
\(518\) 0 0
\(519\) −11.3026 −0.496127
\(520\) 0 0
\(521\) −13.2236 22.9040i −0.579338 1.00344i −0.995555 0.0941777i \(-0.969978\pi\)
0.416217 0.909265i \(-0.363356\pi\)
\(522\) 0 0
\(523\) 38.6231 1.68887 0.844434 0.535659i \(-0.179937\pi\)
0.844434 + 0.535659i \(0.179937\pi\)
\(524\) 0 0
\(525\) 2.57018 0.112172
\(526\) 0 0
\(527\) −5.74067 23.4747i −0.250067 1.02258i
\(528\) 0 0
\(529\) 35.5924 1.54750
\(530\) 0 0
\(531\) −4.50485 −0.195494
\(532\) 0 0
\(533\) 2.40949 + 4.17337i 0.104367 + 0.180769i
\(534\) 0 0
\(535\) 17.4161 0.752963
\(536\) 0 0
\(537\) −3.25572 + 5.63907i −0.140495 + 0.243344i
\(538\) 0 0
\(539\) 0.421835 + 0.730640i 0.0181697 + 0.0314709i
\(540\) 0 0
\(541\) 1.39465 + 2.41561i 0.0599607 + 0.103855i 0.894448 0.447173i \(-0.147569\pi\)
−0.834487 + 0.551028i \(0.814236\pi\)
\(542\) 0 0
\(543\) 5.15568 0.221252
\(544\) 0 0
\(545\) 0.911996 1.57962i 0.0390656 0.0676636i
\(546\) 0 0
\(547\) 8.86836 15.3605i 0.379184 0.656766i −0.611760 0.791044i \(-0.709538\pi\)
0.990944 + 0.134278i \(0.0428715\pi\)
\(548\) 0 0
\(549\) −0.179262 + 0.310491i −0.00765073 + 0.0132515i
\(550\) 0 0
\(551\) −1.27200 2.20316i −0.0541889 0.0938579i
\(552\) 0 0
\(553\) −19.5391 + 33.8426i −0.830885 + 1.43914i
\(554\) 0 0
\(555\) −0.285090 0.493791i −0.0121014 0.0209603i
\(556\) 0 0
\(557\) 0.0290618 0.00123139 0.000615693 1.00000i \(-0.499804\pi\)
0.000615693 1.00000i \(0.499804\pi\)
\(558\) 0 0
\(559\) 43.1457 1.82487
\(560\) 0 0
\(561\) 4.64504 + 8.04545i 0.196114 + 0.339679i
\(562\) 0 0
\(563\) −12.1772 + 21.0916i −0.513209 + 0.888905i 0.486673 + 0.873584i \(0.338210\pi\)
−0.999883 + 0.0153207i \(0.995123\pi\)
\(564\) 0 0
\(565\) −5.37608 9.31164i −0.226173 0.391743i
\(566\) 0 0
\(567\) 1.28509 2.22584i 0.0539687 0.0934766i
\(568\) 0 0
\(569\) −2.10769 + 3.65063i −0.0883591 + 0.153043i −0.906818 0.421523i \(-0.861496\pi\)
0.818459 + 0.574566i \(0.194829\pi\)
\(570\) 0 0
\(571\) 12.9106 22.3617i 0.540290 0.935810i −0.458597 0.888644i \(-0.651648\pi\)
0.998887 0.0471655i \(-0.0150188\pi\)
\(572\) 0 0
\(573\) −14.4401 −0.603245
\(574\) 0 0
\(575\) 3.82728 + 6.62905i 0.159609 + 0.276451i
\(576\) 0 0
\(577\) −19.7976 34.2904i −0.824185 1.42753i −0.902541 0.430605i \(-0.858300\pi\)
0.0783559 0.996925i \(-0.475033\pi\)
\(578\) 0 0
\(579\) −9.75822 + 16.9017i −0.405538 + 0.702412i
\(580\) 0 0
\(581\) 27.3995 1.13672
\(582\) 0 0
\(583\) 12.3287 + 21.3539i 0.510601 + 0.884387i
\(584\) 0 0
\(585\) 5.97967 0.247229
\(586\) 0 0
\(587\) 0.895620 0.0369662 0.0184831 0.999829i \(-0.494116\pi\)
0.0184831 + 0.999829i \(0.494116\pi\)
\(588\) 0 0
\(589\) −5.26353 21.5236i −0.216880 0.886866i
\(590\) 0 0
\(591\) −14.2247 −0.585128
\(592\) 0 0
\(593\) 44.1638 1.81359 0.906794 0.421573i \(-0.138522\pi\)
0.906794 + 0.421573i \(0.138522\pi\)
\(594\) 0 0
\(595\) 5.57784 + 9.66110i 0.228669 + 0.396067i
\(596\) 0 0
\(597\) 19.3498 0.791934
\(598\) 0 0
\(599\) 21.2454 36.7981i 0.868063 1.50353i 0.00408962 0.999992i \(-0.498698\pi\)
0.863973 0.503538i \(-0.167968\pi\)
\(600\) 0 0
\(601\) −19.6150 33.9742i −0.800114 1.38584i −0.919541 0.392995i \(-0.871439\pi\)
0.119427 0.992843i \(-0.461894\pi\)
\(602\) 0 0
\(603\) −2.12254 3.67634i −0.0864364 0.149712i
\(604\) 0 0
\(605\) −6.41885 −0.260964
\(606\) 0 0
\(607\) −6.31074 + 10.9305i −0.256145 + 0.443656i −0.965206 0.261491i \(-0.915786\pi\)
0.709061 + 0.705147i \(0.249119\pi\)
\(608\) 0 0
\(609\) −0.821490 + 1.42286i −0.0332884 + 0.0576573i
\(610\) 0 0
\(611\) 0.686923 1.18979i 0.0277899 0.0481336i
\(612\) 0 0
\(613\) −22.5907 39.1282i −0.912428 1.58037i −0.810624 0.585568i \(-0.800872\pi\)
−0.101805 0.994804i \(-0.532462\pi\)
\(614\) 0 0
\(615\) −0.402947 + 0.697925i −0.0162484 + 0.0281431i
\(616\) 0 0
\(617\) −5.24853 9.09073i −0.211298 0.365979i 0.740823 0.671700i \(-0.234436\pi\)
−0.952121 + 0.305721i \(0.901102\pi\)
\(618\) 0 0
\(619\) 18.7383 0.753157 0.376579 0.926385i \(-0.377100\pi\)
0.376579 + 0.926385i \(0.377100\pi\)
\(620\) 0 0
\(621\) 7.65457 0.307167
\(622\) 0 0
\(623\) 4.50691 + 7.80620i 0.180565 + 0.312749i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 4.25897 + 7.37675i 0.170087 + 0.294599i
\(628\) 0 0
\(629\) 1.23741 2.14326i 0.0493389 0.0854575i
\(630\) 0 0
\(631\) −2.74758 + 4.75894i −0.109379 + 0.189450i −0.915519 0.402275i \(-0.868220\pi\)
0.806140 + 0.591725i \(0.201553\pi\)
\(632\) 0 0
\(633\) −10.9229 + 18.9191i −0.434148 + 0.751967i
\(634\) 0 0
\(635\) −22.3354 −0.886354
\(636\) 0 0
\(637\) 1.17851 + 2.04124i 0.0466943 + 0.0808769i
\(638\) 0 0
\(639\) −5.55534 9.62213i −0.219766 0.380645i
\(640\) 0 0
\(641\) −9.22332 + 15.9753i −0.364299 + 0.630985i −0.988663 0.150148i \(-0.952025\pi\)
0.624364 + 0.781133i \(0.285358\pi\)
\(642\) 0 0
\(643\) −19.3567 −0.763354 −0.381677 0.924296i \(-0.624653\pi\)
−0.381677 + 0.924296i \(0.624653\pi\)
\(644\) 0 0
\(645\) 3.60769 + 6.24871i 0.142053 + 0.246043i
\(646\) 0 0
\(647\) −13.1644 −0.517547 −0.258773 0.965938i \(-0.583318\pi\)
−0.258773 + 0.965938i \(0.583318\pi\)
\(648\) 0 0
\(649\) −9.64200 −0.378482
\(650\) 0 0
\(651\) −10.3386 + 9.89418i −0.405200 + 0.387784i
\(652\) 0 0
\(653\) 46.1500 1.80599 0.902995 0.429651i \(-0.141363\pi\)
0.902995 + 0.429651i \(0.141363\pi\)
\(654\) 0 0
\(655\) −7.51047 −0.293459
\(656\) 0 0
\(657\) −5.50655 9.53762i −0.214831 0.372098i
\(658\) 0 0
\(659\) −29.4011 −1.14530 −0.572652 0.819799i \(-0.694085\pi\)
−0.572652 + 0.819799i \(0.694085\pi\)
\(660\) 0 0
\(661\) 0.553421 0.958553i 0.0215256 0.0372834i −0.855062 0.518526i \(-0.826481\pi\)
0.876588 + 0.481242i \(0.159814\pi\)
\(662\) 0 0
\(663\) 12.9772 + 22.4771i 0.503992 + 0.872939i
\(664\) 0 0
\(665\) 5.11424 + 8.85813i 0.198322 + 0.343503i
\(666\) 0 0
\(667\) −4.89316 −0.189464
\(668\) 0 0
\(669\) −11.7669 + 20.3809i −0.454936 + 0.787973i
\(670\) 0 0
\(671\) −0.383686 + 0.664564i −0.0148120 + 0.0256552i
\(672\) 0 0
\(673\) −19.0271 + 32.9559i −0.733440 + 1.27036i 0.221964 + 0.975055i \(0.428753\pi\)
−0.955404 + 0.295301i \(0.904580\pi\)
\(674\) 0 0
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) 1.77434 3.07325i 0.0681935 0.118115i −0.829913 0.557893i \(-0.811610\pi\)
0.898106 + 0.439779i \(0.144943\pi\)
\(678\) 0 0
\(679\) −10.5695 18.3070i −0.405622 0.702558i
\(680\) 0 0
\(681\) 18.0903 0.693224
\(682\) 0 0
\(683\) 19.0744 0.729861 0.364930 0.931035i \(-0.381093\pi\)
0.364930 + 0.931035i \(0.381093\pi\)
\(684\) 0 0
\(685\) 5.74226 + 9.94589i 0.219401 + 0.380013i
\(686\) 0 0
\(687\) 4.70943 8.15697i 0.179676 0.311208i
\(688\) 0 0
\(689\) 34.4434 + 59.6578i 1.31219 + 2.27278i
\(690\) 0 0
\(691\) −0.568899 + 0.985363i −0.0216420 + 0.0374850i −0.876644 0.481140i \(-0.840223\pi\)
0.855002 + 0.518625i \(0.173556\pi\)
\(692\) 0 0
\(693\) 2.75056 4.76410i 0.104485 0.180973i
\(694\) 0 0
\(695\) −0.604714 + 1.04739i −0.0229381 + 0.0397299i
\(696\) 0 0
\(697\) −3.49793 −0.132493
\(698\) 0 0
\(699\) −13.8579 24.0026i −0.524155 0.907863i
\(700\) 0 0
\(701\) 8.72411 + 15.1106i 0.329505 + 0.570720i 0.982414 0.186717i \(-0.0597847\pi\)
−0.652909 + 0.757437i \(0.726451\pi\)
\(702\) 0 0
\(703\) 1.13457 1.96513i 0.0427910 0.0741162i
\(704\) 0 0
\(705\) 0.229753 0.00865299
\(706\) 0 0
\(707\) −22.9765 39.7965i −0.864122 1.49670i
\(708\) 0 0
\(709\) −6.91027 −0.259521 −0.129760 0.991545i \(-0.541421\pi\)
−0.129760 + 0.991545i \(0.541421\pi\)
\(710\) 0 0
\(711\) −15.2044 −0.570210
\(712\) 0 0
\(713\) −40.9145 11.9318i −1.53226 0.446851i
\(714\) 0 0
\(715\) 12.7987 0.478643
\(716\) 0 0
\(717\) 14.5555 0.543584
\(718\) 0 0
\(719\) −2.10248 3.64161i −0.0784095 0.135809i 0.824154 0.566365i \(-0.191651\pi\)
−0.902564 + 0.430556i \(0.858317\pi\)
\(720\) 0 0
\(721\) −23.7150 −0.883193
\(722\) 0 0
\(723\) −6.30807 + 10.9259i −0.234600 + 0.406339i
\(724\) 0 0
\(725\) −0.319623 0.553604i −0.0118705 0.0205603i
\(726\) 0 0
\(727\) −6.46903 11.2047i −0.239923 0.415559i 0.720769 0.693175i \(-0.243789\pi\)
−0.960692 + 0.277616i \(0.910456\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −15.6589 + 27.1221i −0.579167 + 1.00315i
\(732\) 0 0
\(733\) −2.06124 + 3.57017i −0.0761336 + 0.131867i −0.901579 0.432615i \(-0.857591\pi\)
0.825445 + 0.564482i \(0.190924\pi\)
\(734\) 0 0
\(735\) −0.197086 + 0.341363i −0.00726963 + 0.0125914i
\(736\) 0 0
\(737\) −4.54300 7.86870i −0.167343 0.289847i
\(738\) 0 0
\(739\) −23.4314 + 40.5843i −0.861937 + 1.49292i 0.00812049 + 0.999967i \(0.497415\pi\)
−0.870057 + 0.492951i \(0.835918\pi\)
\(740\) 0 0
\(741\) 11.8986 + 20.6089i 0.437105 + 0.757088i
\(742\) 0 0
\(743\) 0.598909 0.0219718 0.0109859 0.999940i \(-0.496503\pi\)
0.0109859 + 0.999940i \(0.496503\pi\)
\(744\) 0 0
\(745\) −5.00373 −0.183323
\(746\) 0 0
\(747\) 5.33027 + 9.23229i 0.195024 + 0.337792i
\(748\) 0 0
\(749\) 22.3812 38.7654i 0.817793 1.41646i
\(750\) 0 0
\(751\) 9.41450 + 16.3064i 0.343540 + 0.595029i 0.985087 0.172055i \(-0.0550406\pi\)
−0.641547 + 0.767083i \(0.721707\pi\)
\(752\) 0 0
\(753\) −5.11488 + 8.85923i −0.186396 + 0.322848i
\(754\) 0 0
\(755\) 0.532834 0.922895i 0.0193918 0.0335876i
\(756\) 0 0
\(757\) 14.4820 25.0836i 0.526358 0.911679i −0.473170 0.880971i \(-0.656891\pi\)
0.999528 0.0307078i \(-0.00977614\pi\)
\(758\) 0 0
\(759\) 16.3835 0.594685
\(760\) 0 0
\(761\) −19.9114 34.4876i −0.721788 1.25017i −0.960283 0.279029i \(-0.909987\pi\)
0.238495 0.971144i \(-0.423346\pi\)
\(762\) 0 0
\(763\) −2.34399 4.05992i −0.0848583 0.146979i
\(764\) 0 0
\(765\) −2.17021 + 3.75892i −0.0784642 + 0.135904i
\(766\) 0 0
\(767\) −26.9375 −0.972657
\(768\) 0 0
\(769\) −23.2024 40.1877i −0.836700 1.44921i −0.892639 0.450773i \(-0.851149\pi\)
0.0559388 0.998434i \(-0.482185\pi\)
\(770\) 0 0
\(771\) −23.3876 −0.842283
\(772\) 0 0
\(773\) 39.2822 1.41288 0.706442 0.707771i \(-0.250299\pi\)
0.706442 + 0.707771i \(0.250299\pi\)
\(774\) 0 0
\(775\) −1.32260 5.40839i −0.0475093 0.194275i
\(776\) 0 0
\(777\) −1.46547 −0.0525733
\(778\) 0 0
\(779\) −3.20720 −0.114910
\(780\) 0 0
\(781\) −11.8904 20.5948i −0.425473 0.736941i
\(782\) 0 0
\(783\) −0.639247 −0.0228448
\(784\) 0 0
\(785\) 11.2921 19.5585i 0.403033 0.698073i
\(786\) 0 0
\(787\) −23.1899 40.1661i −0.826630 1.43177i −0.900667 0.434510i \(-0.856921\pi\)
0.0740364 0.997256i \(-0.476412\pi\)
\(788\) 0 0
\(789\) 6.93966 + 12.0198i 0.247058 + 0.427918i
\(790\) 0 0
\(791\) −27.6350 −0.982586
\(792\) 0 0
\(793\) −1.07193 + 1.85664i −0.0380654 + 0.0659311i
\(794\) 0 0
\(795\) −5.76008 + 9.97676i −0.204289 + 0.353839i
\(796\) 0 0
\(797\) −21.3226 + 36.9318i −0.755285 + 1.30819i 0.189948 + 0.981794i \(0.439168\pi\)
−0.945233 + 0.326398i \(0.894165\pi\)
\(798\) 0 0
\(799\) 0.498613 + 0.863622i 0.0176396 + 0.0305528i
\(800\) 0 0
\(801\) −1.75354 + 3.03722i −0.0619582 + 0.107315i
\(802\) 0 0
\(803\) −11.7860 20.4139i −0.415919 0.720393i
\(804\) 0 0
\(805\) 19.6736 0.693404
\(806\) 0 0
\(807\) 2.27849 0.0802068
\(808\) 0 0
\(809\) 14.9382 + 25.8738i 0.525200 + 0.909674i 0.999569 + 0.0293475i \(0.00934293\pi\)
−0.474369 + 0.880326i \(0.657324\pi\)
\(810\) 0 0
\(811\) −1.96823 + 3.40908i −0.0691139 + 0.119709i −0.898512 0.438950i \(-0.855351\pi\)
0.829398 + 0.558659i \(0.188684\pi\)
\(812\) 0 0
\(813\) −0.0676788 0.117223i −0.00237360 0.00411119i
\(814\) 0 0
\(815\) 7.36591 12.7581i 0.258017 0.446898i
\(816\) 0 0
\(817\) −14.3574 + 24.8678i −0.502304 + 0.870015i
\(818\) 0 0
\(819\) 7.68442 13.3098i 0.268515 0.465082i
\(820\) 0 0
\(821\) 5.22635 0.182401 0.0912005 0.995833i \(-0.470930\pi\)
0.0912005 + 0.995833i \(0.470930\pi\)
\(822\) 0 0
\(823\) 3.98048 + 6.89439i 0.138751 + 0.240323i 0.927024 0.375002i \(-0.122358\pi\)
−0.788273 + 0.615325i \(0.789025\pi\)
\(824\) 0 0
\(825\) 1.07018 + 1.85361i 0.0372589 + 0.0645343i
\(826\) 0 0
\(827\) −5.64345 + 9.77474i −0.196242 + 0.339901i −0.947307 0.320327i \(-0.896207\pi\)
0.751065 + 0.660228i \(0.229540\pi\)
\(828\) 0 0
\(829\) −26.3767 −0.916101 −0.458050 0.888926i \(-0.651452\pi\)
−0.458050 + 0.888926i \(0.651452\pi\)
\(830\) 0 0
\(831\) 3.19990 + 5.54239i 0.111003 + 0.192263i
\(832\) 0 0
\(833\) −1.71088 −0.0592783
\(834\) 0 0
\(835\) −1.12004 −0.0387604
\(836\) 0 0
\(837\) −5.34511 1.55879i −0.184754 0.0538796i
\(838\) 0 0
\(839\) 16.1528 0.557658 0.278829 0.960341i \(-0.410054\pi\)
0.278829 + 0.960341i \(0.410054\pi\)
\(840\) 0 0
\(841\) −28.5914 −0.985909
\(842\) 0 0
\(843\) −5.82840 10.0951i −0.200741 0.347693i
\(844\) 0 0
\(845\) 22.7565 0.782848
\(846\) 0 0
\(847\) −8.24881 + 14.2874i −0.283432 + 0.490919i
\(848\) 0 0
\(849\) −6.32447 10.9543i −0.217055 0.375951i
\(850\) 0 0
\(851\) −2.18224 3.77976i −0.0748063 0.129568i
\(852\) 0 0
\(853\) −39.0740 −1.33787 −0.668935 0.743321i \(-0.733250\pi\)
−0.668935 + 0.743321i \(0.733250\pi\)
\(854\) 0 0
\(855\) −1.98984 + 3.44650i −0.0680510 + 0.117868i
\(856\) 0 0
\(857\) −24.3649 + 42.2013i −0.832291 + 1.44157i 0.0639268 + 0.997955i \(0.479638\pi\)
−0.896217 + 0.443615i \(0.853696\pi\)
\(858\) 0 0
\(859\) 17.4217 30.1753i 0.594422 1.02957i −0.399206 0.916861i \(-0.630714\pi\)
0.993628 0.112708i \(-0.0359523\pi\)
\(860\) 0 0
\(861\) 1.03565 + 1.79379i 0.0352948 + 0.0611323i
\(862\) 0 0
\(863\) −8.65270 + 14.9869i −0.294541 + 0.510161i −0.974878 0.222739i \(-0.928500\pi\)
0.680337 + 0.732900i \(0.261834\pi\)
\(864\) 0 0
\(865\) −5.65128 9.78830i −0.192149 0.332812i
\(866\) 0 0
\(867\) −1.83931 −0.0624664
\(868\) 0 0
\(869\) −32.5430 −1.10394
\(870\) 0 0
\(871\) −12.6921 21.9833i −0.430055 0.744877i
\(872\) 0 0
\(873\) 4.11237 7.12284i 0.139183 0.241072i
\(874\) 0 0
\(875\) 1.28509 + 2.22584i 0.0434440 + 0.0752472i
\(876\) 0 0
\(877\) −14.4045 + 24.9493i −0.486405 + 0.842478i −0.999878 0.0156276i \(-0.995025\pi\)
0.513473 + 0.858106i \(0.328359\pi\)
\(878\) 0 0
\(879\) −0.890918 + 1.54312i −0.0300499 + 0.0520480i
\(880\) 0 0
\(881\) 6.94403 12.0274i 0.233950 0.405214i −0.725017 0.688731i \(-0.758168\pi\)
0.958967 + 0.283517i \(0.0915014\pi\)
\(882\) 0 0
\(883\) −43.0010 −1.44710 −0.723549 0.690273i \(-0.757490\pi\)
−0.723549 + 0.690273i \(0.757490\pi\)
\(884\) 0 0
\(885\) −2.25242 3.90131i −0.0757144 0.131141i
\(886\) 0 0
\(887\) 8.64351 + 14.9710i 0.290221 + 0.502677i 0.973862 0.227141i \(-0.0729380\pi\)
−0.683641 + 0.729818i \(0.739605\pi\)
\(888\) 0 0
\(889\) −28.7030 + 49.7151i −0.962669 + 1.66739i
\(890\) 0 0
\(891\) 2.14036 0.0717048
\(892\) 0 0
\(893\) 0.457171 + 0.791843i 0.0152986 + 0.0264980i
\(894\) 0 0
\(895\) −6.51143 −0.217653
\(896\) 0 0
\(897\) 45.7718 1.52828
\(898\) 0 0
\(899\) 3.41684 + 0.996450i 0.113958 + 0.0332335i
\(900\) 0 0
\(901\) −50.0025 −1.66582
\(902\) 0 0
\(903\) 18.5449 0.617134
\(904\) 0 0
\(905\) 2.57784 + 4.46495i 0.0856904 + 0.148420i
\(906\) 0 0
\(907\) 28.8188 0.956912 0.478456 0.878112i \(-0.341197\pi\)
0.478456 + 0.878112i \(0.341197\pi\)
\(908\) 0 0
\(909\) 8.93966 15.4839i 0.296510 0.513570i
\(910\) 0 0
\(911\) 11.1585 + 19.3271i 0.369697 + 0.640335i 0.989518 0.144409i \(-0.0461280\pi\)
−0.619821 + 0.784744i \(0.712795\pi\)
\(912\) 0 0
\(913\) 11.4087 + 19.7604i 0.377573 + 0.653975i
\(914\) 0 0
\(915\) −0.358525 −0.0118525
\(916\) 0 0
\(917\) −9.65164 + 16.7171i −0.318725 + 0.552048i
\(918\) 0 0
\(919\) 13.8462 23.9824i 0.456745 0.791105i −0.542042 0.840351i \(-0.682349\pi\)
0.998787 + 0.0492464i \(0.0156819\pi\)
\(920\) 0 0
\(921\) −7.91061 + 13.7016i −0.260663 + 0.451482i
\(922\) 0 0
\(923\) −33.2191 57.5372i −1.09342 1.89386i
\(924\) 0 0
\(925\) 0.285090 0.493791i 0.00937371 0.0162357i
\(926\) 0 0
\(927\) −4.61349 7.99080i −0.151527 0.262452i
\(928\) 0 0
\(929\) −12.6599 −0.415357 −0.207679 0.978197i \(-0.566591\pi\)
−0.207679 + 0.978197i \(0.566591\pi\)
\(930\) 0 0
\(931\) −1.56868 −0.0514113
\(932\) 0 0
\(933\) −4.50953 7.81073i −0.147635 0.255712i
\(934\) 0 0
\(935\) −4.64504 + 8.04545i −0.151909 + 0.263114i
\(936\) 0 0
\(937\) −5.72996 9.92458i −0.187190 0.324222i 0.757123 0.653273i \(-0.226605\pi\)
−0.944312 + 0.329051i \(0.893271\pi\)
\(938\) 0 0
\(939\) −0.146429 + 0.253622i −0.00477852 + 0.00827664i
\(940\) 0 0
\(941\) −5.52346 + 9.56692i −0.180060 + 0.311873i −0.941901 0.335892i \(-0.890962\pi\)
0.761841 + 0.647764i \(0.224296\pi\)
\(942\) 0 0
\(943\) −3.08439 + 5.34232i −0.100441 + 0.173970i
\(944\) 0 0
\(945\) 2.57018 0.0836080
\(946\) 0 0
\(947\) −17.8770 30.9638i −0.580924 1.00619i −0.995370 0.0961159i \(-0.969358\pi\)
0.414446 0.910074i \(-0.363975\pi\)
\(948\) 0 0
\(949\) −32.9274 57.0319i −1.06887 1.85133i
\(950\) 0 0
\(951\) 5.61722 9.72931i 0.182151 0.315495i
\(952\) 0 0
\(953\) −30.2393 −0.979549 −0.489774 0.871849i \(-0.662921\pi\)
−0.489774 + 0.871849i \(0.662921\pi\)
\(954\) 0 0
\(955\) −7.22007 12.5055i −0.233636 0.404669i
\(956\) 0 0
\(957\) −1.36822 −0.0442282
\(958\) 0 0
\(959\) 29.5173 0.953163
\(960\) 0 0
\(961\) 26.1404 + 16.6638i 0.843237 + 0.537541i
\(962\) 0 0
\(963\) 17.4161 0.561225
\(964\) 0 0
\(965\) −19.5164 −0.628256
\(966\) 0 0
\(967\) 9.48622 + 16.4306i 0.305056 + 0.528373i 0.977274 0.211981i \(-0.0679914\pi\)
−0.672218 + 0.740354i \(0.734658\pi\)
\(968\) 0 0
\(969\) −17.2735 −0.554904
\(970\) 0 0
\(971\) −1.41529 + 2.45135i −0.0454188 + 0.0786676i −0.887841 0.460150i \(-0.847796\pi\)
0.842422 + 0.538818i \(0.181129\pi\)
\(972\) 0 0
\(973\) 1.55422 + 2.69199i 0.0498261 + 0.0863014i
\(974\) 0 0
\(975\) 2.98984 + 5.17855i 0.0957514 + 0.165846i
\(976\) 0 0
\(977\) 8.79548 0.281392 0.140696 0.990053i \(-0.455066\pi\)
0.140696 + 0.990053i \(0.455066\pi\)
\(978\) 0 0
\(979\) −3.75320 + 6.50074i −0.119953 + 0.207765i
\(980\) 0 0
\(981\) 0.911996 1.57962i 0.0291178 0.0504335i
\(982\) 0 0
\(983\) −25.6214 + 44.3776i −0.817196 + 1.41543i 0.0905441 + 0.995892i \(0.471139\pi\)
−0.907740 + 0.419533i \(0.862194\pi\)
\(984\) 0 0
\(985\) −7.11237 12.3190i −0.226619 0.392516i
\(986\) 0 0
\(987\) 0.295253 0.511393i 0.00939801 0.0162778i
\(988\) 0 0
\(989\) 27.6153 + 47.8312i 0.878117 + 1.52094i
\(990\) 0 0
\(991\) 10.9519 0.347898 0.173949 0.984755i \(-0.444347\pi\)
0.173949 + 0.984755i \(0.444347\pi\)
\(992\) 0 0
\(993\) −33.1757 −1.05280
\(994\) 0 0
\(995\) 9.67489 + 16.7574i 0.306715 + 0.531246i
\(996\) 0 0
\(997\) 5.66973 9.82027i 0.179562 0.311011i −0.762168 0.647379i \(-0.775865\pi\)
0.941731 + 0.336368i \(0.109199\pi\)
\(998\) 0 0
\(999\) −0.285090 0.493791i −0.00901986 0.0156229i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.q.h.1141.3 8
31.5 even 3 inner 1860.2.q.h.1741.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.q.h.1141.3 8 1.1 even 1 trivial
1860.2.q.h.1741.3 yes 8 31.5 even 3 inner