L(s) = 1 | + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)5-s + (1.28 + 2.22i)7-s + (−0.499 + 0.866i)9-s + (−1.07 + 1.85i)11-s + (−2.98 + 5.17i)13-s − 0.999·15-s + (−2.17 − 3.75i)17-s + (−1.98 − 3.44i)19-s + (−1.28 + 2.22i)21-s − 7.65·23-s + (−0.499 − 0.866i)25-s − 0.999·27-s + 0.639·29-s + (5.34 + 1.55i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−0.223 + 0.387i)5-s + (0.485 + 0.841i)7-s + (−0.166 + 0.288i)9-s + (−0.322 + 0.558i)11-s + (−0.829 + 1.43i)13-s − 0.258·15-s + (−0.526 − 0.911i)17-s + (−0.456 − 0.790i)19-s + (−0.280 + 0.485i)21-s − 1.59·23-s + (−0.0999 − 0.173i)25-s − 0.192·27-s + 0.118·29-s + (0.960 + 0.279i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.117i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 + 0.117i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8525637356\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8525637356\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-5.34 - 1.55i)T \) |
good | 7 | \( 1 + (-1.28 - 2.22i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.07 - 1.85i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.98 - 5.17i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.17 + 3.75i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.98 + 3.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 7.65T + 23T^{2} \) |
| 29 | \( 1 - 0.639T + 29T^{2} \) |
| 37 | \( 1 + (-0.285 - 0.493i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.402 + 0.697i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.60 + 6.24i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 0.229T + 47T^{2} \) |
| 53 | \( 1 + (-5.76 + 9.97i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.25 - 3.90i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 0.358T + 61T^{2} \) |
| 67 | \( 1 + (2.12 - 3.67i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.55 - 9.62i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.50 - 9.53i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.60 - 13.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.33 + 9.23i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 3.50T + 89T^{2} \) |
| 97 | \( 1 + 8.22T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.685494394870552713699679433393, −8.827534270009844718693693676490, −8.273565582868188293688413418384, −7.19665083874377350281105148985, −6.66552878565241679589456445233, −5.43290915299762903374542574894, −4.66995539848554057423361956342, −4.02081308250926469001920039514, −2.54055350111536547398424441917, −2.15242416290783036185774122517,
0.28269178999237350822449855495, 1.55098464215452802327668712984, 2.74188224781168589327233427351, 3.83907902207692681530262088090, 4.61802428725187023102212513794, 5.71879184859956311991770715345, 6.38936560864270367071581327276, 7.65736775485054106281226527725, 7.943926308408898354125868249201, 8.481807103690247203631527095355