Properties

Label 186.2.c.b.185.8
Level $186$
Weight $2$
Character 186.185
Analytic conductor $1.485$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [186,2,Mod(185,186)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("186.185"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(186, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 186 = 2 \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 186.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.48521747760\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40282095616.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 8x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 185.8
Root \(-1.03179 - 1.39119i\) of defining polynomial
Character \(\chi\) \(=\) 186.185
Dual form 186.2.c.b.185.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(1.39119 + 1.03179i) q^{3} -1.00000 q^{4} +2.00000i q^{5} +(-1.03179 + 1.39119i) q^{6} -3.74166 q^{7} -1.00000i q^{8} +(0.870829 + 2.87083i) q^{9} -2.00000 q^{10} +3.50119 q^{11} +(-1.39119 - 1.03179i) q^{12} -2.78238i q^{13} -3.74166i q^{14} +(-2.06358 + 2.78238i) q^{15} +1.00000 q^{16} +5.56477 q^{17} +(-2.87083 + 0.870829i) q^{18} -2.00000i q^{20} +(-5.20536 - 3.86060i) q^{21} +3.50119i q^{22} -1.43762 q^{23} +(1.03179 - 1.39119i) q^{24} +1.00000 q^{25} +2.78238 q^{26} +(-1.75060 + 4.89238i) q^{27} +3.74166 q^{28} -4.22000 q^{29} +(-2.78238 - 2.06358i) q^{30} +(2.74166 - 4.84596i) q^{31} +1.00000i q^{32} +(4.87083 + 3.61249i) q^{33} +5.56477i q^{34} -7.48331i q^{35} +(-0.870829 - 2.87083i) q^{36} +6.19073i q^{37} +(2.87083 - 3.87083i) q^{39} +2.00000 q^{40} -1.74166i q^{41} +(3.86060 - 5.20536i) q^{42} -12.4743i q^{43} -3.50119 q^{44} +(-5.74166 + 1.74166i) q^{45} -1.43762i q^{46} -0.258343i q^{47} +(1.39119 + 1.03179i) q^{48} +7.00000 q^{49} +1.00000i q^{50} +(7.74166 + 5.74166i) q^{51} +2.78238i q^{52} +7.62834 q^{53} +(-4.89238 - 1.75060i) q^{54} +7.00238i q^{55} +3.74166i q^{56} -4.22000i q^{58} +7.48331i q^{59} +(2.06358 - 2.78238i) q^{60} -9.06596i q^{61} +(4.84596 + 2.74166i) q^{62} +(-3.25834 - 10.7417i) q^{63} -1.00000 q^{64} +5.56477 q^{65} +(-3.61249 + 4.87083i) q^{66} -15.4833 q^{67} -5.56477 q^{68} +(-2.00000 - 1.48331i) q^{69} +7.48331 q^{70} -13.4833i q^{71} +(2.87083 - 0.870829i) q^{72} +1.43762i q^{73} -6.19073 q^{74} +(1.39119 + 1.03179i) q^{75} -13.1003 q^{77} +(3.87083 + 2.87083i) q^{78} +7.00238i q^{79} +2.00000i q^{80} +(-7.48331 + 5.00000i) q^{81} +1.74166 q^{82} -16.6015 q^{83} +(5.20536 + 3.86060i) q^{84} +11.1295i q^{85} +12.4743 q^{86} +(-5.87083 - 4.35414i) q^{87} -3.50119i q^{88} +9.69192 q^{89} +(-1.74166 - 5.74166i) q^{90} +10.4107i q^{91} +1.43762 q^{92} +(8.81417 - 3.91285i) q^{93} +0.258343 q^{94} +(-1.03179 + 1.39119i) q^{96} -13.7417 q^{97} +7.00000i q^{98} +(3.04894 + 10.0513i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 8 q^{9} - 16 q^{10} + 8 q^{16} - 8 q^{18} + 8 q^{25} - 8 q^{31} + 24 q^{33} + 8 q^{36} + 8 q^{39} + 16 q^{40} - 16 q^{45} + 56 q^{49} + 32 q^{51} - 56 q^{63} - 8 q^{64} + 16 q^{66} - 64 q^{67}+ \cdots - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/186\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.39119 + 1.03179i 0.803205 + 0.595703i
\(4\) −1.00000 −0.500000
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) −1.03179 + 1.39119i −0.421226 + 0.567952i
\(7\) −3.74166 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.870829 + 2.87083i 0.290276 + 0.956943i
\(10\) −2.00000 −0.632456
\(11\) 3.50119 1.05565 0.527824 0.849353i \(-0.323008\pi\)
0.527824 + 0.849353i \(0.323008\pi\)
\(12\) −1.39119 1.03179i −0.401602 0.297851i
\(13\) 2.78238i 0.771694i −0.922563 0.385847i \(-0.873909\pi\)
0.922563 0.385847i \(-0.126091\pi\)
\(14\) 3.74166i 1.00000i
\(15\) −2.06358 + 2.78238i −0.532813 + 0.718408i
\(16\) 1.00000 0.250000
\(17\) 5.56477 1.34965 0.674827 0.737976i \(-0.264218\pi\)
0.674827 + 0.737976i \(0.264218\pi\)
\(18\) −2.87083 + 0.870829i −0.676661 + 0.205256i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 2.00000i 0.447214i
\(21\) −5.20536 3.86060i −1.13590 0.842451i
\(22\) 3.50119i 0.746457i
\(23\) −1.43762 −0.299764 −0.149882 0.988704i \(-0.547889\pi\)
−0.149882 + 0.988704i \(0.547889\pi\)
\(24\) 1.03179 1.39119i 0.210613 0.283976i
\(25\) 1.00000 0.200000
\(26\) 2.78238 0.545670
\(27\) −1.75060 + 4.89238i −0.336902 + 0.941540i
\(28\) 3.74166 0.707107
\(29\) −4.22000 −0.783634 −0.391817 0.920043i \(-0.628153\pi\)
−0.391817 + 0.920043i \(0.628153\pi\)
\(30\) −2.78238 2.06358i −0.507991 0.376756i
\(31\) 2.74166 4.84596i 0.492416 0.870360i
\(32\) 1.00000i 0.176777i
\(33\) 4.87083 + 3.61249i 0.847902 + 0.628853i
\(34\) 5.56477i 0.954350i
\(35\) 7.48331i 1.26491i
\(36\) −0.870829 2.87083i −0.145138 0.478471i
\(37\) 6.19073i 1.01775i 0.860841 + 0.508875i \(0.169938\pi\)
−0.860841 + 0.508875i \(0.830062\pi\)
\(38\) 0 0
\(39\) 2.87083 3.87083i 0.459700 0.619829i
\(40\) 2.00000 0.316228
\(41\) 1.74166i 0.272001i −0.990709 0.136001i \(-0.956575\pi\)
0.990709 0.136001i \(-0.0434249\pi\)
\(42\) 3.86060 5.20536i 0.595703 0.803205i
\(43\) 12.4743i 1.90231i −0.308709 0.951157i \(-0.599897\pi\)
0.308709 0.951157i \(-0.400103\pi\)
\(44\) −3.50119 −0.527824
\(45\) −5.74166 + 1.74166i −0.855916 + 0.259631i
\(46\) 1.43762i 0.211965i
\(47\) 0.258343i 0.0376831i −0.999822 0.0188416i \(-0.994002\pi\)
0.999822 0.0188416i \(-0.00599781\pi\)
\(48\) 1.39119 + 1.03179i 0.200801 + 0.148926i
\(49\) 7.00000 1.00000
\(50\) 1.00000i 0.141421i
\(51\) 7.74166 + 5.74166i 1.08405 + 0.803993i
\(52\) 2.78238i 0.385847i
\(53\) 7.62834 1.04783 0.523917 0.851770i \(-0.324470\pi\)
0.523917 + 0.851770i \(0.324470\pi\)
\(54\) −4.89238 1.75060i −0.665769 0.238226i
\(55\) 7.00238i 0.944201i
\(56\) 3.74166i 0.500000i
\(57\) 0 0
\(58\) 4.22000i 0.554113i
\(59\) 7.48331i 0.974245i 0.873334 + 0.487122i \(0.161953\pi\)
−0.873334 + 0.487122i \(0.838047\pi\)
\(60\) 2.06358 2.78238i 0.266406 0.359204i
\(61\) 9.06596i 1.16078i −0.814340 0.580389i \(-0.802901\pi\)
0.814340 0.580389i \(-0.197099\pi\)
\(62\) 4.84596 + 2.74166i 0.615437 + 0.348191i
\(63\) −3.25834 10.7417i −0.410513 1.35332i
\(64\) −1.00000 −0.125000
\(65\) 5.56477 0.690224
\(66\) −3.61249 + 4.87083i −0.444666 + 0.599558i
\(67\) −15.4833 −1.89159 −0.945794 0.324767i \(-0.894714\pi\)
−0.945794 + 0.324767i \(0.894714\pi\)
\(68\) −5.56477 −0.674827
\(69\) −2.00000 1.48331i −0.240772 0.178570i
\(70\) 7.48331 0.894427
\(71\) 13.4833i 1.60018i −0.599883 0.800088i \(-0.704786\pi\)
0.599883 0.800088i \(-0.295214\pi\)
\(72\) 2.87083 0.870829i 0.338330 0.102628i
\(73\) 1.43762i 0.168260i 0.996455 + 0.0841301i \(0.0268111\pi\)
−0.996455 + 0.0841301i \(0.973189\pi\)
\(74\) −6.19073 −0.719657
\(75\) 1.39119 + 1.03179i 0.160641 + 0.119141i
\(76\) 0 0
\(77\) −13.1003 −1.49291
\(78\) 3.87083 + 2.87083i 0.438285 + 0.325057i
\(79\) 7.00238i 0.787830i 0.919147 + 0.393915i \(0.128880\pi\)
−0.919147 + 0.393915i \(0.871120\pi\)
\(80\) 2.00000i 0.223607i
\(81\) −7.48331 + 5.00000i −0.831479 + 0.555556i
\(82\) 1.74166 0.192334
\(83\) −16.6015 −1.82225 −0.911123 0.412135i \(-0.864783\pi\)
−0.911123 + 0.412135i \(0.864783\pi\)
\(84\) 5.20536 + 3.86060i 0.567952 + 0.421226i
\(85\) 11.1295i 1.20717i
\(86\) 12.4743 1.34514
\(87\) −5.87083 4.35414i −0.629419 0.466813i
\(88\) 3.50119i 0.373228i
\(89\) 9.69192 1.02734 0.513671 0.857987i \(-0.328285\pi\)
0.513671 + 0.857987i \(0.328285\pi\)
\(90\) −1.74166 5.74166i −0.183587 0.605224i
\(91\) 10.4107i 1.09134i
\(92\) 1.43762 0.149882
\(93\) 8.81417 3.91285i 0.913987 0.405744i
\(94\) 0.258343 0.0266460
\(95\) 0 0
\(96\) −1.03179 + 1.39119i −0.105306 + 0.141988i
\(97\) −13.7417 −1.39525 −0.697627 0.716461i \(-0.745761\pi\)
−0.697627 + 0.716461i \(0.745761\pi\)
\(98\) 7.00000i 0.707107i
\(99\) 3.04894 + 10.0513i 0.306430 + 1.01020i
\(100\) −1.00000 −0.100000
\(101\) 16.9666i 1.68824i 0.536152 + 0.844121i \(0.319877\pi\)
−0.536152 + 0.844121i \(0.680123\pi\)
\(102\) −5.74166 + 7.74166i −0.568509 + 0.766538i
\(103\) −9.48331 −0.934419 −0.467209 0.884147i \(-0.654741\pi\)
−0.467209 + 0.884147i \(0.654741\pi\)
\(104\) −2.78238 −0.272835
\(105\) 7.72119 10.4107i 0.753511 1.01598i
\(106\) 7.62834i 0.740930i
\(107\) 4.51669i 0.436644i 0.975877 + 0.218322i \(0.0700584\pi\)
−0.975877 + 0.218322i \(0.929942\pi\)
\(108\) 1.75060 4.89238i 0.168451 0.470770i
\(109\) 16.9666 1.62511 0.812554 0.582886i \(-0.198076\pi\)
0.812554 + 0.582886i \(0.198076\pi\)
\(110\) −7.00238 −0.667651
\(111\) −6.38751 + 8.61249i −0.606276 + 0.817461i
\(112\) −3.74166 −0.353553
\(113\) 2.25834i 0.212447i −0.994342 0.106224i \(-0.966124\pi\)
0.994342 0.106224i \(-0.0338759\pi\)
\(114\) 0 0
\(115\) 2.87523i 0.268117i
\(116\) 4.22000 0.391817
\(117\) 7.98775 2.42298i 0.738467 0.224005i
\(118\) −7.48331 −0.688895
\(119\) −20.8215 −1.90870
\(120\) 2.78238 + 2.06358i 0.253996 + 0.188378i
\(121\) 1.25834 0.114395
\(122\) 9.06596 0.820793
\(123\) 1.79702 2.42298i 0.162032 0.218473i
\(124\) −2.74166 + 4.84596i −0.246208 + 0.435180i
\(125\) 12.0000i 1.07331i
\(126\) 10.7417 3.25834i 0.956943 0.290276i
\(127\) 13.8191i 1.22624i −0.789988 0.613122i \(-0.789913\pi\)
0.789988 0.613122i \(-0.210087\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 12.8708 17.3541i 1.13321 1.52795i
\(130\) 5.56477i 0.488062i
\(131\) 3.48331i 0.304339i 0.988354 + 0.152169i \(0.0486259\pi\)
−0.988354 + 0.152169i \(0.951374\pi\)
\(132\) −4.87083 3.61249i −0.423951 0.314427i
\(133\) 0 0
\(134\) 15.4833i 1.33755i
\(135\) −9.78477 3.50119i −0.842139 0.301335i
\(136\) 5.56477i 0.477175i
\(137\) −4.12715 −0.352606 −0.176303 0.984336i \(-0.556414\pi\)
−0.176303 + 0.984336i \(0.556414\pi\)
\(138\) 1.48331 2.00000i 0.126268 0.170251i
\(139\) 20.1955i 1.71296i −0.516181 0.856480i \(-0.672647\pi\)
0.516181 0.856480i \(-0.327353\pi\)
\(140\) 7.48331i 0.632456i
\(141\) 0.266555 0.359404i 0.0224480 0.0302673i
\(142\) 13.4833 1.13149
\(143\) 9.74166i 0.814638i
\(144\) 0.870829 + 2.87083i 0.0725691 + 0.239236i
\(145\) 8.44000i 0.700904i
\(146\) −1.43762 −0.118978
\(147\) 9.73834 + 7.22251i 0.803205 + 0.595703i
\(148\) 6.19073i 0.508875i
\(149\) 2.51669i 0.206175i −0.994672 0.103087i \(-0.967128\pi\)
0.994672 0.103087i \(-0.0328722\pi\)
\(150\) −1.03179 + 1.39119i −0.0842451 + 0.113590i
\(151\) 8.44000i 0.686837i 0.939182 + 0.343419i \(0.111585\pi\)
−0.939182 + 0.343419i \(0.888415\pi\)
\(152\) 0 0
\(153\) 4.84596 + 15.9755i 0.391773 + 1.29154i
\(154\) 13.1003i 1.05565i
\(155\) 9.69192 + 5.48331i 0.778474 + 0.440430i
\(156\) −2.87083 + 3.87083i −0.229850 + 0.309914i
\(157\) 1.48331 0.118381 0.0591907 0.998247i \(-0.481148\pi\)
0.0591907 + 0.998247i \(0.481148\pi\)
\(158\) −7.00238 −0.557080
\(159\) 10.6125 + 7.87083i 0.841625 + 0.624197i
\(160\) −2.00000 −0.158114
\(161\) 5.37907 0.423930
\(162\) −5.00000 7.48331i −0.392837 0.587945i
\(163\) 0.516685 0.0404699 0.0202350 0.999795i \(-0.493559\pi\)
0.0202350 + 0.999795i \(0.493559\pi\)
\(164\) 1.74166i 0.136001i
\(165\) −7.22497 + 9.74166i −0.562463 + 0.758387i
\(166\) 16.6015i 1.28852i
\(167\) 4.31285 0.333738 0.166869 0.985979i \(-0.446634\pi\)
0.166869 + 0.985979i \(0.446634\pi\)
\(168\) −3.86060 + 5.20536i −0.297851 + 0.401602i
\(169\) 5.25834 0.404488
\(170\) −11.1295 −0.853596
\(171\) 0 0
\(172\) 12.4743i 0.951157i
\(173\) 17.4833i 1.32923i −0.747185 0.664616i \(-0.768595\pi\)
0.747185 0.664616i \(-0.231405\pi\)
\(174\) 4.35414 5.87083i 0.330087 0.445066i
\(175\) −3.74166 −0.282843
\(176\) 3.50119 0.263912
\(177\) −7.72119 + 10.4107i −0.580360 + 0.782518i
\(178\) 9.69192i 0.726440i
\(179\) 5.47192 0.408990 0.204495 0.978868i \(-0.434445\pi\)
0.204495 + 0.978868i \(0.434445\pi\)
\(180\) 5.74166 1.74166i 0.427958 0.129815i
\(181\) 5.47192i 0.406724i 0.979104 + 0.203362i \(0.0651869\pi\)
−0.979104 + 0.203362i \(0.934813\pi\)
\(182\) −10.4107 −0.771694
\(183\) 9.35414 12.6125i 0.691478 0.932342i
\(184\) 1.43762i 0.105982i
\(185\) −12.3815 −0.910302
\(186\) 3.91285 + 8.81417i 0.286904 + 0.646286i
\(187\) 19.4833 1.42476
\(188\) 0.258343i 0.0188416i
\(189\) 6.55013 18.3056i 0.476452 1.33154i
\(190\) 0 0
\(191\) 8.25834i 0.597553i 0.954323 + 0.298776i \(0.0965785\pi\)
−0.954323 + 0.298776i \(0.903422\pi\)
\(192\) −1.39119 1.03179i −0.100401 0.0744629i
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 13.7417i 0.986594i
\(195\) 7.74166 + 5.74166i 0.554392 + 0.411169i
\(196\) −7.00000 −0.500000
\(197\) −18.0391 −1.28523 −0.642615 0.766189i \(-0.722151\pi\)
−0.642615 + 0.766189i \(0.722151\pi\)
\(198\) −10.0513 + 3.04894i −0.714316 + 0.216679i
\(199\) 1.43762i 0.101910i −0.998701 0.0509550i \(-0.983774\pi\)
0.998701 0.0509550i \(-0.0162265\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) −21.5403 15.9755i −1.51933 1.12682i
\(202\) −16.9666 −1.19377
\(203\) 15.7898 1.10823
\(204\) −7.74166 5.74166i −0.542024 0.401996i
\(205\) 3.48331 0.243285
\(206\) 9.48331i 0.660734i
\(207\) −1.25192 4.12715i −0.0870143 0.286857i
\(208\) 2.78238i 0.192924i
\(209\) 0 0
\(210\) 10.4107 + 7.72119i 0.718408 + 0.532813i
\(211\) 18.9666 1.30572 0.652858 0.757480i \(-0.273570\pi\)
0.652858 + 0.757480i \(0.273570\pi\)
\(212\) −7.62834 −0.523917
\(213\) 13.9119 18.7579i 0.953229 1.28527i
\(214\) −4.51669 −0.308754
\(215\) 24.9486 1.70148
\(216\) 4.89238 + 1.75060i 0.332885 + 0.119113i
\(217\) −10.2583 + 18.1319i −0.696382 + 1.23087i
\(218\) 16.9666i 1.14913i
\(219\) −1.48331 + 2.00000i −0.100233 + 0.135147i
\(220\) 7.00238i 0.472101i
\(221\) 15.4833i 1.04152i
\(222\) −8.61249 6.38751i −0.578032 0.428702i
\(223\) 19.5695i 1.31047i 0.755424 + 0.655236i \(0.227431\pi\)
−0.755424 + 0.655236i \(0.772569\pi\)
\(224\) 3.74166i 0.250000i
\(225\) 0.870829 + 2.87083i 0.0580552 + 0.191389i
\(226\) 2.25834 0.150223
\(227\) 14.9666i 0.993370i 0.867931 + 0.496685i \(0.165450\pi\)
−0.867931 + 0.496685i \(0.834550\pi\)
\(228\) 0 0
\(229\) 2.06358i 0.136365i −0.997673 0.0681824i \(-0.978280\pi\)
0.997673 0.0681824i \(-0.0217200\pi\)
\(230\) 2.87523 0.189587
\(231\) −18.2250 13.5167i −1.19912 0.889333i
\(232\) 4.22000i 0.277057i
\(233\) 9.22497i 0.604348i −0.953253 0.302174i \(-0.902288\pi\)
0.953253 0.302174i \(-0.0977124\pi\)
\(234\) 2.42298 + 7.98775i 0.158395 + 0.522175i
\(235\) 0.516685 0.0337048
\(236\) 7.48331i 0.487122i
\(237\) −7.22497 + 9.74166i −0.469312 + 0.632789i
\(238\) 20.8215i 1.34965i
\(239\) −18.1319 −1.17286 −0.586428 0.810001i \(-0.699466\pi\)
−0.586428 + 0.810001i \(0.699466\pi\)
\(240\) −2.06358 + 2.78238i −0.133203 + 0.179602i
\(241\) 1.25192i 0.0806431i 0.999187 + 0.0403216i \(0.0128382\pi\)
−0.999187 + 0.0403216i \(0.987162\pi\)
\(242\) 1.25834i 0.0808893i
\(243\) −15.5697 0.765233i −0.998794 0.0490897i
\(244\) 9.06596i 0.580389i
\(245\) 14.0000i 0.894427i
\(246\) 2.42298 + 1.79702i 0.154484 + 0.114574i
\(247\) 0 0
\(248\) −4.84596 2.74166i −0.307719 0.174095i
\(249\) −23.0958 17.1292i −1.46364 1.08552i
\(250\) −12.0000 −0.758947
\(251\) 21.6331 1.36547 0.682735 0.730666i \(-0.260790\pi\)
0.682735 + 0.730666i \(0.260790\pi\)
\(252\) 3.25834 + 10.7417i 0.205256 + 0.676661i
\(253\) −5.03337 −0.316445
\(254\) 13.8191 0.867085
\(255\) −11.4833 + 15.4833i −0.719113 + 0.969603i
\(256\) 1.00000 0.0625000
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) 17.3541 + 12.8708i 1.08042 + 0.801303i
\(259\) 23.1636i 1.43931i
\(260\) −5.56477 −0.345112
\(261\) −3.67490 12.1149i −0.227470 0.749893i
\(262\) −3.48331 −0.215200
\(263\) 7.00238 0.431785 0.215893 0.976417i \(-0.430734\pi\)
0.215893 + 0.976417i \(0.430734\pi\)
\(264\) 3.61249 4.87083i 0.222333 0.299779i
\(265\) 15.2567i 0.937211i
\(266\) 0 0
\(267\) 13.4833 + 10.0000i 0.825165 + 0.611990i
\(268\) 15.4833 0.945794
\(269\) −0.625959 −0.0381654 −0.0190827 0.999818i \(-0.506075\pi\)
−0.0190827 + 0.999818i \(0.506075\pi\)
\(270\) 3.50119 9.78477i 0.213076 0.595482i
\(271\) 1.25192i 0.0760486i 0.999277 + 0.0380243i \(0.0121064\pi\)
−0.999277 + 0.0380243i \(0.987894\pi\)
\(272\) 5.56477 0.337414
\(273\) −10.7417 + 14.4833i −0.650115 + 0.876570i
\(274\) 4.12715i 0.249330i
\(275\) 3.50119 0.211130
\(276\) 2.00000 + 1.48331i 0.120386 + 0.0892851i
\(277\) 19.4767i 1.17024i 0.810947 + 0.585120i \(0.198953\pi\)
−0.810947 + 0.585120i \(0.801047\pi\)
\(278\) 20.1955 1.21125
\(279\) 16.2994 + 3.65083i 0.975821 + 0.218569i
\(280\) −7.48331 −0.447214
\(281\) 16.9666i 1.01214i −0.862491 0.506072i \(-0.831097\pi\)
0.862491 0.506072i \(-0.168903\pi\)
\(282\) 0.359404 + 0.266555i 0.0214022 + 0.0158731i
\(283\) 0.516685 0.0307137 0.0153569 0.999882i \(-0.495112\pi\)
0.0153569 + 0.999882i \(0.495112\pi\)
\(284\) 13.4833i 0.800088i
\(285\) 0 0
\(286\) 9.74166 0.576036
\(287\) 6.51669i 0.384668i
\(288\) −2.87083 + 0.870829i −0.169165 + 0.0513141i
\(289\) 13.9666 0.821566
\(290\) 8.44000 0.495614
\(291\) −19.1173 14.1785i −1.12067 0.831157i
\(292\) 1.43762i 0.0841301i
\(293\) 29.4833i 1.72243i 0.508238 + 0.861217i \(0.330297\pi\)
−0.508238 + 0.861217i \(0.669703\pi\)
\(294\) −7.22251 + 9.73834i −0.421226 + 0.567952i
\(295\) −14.9666 −0.871391
\(296\) 6.19073 0.359829
\(297\) −6.12917 + 17.1292i −0.355651 + 0.993935i
\(298\) 2.51669 0.145788
\(299\) 4.00000i 0.231326i
\(300\) −1.39119 1.03179i −0.0803205 0.0595703i
\(301\) 46.6746i 2.69028i
\(302\) −8.44000 −0.485667
\(303\) −17.5060 + 23.6038i −1.00569 + 1.35600i
\(304\) 0 0
\(305\) 18.1319 1.03823
\(306\) −15.9755 + 4.84596i −0.913258 + 0.277025i
\(307\) −18.9666 −1.08248 −0.541241 0.840867i \(-0.682045\pi\)
−0.541241 + 0.840867i \(0.682045\pi\)
\(308\) 13.1003 0.746457
\(309\) −13.1931 9.78477i −0.750530 0.556636i
\(310\) −5.48331 + 9.69192i −0.311431 + 0.550464i
\(311\) 6.96663i 0.395041i −0.980299 0.197521i \(-0.936711\pi\)
0.980299 0.197521i \(-0.0632890\pi\)
\(312\) −3.87083 2.87083i −0.219143 0.162529i
\(313\) 0.185699i 0.0104963i 0.999986 + 0.00524816i \(0.00167055\pi\)
−0.999986 + 0.00524816i \(0.998329\pi\)
\(314\) 1.48331i 0.0837083i
\(315\) 21.4833 6.51669i 1.21045 0.367174i
\(316\) 7.00238i 0.393915i
\(317\) 25.4833i 1.43129i −0.698466 0.715643i \(-0.746134\pi\)
0.698466 0.715643i \(-0.253866\pi\)
\(318\) −7.87083 + 10.6125i −0.441374 + 0.595119i
\(319\) −14.7750 −0.827243
\(320\) 2.00000i 0.111803i
\(321\) −4.66026 + 6.28357i −0.260110 + 0.350715i
\(322\) 5.37907i 0.299764i
\(323\) 0 0
\(324\) 7.48331 5.00000i 0.415740 0.277778i
\(325\) 2.78238i 0.154339i
\(326\) 0.516685i 0.0286165i
\(327\) 23.6038 + 17.5060i 1.30530 + 0.968082i
\(328\) −1.74166 −0.0961669
\(329\) 0.966630i 0.0532920i
\(330\) −9.74166 7.22497i −0.536261 0.397722i
\(331\) 10.3179i 0.567122i −0.958954 0.283561i \(-0.908484\pi\)
0.958954 0.283561i \(-0.0915158\pi\)
\(332\) 16.6015 0.911123
\(333\) −17.7725 + 5.39106i −0.973928 + 0.295428i
\(334\) 4.31285i 0.235989i
\(335\) 30.9666i 1.69189i
\(336\) −5.20536 3.86060i −0.283976 0.210613i
\(337\) 31.9510i 1.74048i −0.492627 0.870241i \(-0.663963\pi\)
0.492627 0.870241i \(-0.336037\pi\)
\(338\) 5.25834i 0.286016i
\(339\) 2.33013 3.14179i 0.126555 0.170638i
\(340\) 11.1295i 0.603584i
\(341\) 9.59907 16.9666i 0.519819 0.918795i
\(342\) 0 0
\(343\) 0 0
\(344\) −12.4743 −0.672569
\(345\) 2.96663 4.00000i 0.159718 0.215353i
\(346\) 17.4833 0.939909
\(347\) 19.4767 1.04556 0.522782 0.852467i \(-0.324894\pi\)
0.522782 + 0.852467i \(0.324894\pi\)
\(348\) 5.87083 + 4.35414i 0.314709 + 0.233407i
\(349\) −16.9666 −0.908203 −0.454101 0.890950i \(-0.650040\pi\)
−0.454101 + 0.890950i \(0.650040\pi\)
\(350\) 3.74166i 0.200000i
\(351\) 13.6125 + 4.87083i 0.726581 + 0.259986i
\(352\) 3.50119i 0.186614i
\(353\) −20.8215 −1.10821 −0.554107 0.832445i \(-0.686940\pi\)
−0.554107 + 0.832445i \(0.686940\pi\)
\(354\) −10.4107 7.72119i −0.553324 0.410377i
\(355\) 26.9666 1.43124
\(356\) −9.69192 −0.513671
\(357\) −28.9666 21.4833i −1.53308 1.13702i
\(358\) 5.47192i 0.289200i
\(359\) 24.2583i 1.28031i −0.768247 0.640153i \(-0.778871\pi\)
0.768247 0.640153i \(-0.221129\pi\)
\(360\) 1.74166 + 5.74166i 0.0917934 + 0.302612i
\(361\) −19.0000 −1.00000
\(362\) −5.47192 −0.287598
\(363\) 1.75060 + 1.29834i 0.0918825 + 0.0681453i
\(364\) 10.4107i 0.545670i
\(365\) −2.87523 −0.150497
\(366\) 12.6125 + 9.35414i 0.659265 + 0.488949i
\(367\) 12.5671i 0.656000i −0.944678 0.328000i \(-0.893625\pi\)
0.944678 0.328000i \(-0.106375\pi\)
\(368\) −1.43762 −0.0749409
\(369\) 5.00000 1.51669i 0.260290 0.0789555i
\(370\) 12.3815i 0.643681i
\(371\) −28.5426 −1.48186
\(372\) −8.81417 + 3.91285i −0.456993 + 0.202872i
\(373\) 17.4833 0.905252 0.452626 0.891701i \(-0.350487\pi\)
0.452626 + 0.891701i \(0.350487\pi\)
\(374\) 19.4833i 1.00746i
\(375\) −12.3815 + 16.6943i −0.639375 + 0.862090i
\(376\) −0.258343 −0.0133230
\(377\) 11.7417i 0.604726i
\(378\) 18.3056 + 6.55013i 0.941540 + 0.336902i
\(379\) 26.9666 1.38518 0.692591 0.721330i \(-0.256469\pi\)
0.692591 + 0.721330i \(0.256469\pi\)
\(380\) 0 0
\(381\) 14.2583 19.2250i 0.730477 0.984925i
\(382\) −8.25834 −0.422534
\(383\) −12.3815 −0.632663 −0.316331 0.948649i \(-0.602451\pi\)
−0.316331 + 0.948649i \(0.602451\pi\)
\(384\) 1.03179 1.39119i 0.0526532 0.0709940i
\(385\) 26.2005i 1.33530i
\(386\) 4.00000i 0.203595i
\(387\) 35.8116 10.8630i 1.82040 0.552196i
\(388\) 13.7417 0.697627
\(389\) 18.7579 0.951062 0.475531 0.879699i \(-0.342256\pi\)
0.475531 + 0.879699i \(0.342256\pi\)
\(390\) −5.74166 + 7.74166i −0.290740 + 0.392014i
\(391\) −8.00000 −0.404577
\(392\) 7.00000i 0.353553i
\(393\) −3.59404 + 4.84596i −0.181295 + 0.244446i
\(394\) 18.0391i 0.908795i
\(395\) −14.0048 −0.704656
\(396\) −3.04894 10.0513i −0.153215 0.505098i
\(397\) −8.96663 −0.450022 −0.225011 0.974356i \(-0.572242\pi\)
−0.225011 + 0.974356i \(0.572242\pi\)
\(398\) 1.43762 0.0720612
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −22.4448 −1.12084 −0.560419 0.828209i \(-0.689360\pi\)
−0.560419 + 0.828209i \(0.689360\pi\)
\(402\) 15.9755 21.5403i 0.796785 1.07433i
\(403\) −13.4833 7.62834i −0.671652 0.379995i
\(404\) 16.9666i 0.844121i
\(405\) −10.0000 14.9666i −0.496904 0.743698i
\(406\) 15.7898i 0.783634i
\(407\) 21.6749i 1.07439i
\(408\) 5.74166 7.74166i 0.284254 0.383269i
\(409\) 26.3862i 1.30471i 0.757912 + 0.652357i \(0.226220\pi\)
−0.757912 + 0.652357i \(0.773780\pi\)
\(410\) 3.48331i 0.172029i
\(411\) −5.74166 4.25834i −0.283215 0.210049i
\(412\) 9.48331 0.467209
\(413\) 28.0000i 1.37779i
\(414\) 4.12715 1.25192i 0.202838 0.0615284i
\(415\) 33.2029i 1.62987i
\(416\) 2.78238 0.136418
\(417\) 20.8375 28.0958i 1.02041 1.37586i
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) −7.72119 + 10.4107i −0.376756 + 0.507991i
\(421\) −1.48331 −0.0722923 −0.0361462 0.999347i \(-0.511508\pi\)
−0.0361462 + 0.999347i \(0.511508\pi\)
\(422\) 18.9666i 0.923281i
\(423\) 0.741657 0.224972i 0.0360606 0.0109385i
\(424\) 7.62834i 0.370465i
\(425\) 5.56477 0.269931
\(426\) 18.7579 + 13.9119i 0.908822 + 0.674035i
\(427\) 33.9217i 1.64159i
\(428\) 4.51669i 0.218322i
\(429\) 10.0513 13.5525i 0.485282 0.654321i
\(430\) 24.9486i 1.20313i
\(431\) 1.29171i 0.0622196i 0.999516 + 0.0311098i \(0.00990416\pi\)
−0.999516 + 0.0311098i \(0.990096\pi\)
\(432\) −1.75060 + 4.89238i −0.0842256 + 0.235385i
\(433\) 2.68953i 0.129251i 0.997910 + 0.0646254i \(0.0205852\pi\)
−0.997910 + 0.0646254i \(0.979415\pi\)
\(434\) −18.1319 10.2583i −0.870360 0.492416i
\(435\) 8.70829 11.7417i 0.417530 0.562969i
\(436\) −16.9666 −0.812554
\(437\) 0 0
\(438\) −2.00000 1.48331i −0.0955637 0.0708755i
\(439\) 4.77503 0.227900 0.113950 0.993487i \(-0.463650\pi\)
0.113950 + 0.993487i \(0.463650\pi\)
\(440\) 7.00238 0.333826
\(441\) 6.09580 + 20.0958i 0.290276 + 0.956943i
\(442\) 15.4833 0.736466
\(443\) 0.516685i 0.0245485i −0.999925 0.0122742i \(-0.996093\pi\)
0.999925 0.0122742i \(-0.00390711\pi\)
\(444\) 6.38751 8.61249i 0.303138 0.408731i
\(445\) 19.3838i 0.918882i
\(446\) −19.5695 −0.926644
\(447\) 2.59668 3.50119i 0.122819 0.165601i
\(448\) 3.74166 0.176777
\(449\) −1.25192 −0.0590816 −0.0295408 0.999564i \(-0.509405\pi\)
−0.0295408 + 0.999564i \(0.509405\pi\)
\(450\) −2.87083 + 0.870829i −0.135332 + 0.0410513i
\(451\) 6.09788i 0.287138i
\(452\) 2.25834i 0.106224i
\(453\) −8.70829 + 11.7417i −0.409151 + 0.551671i
\(454\) −14.9666 −0.702419
\(455\) −20.8215 −0.976125
\(456\) 0 0
\(457\) 33.2029i 1.55317i −0.630015 0.776583i \(-0.716951\pi\)
0.630015 0.776583i \(-0.283049\pi\)
\(458\) 2.06358 0.0964245
\(459\) −9.74166 + 27.2250i −0.454702 + 1.27075i
\(460\) 2.87523i 0.134058i
\(461\) 21.6331 1.00755 0.503777 0.863834i \(-0.331943\pi\)
0.503777 + 0.863834i \(0.331943\pi\)
\(462\) 13.5167 18.2250i 0.628853 0.847902i
\(463\) 5.75047i 0.267247i −0.991032 0.133623i \(-0.957339\pi\)
0.991032 0.133623i \(-0.0426613\pi\)
\(464\) −4.22000 −0.195909
\(465\) 7.82570 + 17.6283i 0.362908 + 0.817495i
\(466\) 9.22497 0.427339
\(467\) 38.4499i 1.77925i 0.456691 + 0.889626i \(0.349035\pi\)
−0.456691 + 0.889626i \(0.650965\pi\)
\(468\) −7.98775 + 2.42298i −0.369234 + 0.112002i
\(469\) 57.9333 2.67511
\(470\) 0.516685i 0.0238329i
\(471\) 2.06358 + 1.53047i 0.0950845 + 0.0705201i
\(472\) 7.48331 0.344447
\(473\) 43.6749i 2.00817i
\(474\) −9.74166 7.22497i −0.447449 0.331854i
\(475\) 0 0
\(476\) 20.8215 0.954350
\(477\) 6.64298 + 21.8997i 0.304161 + 1.00272i
\(478\) 18.1319i 0.829335i
\(479\) 37.9333i 1.73321i 0.498991 + 0.866607i \(0.333704\pi\)
−0.498991 + 0.866607i \(0.666296\pi\)
\(480\) −2.78238 2.06358i −0.126998 0.0941889i
\(481\) 17.2250 0.785391
\(482\) −1.25192 −0.0570233
\(483\) 7.48331 + 5.55006i 0.340503 + 0.252536i
\(484\) −1.25834 −0.0571974
\(485\) 27.4833i 1.24795i
\(486\) 0.765233 15.5697i 0.0347117 0.706254i
\(487\) 5.56477i 0.252164i 0.992020 + 0.126082i \(0.0402402\pi\)
−0.992020 + 0.126082i \(0.959760\pi\)
\(488\) −9.06596 −0.410397
\(489\) 0.718808 + 0.533109i 0.0325056 + 0.0241080i
\(490\) −14.0000 −0.632456
\(491\) −11.0367 −0.498079 −0.249039 0.968493i \(-0.580115\pi\)
−0.249039 + 0.968493i \(0.580115\pi\)
\(492\) −1.79702 + 2.42298i −0.0810159 + 0.109236i
\(493\) −23.4833 −1.05764
\(494\) 0 0
\(495\) −20.1026 + 6.09788i −0.903547 + 0.274079i
\(496\) 2.74166 4.84596i 0.123104 0.217590i
\(497\) 50.4499i 2.26299i
\(498\) 17.1292 23.0958i 0.767577 1.03495i
\(499\) 4.40570i 0.197226i −0.995126 0.0986131i \(-0.968559\pi\)
0.995126 0.0986131i \(-0.0314406\pi\)
\(500\) 12.0000i 0.536656i
\(501\) 6.00000 + 4.44994i 0.268060 + 0.198809i
\(502\) 21.6331i 0.965533i
\(503\) 9.48331i 0.422840i 0.977395 + 0.211420i \(0.0678088\pi\)
−0.977395 + 0.211420i \(0.932191\pi\)
\(504\) −10.7417 + 3.25834i −0.478471 + 0.145138i
\(505\) −33.9333 −1.51001
\(506\) 5.03337i 0.223761i
\(507\) 7.31536 + 5.42549i 0.324887 + 0.240955i
\(508\) 13.8191i 0.613122i
\(509\) 0.625959 0.0277451 0.0138726 0.999904i \(-0.495584\pi\)
0.0138726 + 0.999904i \(0.495584\pi\)
\(510\) −15.4833 11.4833i −0.685613 0.508490i
\(511\) 5.37907i 0.237956i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −8.00000 −0.352865
\(515\) 18.9666i 0.835770i
\(516\) −12.8708 + 17.3541i −0.566607 + 0.763974i
\(517\) 0.904507i 0.0397802i
\(518\) 23.1636 1.01775
\(519\) 18.0391 24.3226i 0.791827 1.06765i
\(520\) 5.56477i 0.244031i
\(521\) 10.0000i 0.438108i 0.975713 + 0.219054i \(0.0702971\pi\)
−0.975713 + 0.219054i \(0.929703\pi\)
\(522\) 12.1149 3.67490i 0.530255 0.160846i
\(523\) 6.90953i 0.302133i 0.988524 + 0.151066i \(0.0482707\pi\)
−0.988524 + 0.151066i \(0.951729\pi\)
\(524\) 3.48331i 0.152169i
\(525\) −5.20536 3.86060i −0.227181 0.168490i
\(526\) 7.00238i 0.305318i
\(527\) 15.2567 26.9666i 0.664592 1.17468i
\(528\) 4.87083 + 3.61249i 0.211976 + 0.157213i
\(529\) −20.9333 −0.910142
\(530\) −15.2567 −0.662708
\(531\) −21.4833 + 6.51669i −0.932296 + 0.282800i
\(532\) 0 0
\(533\) −4.84596 −0.209902
\(534\) −10.0000 + 13.4833i −0.432742 + 0.583480i
\(535\) −9.03337 −0.390547
\(536\) 15.4833i 0.668777i
\(537\) 7.61249 + 5.64586i 0.328503 + 0.243637i
\(538\) 0.625959i 0.0269870i
\(539\) 24.5083 1.05565
\(540\) 9.78477 + 3.50119i 0.421069 + 0.150667i
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) −1.25192 −0.0537745
\(543\) −5.64586 + 7.61249i −0.242287 + 0.326683i
\(544\) 5.56477i 0.238587i
\(545\) 33.9333i 1.45354i
\(546\) −14.4833 10.7417i −0.619829 0.459700i
\(547\) −2.44994 −0.104752 −0.0523760 0.998627i \(-0.516679\pi\)
−0.0523760 + 0.998627i \(0.516679\pi\)
\(548\) 4.12715 0.176303
\(549\) 26.0268 7.89490i 1.11080 0.336946i
\(550\) 3.50119i 0.149291i
\(551\) 0 0
\(552\) −1.48331 + 2.00000i −0.0631341 + 0.0851257i
\(553\) 26.2005i 1.11416i
\(554\) −19.4767 −0.827485
\(555\) −17.2250 12.7750i −0.731159 0.542270i
\(556\) 20.1955i 0.856480i
\(557\) −37.4229 −1.58566 −0.792830 0.609443i \(-0.791393\pi\)
−0.792830 + 0.609443i \(0.791393\pi\)
\(558\) −3.65083 + 16.2994i −0.154552 + 0.690010i
\(559\) −34.7083 −1.46800
\(560\) 7.48331i 0.316228i
\(561\) 27.1050 + 20.1026i 1.14438 + 0.848734i
\(562\) 16.9666 0.715694
\(563\) 26.4499i 1.11473i 0.830267 + 0.557366i \(0.188188\pi\)
−0.830267 + 0.557366i \(0.811812\pi\)
\(564\) −0.266555 + 0.359404i −0.0112240 + 0.0151336i
\(565\) 4.51669 0.190018
\(566\) 0.516685i 0.0217179i
\(567\) 28.0000 18.7083i 1.17589 0.785674i
\(568\) −13.4833 −0.565747
\(569\) −27.8238 −1.16644 −0.583218 0.812316i \(-0.698207\pi\)
−0.583218 + 0.812316i \(0.698207\pi\)
\(570\) 0 0
\(571\) 32.0438i 1.34099i 0.741913 + 0.670496i \(0.233919\pi\)
−0.741913 + 0.670496i \(0.766081\pi\)
\(572\) 9.74166i 0.407319i
\(573\) −8.52086 + 11.4889i −0.355964 + 0.479957i
\(574\) −6.51669 −0.272001
\(575\) −1.43762 −0.0599527
\(576\) −0.870829 2.87083i −0.0362845 0.119618i
\(577\) 9.74166 0.405551 0.202775 0.979225i \(-0.435004\pi\)
0.202775 + 0.979225i \(0.435004\pi\)
\(578\) 13.9666i 0.580935i
\(579\) 5.56477 + 4.12715i 0.231264 + 0.171519i
\(580\) 8.44000i 0.350452i
\(581\) 62.1169 2.57704
\(582\) 14.1785 19.1173i 0.587717 0.792437i
\(583\) 26.7083 1.10614
\(584\) 1.43762 0.0594890
\(585\) 4.84596 + 15.9755i 0.200356 + 0.660505i
\(586\) −29.4833 −1.21794
\(587\) −24.1369 −0.996238 −0.498119 0.867109i \(-0.665976\pi\)
−0.498119 + 0.867109i \(0.665976\pi\)
\(588\) −9.73834 7.22251i −0.401602 0.297851i
\(589\) 0 0
\(590\) 14.9666i 0.616166i
\(591\) −25.0958 18.6125i −1.03230 0.765615i
\(592\) 6.19073i 0.254437i
\(593\) 5.74166i 0.235782i −0.993027 0.117891i \(-0.962387\pi\)
0.993027 0.117891i \(-0.0376133\pi\)
\(594\) −17.1292 6.12917i −0.702818 0.251483i
\(595\) 41.6429i 1.70719i
\(596\) 2.51669i 0.103087i
\(597\) 1.48331 2.00000i 0.0607080 0.0818546i
\(598\) −4.00000 −0.163572
\(599\) 14.7083i 0.600964i −0.953787 0.300482i \(-0.902852\pi\)
0.953787 0.300482i \(-0.0971476\pi\)
\(600\) 1.03179 1.39119i 0.0421226 0.0567952i
\(601\) 36.2638i 1.47923i −0.673029 0.739616i \(-0.735007\pi\)
0.673029 0.739616i \(-0.264993\pi\)
\(602\) −46.6746 −1.90231
\(603\) −13.4833 44.4499i −0.549083 1.81014i
\(604\) 8.44000i 0.343419i
\(605\) 2.51669i 0.102318i
\(606\) −23.6038 17.5060i −0.958840 0.711131i
\(607\) 14.9666 0.607477 0.303738 0.952755i \(-0.401765\pi\)
0.303738 + 0.952755i \(0.401765\pi\)
\(608\) 0 0
\(609\) 21.9666 + 16.2917i 0.890133 + 0.660174i
\(610\) 18.1319i 0.734140i
\(611\) −0.718808 −0.0290799
\(612\) −4.84596 15.9755i −0.195886 0.645771i
\(613\) 21.4474i 0.866253i 0.901333 + 0.433126i \(0.142590\pi\)
−0.901333 + 0.433126i \(0.857410\pi\)
\(614\) 18.9666i 0.765431i
\(615\) 4.84596 + 3.59404i 0.195408 + 0.144926i
\(616\) 13.1003i 0.527824i
\(617\) 2.00000i 0.0805170i −0.999189 0.0402585i \(-0.987182\pi\)
0.999189 0.0402585i \(-0.0128181\pi\)
\(618\) 9.78477 13.1931i 0.393601 0.530705i
\(619\) 31.8581i 1.28049i 0.768172 + 0.640243i \(0.221166\pi\)
−0.768172 + 0.640243i \(0.778834\pi\)
\(620\) −9.69192 5.48331i −0.389237 0.220215i
\(621\) 2.51669 7.03337i 0.100991 0.282239i
\(622\) 6.96663 0.279336
\(623\) −36.2638 −1.45288
\(624\) 2.87083 3.87083i 0.114925 0.154957i
\(625\) −19.0000 −0.760000
\(626\) −0.185699 −0.00742202
\(627\) 0 0
\(628\) −1.48331 −0.0591907
\(629\) 34.4499i 1.37361i
\(630\) 6.51669 + 21.4833i 0.259631 + 0.855916i
\(631\) 18.1319i 0.721820i 0.932601 + 0.360910i \(0.117534\pi\)
−0.932601 + 0.360910i \(0.882466\pi\)
\(632\) 7.00238 0.278540
\(633\) 26.3862 + 19.5695i 1.04876 + 0.777819i
\(634\) 25.4833 1.01207
\(635\) 27.6381 1.09679
\(636\) −10.6125 7.87083i −0.420812 0.312099i
\(637\) 19.4767i 0.771694i
\(638\) 14.7750i 0.584949i
\(639\) 38.7083 11.7417i 1.53128 0.464493i
\(640\) 2.00000 0.0790569
\(641\) 23.5110 0.928628 0.464314 0.885671i \(-0.346301\pi\)
0.464314 + 0.885671i \(0.346301\pi\)
\(642\) −6.28357 4.66026i −0.247993 0.183926i
\(643\) 18.9436i 0.747062i 0.927618 + 0.373531i \(0.121853\pi\)
−0.927618 + 0.373531i \(0.878147\pi\)
\(644\) −5.37907 −0.211965
\(645\) 34.7083 + 25.7417i 1.36664 + 1.01358i
\(646\) 0 0
\(647\) −40.3910 −1.58793 −0.793967 0.607961i \(-0.791988\pi\)
−0.793967 + 0.607961i \(0.791988\pi\)
\(648\) 5.00000 + 7.48331i 0.196419 + 0.293972i
\(649\) 26.2005i 1.02846i
\(650\) 2.78238 0.109134
\(651\) −32.9796 + 14.6405i −1.29257 + 0.573808i
\(652\) −0.516685 −0.0202350
\(653\) 36.4499i 1.42640i 0.700962 + 0.713198i \(0.252754\pi\)
−0.700962 + 0.713198i \(0.747246\pi\)
\(654\) −17.5060 + 23.6038i −0.684537 + 0.922983i
\(655\) −6.96663 −0.272209
\(656\) 1.74166i 0.0680003i
\(657\) −4.12715 + 1.25192i −0.161015 + 0.0488420i
\(658\) −0.966630 −0.0376831
\(659\) 30.9666i 1.20629i 0.797632 + 0.603144i \(0.206086\pi\)
−0.797632 + 0.603144i \(0.793914\pi\)
\(660\) 7.22497 9.74166i 0.281232 0.379193i
\(661\) 5.48331 0.213276 0.106638 0.994298i \(-0.465991\pi\)
0.106638 + 0.994298i \(0.465991\pi\)
\(662\) 10.3179 0.401016
\(663\) 15.9755 21.5403i 0.620437 0.836554i
\(664\) 16.6015i 0.644261i
\(665\) 0 0
\(666\) −5.39106 17.7725i −0.208899 0.688671i
\(667\) 6.06674 0.234905
\(668\) −4.31285 −0.166869
\(669\) −20.1916 + 27.2250i −0.780652 + 1.05258i
\(670\) 30.9666 1.19635
\(671\) 31.7417i 1.22537i
\(672\) 3.86060 5.20536i 0.148926 0.200801i
\(673\) 43.2662i 1.66779i −0.551923 0.833895i \(-0.686106\pi\)
0.551923 0.833895i \(-0.313894\pi\)
\(674\) 31.9510 1.23071
\(675\) −1.75060 + 4.89238i −0.0673805 + 0.188308i
\(676\) −5.25834 −0.202244
\(677\) 17.1346 0.658535 0.329267 0.944237i \(-0.393198\pi\)
0.329267 + 0.944237i \(0.393198\pi\)
\(678\) 3.14179 + 2.33013i 0.120660 + 0.0894881i
\(679\) 51.4166 1.97319
\(680\) 11.1295 0.426798
\(681\) −15.4424 + 20.8215i −0.591753 + 0.797880i
\(682\) 16.9666 + 9.59907i 0.649686 + 0.367567i
\(683\) 7.48331i 0.286341i −0.989698 0.143171i \(-0.954270\pi\)
0.989698 0.143171i \(-0.0457297\pi\)
\(684\) 0 0
\(685\) 8.25430i 0.315381i
\(686\) 0 0
\(687\) 2.12917 2.87083i 0.0812330 0.109529i
\(688\) 12.4743i 0.475578i
\(689\) 21.2250i 0.808607i
\(690\) 4.00000 + 2.96663i 0.152277 + 0.112938i
\(691\) −21.0334 −0.800147 −0.400074 0.916483i \(-0.631015\pi\)
−0.400074 + 0.916483i \(0.631015\pi\)
\(692\) 17.4833i 0.664616i
\(693\) −11.4081 37.6086i −0.433357 1.42863i
\(694\) 19.4767i 0.739325i
\(695\) 40.3910 1.53212
\(696\) −4.35414 + 5.87083i −0.165043 + 0.222533i
\(697\) 9.69192i 0.367108i
\(698\) 16.9666i 0.642196i
\(699\) 9.51821 12.8337i 0.360012 0.485415i
\(700\) 3.74166 0.141421
\(701\) 13.4833i 0.509258i 0.967039 + 0.254629i \(0.0819533\pi\)
−0.967039 + 0.254629i \(0.918047\pi\)
\(702\) −4.87083 + 13.6125i −0.183838 + 0.513770i
\(703\) 0 0
\(704\) −3.50119 −0.131956
\(705\) 0.718808 + 0.533109i 0.0270719 + 0.0200781i
\(706\) 20.8215i 0.783626i
\(707\) 63.4833i 2.38754i
\(708\) 7.72119 10.4107i 0.290180 0.391259i
\(709\) 8.16145i 0.306510i −0.988187 0.153255i \(-0.951024\pi\)
0.988187 0.153255i \(-0.0489755\pi\)
\(710\) 26.9666i 1.01204i
\(711\) −20.1026 + 6.09788i −0.753908 + 0.228688i
\(712\) 9.69192i 0.363220i
\(713\) −3.94145 + 6.96663i −0.147609 + 0.260902i
\(714\) 21.4833 28.9666i 0.803993 1.08405i
\(715\) 19.4833 0.728635
\(716\) −5.47192 −0.204495
\(717\) −25.2250 18.7083i −0.942044 0.698674i
\(718\) 24.2583 0.905313
\(719\) −9.69192 −0.361448 −0.180724 0.983534i \(-0.557844\pi\)
−0.180724 + 0.983534i \(0.557844\pi\)
\(720\) −5.74166 + 1.74166i −0.213979 + 0.0649077i
\(721\) 35.4833 1.32147
\(722\) 19.0000i 0.707107i
\(723\) −1.29171 + 1.74166i −0.0480393 + 0.0647729i
\(724\) 5.47192i 0.203362i
\(725\) −4.22000 −0.156727
\(726\) −1.29834 + 1.75060i −0.0481860 + 0.0649707i
\(727\) 14.9666 0.555082 0.277541 0.960714i \(-0.410481\pi\)
0.277541 + 0.960714i \(0.410481\pi\)
\(728\) 10.4107 0.385847
\(729\) −20.8708 17.1292i −0.772994 0.634414i
\(730\) 2.87523i 0.106417i
\(731\) 69.4166i 2.56746i
\(732\) −9.35414 + 12.6125i −0.345739 + 0.466171i
\(733\) 31.4166 1.16040 0.580199 0.814475i \(-0.302975\pi\)
0.580199 + 0.814475i \(0.302975\pi\)
\(734\) 12.5671 0.463862
\(735\) −14.4450 + 19.4767i −0.532813 + 0.718408i
\(736\) 1.43762i 0.0529912i
\(737\) −54.2101 −1.99685
\(738\) 1.51669 + 5.00000i 0.0558300 + 0.184053i
\(739\) 16.0683i 0.591084i 0.955330 + 0.295542i \(0.0955001\pi\)
−0.955330 + 0.295542i \(0.904500\pi\)
\(740\) 12.3815 0.455151
\(741\) 0 0
\(742\) 28.5426i 1.04783i
\(743\) 36.0781 1.32358 0.661789 0.749690i \(-0.269797\pi\)
0.661789 + 0.749690i \(0.269797\pi\)
\(744\) −3.91285 8.81417i −0.143452 0.323143i
\(745\) 5.03337 0.184408
\(746\) 17.4833i 0.640110i
\(747\) −14.4570 47.6599i −0.528955 1.74379i
\(748\) −19.4833 −0.712381
\(749\) 16.8999i 0.617508i
\(750\) −16.6943 12.3815i −0.609590 0.452107i
\(751\) −26.7083 −0.974599 −0.487300 0.873235i \(-0.662018\pi\)
−0.487300 + 0.873235i \(0.662018\pi\)
\(752\) 0.258343i 0.00942079i
\(753\) 30.0958 + 22.3208i 1.09675 + 0.813414i
\(754\) −11.7417 −0.427606
\(755\) −16.8800 −0.614326
\(756\) −6.55013 + 18.3056i −0.238226 + 0.665769i
\(757\) 13.1931i 0.479512i −0.970833 0.239756i \(-0.922933\pi\)
0.970833 0.239756i \(-0.0770674\pi\)
\(758\) 26.9666i 0.979472i
\(759\) −7.00238 5.19337i −0.254170 0.188507i
\(760\) 0 0
\(761\) −34.6405 −1.25572 −0.627859 0.778327i \(-0.716069\pi\)
−0.627859 + 0.778327i \(0.716069\pi\)
\(762\) 19.2250 + 14.2583i 0.696447 + 0.516525i
\(763\) −63.4833 −2.29825
\(764\) 8.25834i 0.298776i
\(765\) −31.9510 + 9.69192i −1.15519 + 0.350412i
\(766\) 12.3815i 0.447360i
\(767\) 20.8215 0.751819
\(768\) 1.39119 + 1.03179i 0.0502003 + 0.0372314i
\(769\) −35.6749 −1.28647 −0.643235 0.765669i \(-0.722408\pi\)
−0.643235 + 0.765669i \(0.722408\pi\)
\(770\) 26.2005 0.944201
\(771\) −8.25430 + 11.1295i −0.297271 + 0.400820i
\(772\) −4.00000 −0.143963
\(773\) −13.0074 −0.467844 −0.233922 0.972255i \(-0.575156\pi\)
−0.233922 + 0.972255i \(0.575156\pi\)
\(774\) 10.8630 + 35.8116i 0.390462 + 1.28722i
\(775\) 2.74166 4.84596i 0.0984832 0.174072i
\(776\) 13.7417i 0.493297i
\(777\) 23.8999 32.2250i 0.857404 1.15606i
\(778\) 18.7579i 0.672502i
\(779\) 0 0
\(780\) −7.74166 5.74166i −0.277196 0.205584i
\(781\) 47.2077i 1.68922i
\(782\) 8.00000i 0.286079i
\(783\) 7.38751 20.6459i 0.264008 0.737823i
\(784\) 7.00000 0.250000
\(785\) 2.96663i 0.105884i
\(786\) −4.84596 3.59404i −0.172850 0.128195i
\(787\) 41.2026i 1.46872i 0.678763 + 0.734358i \(0.262517\pi\)
−0.678763 + 0.734358i \(0.737483\pi\)
\(788\) 18.0391 0.642615
\(789\) 9.74166 + 7.22497i 0.346812 + 0.257216i
\(790\) 14.0048i 0.498267i
\(791\) 8.44994i 0.300445i
\(792\) 10.0513 3.04894i 0.357158 0.108339i
\(793\) −25.2250 −0.895765
\(794\) 8.96663i 0.318214i
\(795\) −15.7417 + 21.2250i −0.558299 + 0.752772i
\(796\) 1.43762i 0.0509550i
\(797\) 3.84860 0.136324 0.0681622 0.997674i \(-0.478286\pi\)
0.0681622 + 0.997674i \(0.478286\pi\)
\(798\) 0 0
\(799\) 1.43762i 0.0508592i
\(800\) 1.00000i 0.0353553i
\(801\) 8.44000 + 27.8238i 0.298213 + 0.983107i
\(802\) 22.4448i 0.792552i
\(803\) 5.03337i 0.177624i
\(804\) 21.5403 + 15.9755i 0.759666 + 0.563412i
\(805\) 10.7581i 0.379174i
\(806\) 7.62834 13.4833i 0.268697 0.474930i
\(807\) −0.870829 0.645857i −0.0306546 0.0227352i
\(808\) 16.9666 0.596884
\(809\) 30.3277 1.06626 0.533132 0.846032i \(-0.321015\pi\)
0.533132 + 0.846032i \(0.321015\pi\)
\(810\) 14.9666 10.0000i 0.525874 0.351364i
\(811\) −4.51669 −0.158602 −0.0793011 0.996851i \(-0.525269\pi\)
−0.0793011 + 0.996851i \(0.525269\pi\)
\(812\) −15.7898 −0.554113
\(813\) −1.29171 + 1.74166i −0.0453024 + 0.0610826i
\(814\) −21.6749 −0.759705
\(815\) 1.03337i 0.0361974i
\(816\) 7.74166 + 5.74166i 0.271012 + 0.200998i
\(817\) 0 0
\(818\) −26.3862 −0.922572
\(819\) −29.8874 + 9.06596i −1.04435 + 0.316790i
\(820\) −3.48331 −0.121643
\(821\) −26.6648 −0.930607 −0.465303 0.885151i \(-0.654055\pi\)
−0.465303 + 0.885151i \(0.654055\pi\)
\(822\) 4.25834 5.74166i 0.148527 0.200263i
\(823\) 19.1981i 0.669205i −0.942359 0.334602i \(-0.891398\pi\)
0.942359 0.334602i \(-0.108602\pi\)
\(824\) 9.48331i 0.330367i
\(825\) 4.87083 + 3.61249i 0.169580 + 0.125771i
\(826\) 28.0000 0.974245
\(827\) 14.6307 0.508760 0.254380 0.967104i \(-0.418129\pi\)
0.254380 + 0.967104i \(0.418129\pi\)
\(828\) 1.25192 + 4.12715i 0.0435071 + 0.143428i
\(829\) 0.278548i 0.00967438i 0.999988 + 0.00483719i \(0.00153973\pi\)
−0.999988 + 0.00483719i \(0.998460\pi\)
\(830\) 33.2029 1.15249
\(831\) −20.0958 + 27.0958i −0.697116 + 0.939943i
\(832\) 2.78238i 0.0964618i
\(833\) 38.9534 1.34965
\(834\) 28.0958 + 20.8375i 0.972878 + 0.721542i
\(835\) 8.62570i 0.298505i
\(836\) 0 0
\(837\) 18.9088 + 21.8966i 0.653582 + 0.756856i
\(838\) −24.0000 −0.829066
\(839\) 21.6749i 0.748301i −0.927368 0.374151i \(-0.877934\pi\)
0.927368 0.374151i \(-0.122066\pi\)
\(840\) −10.4107 7.72119i −0.359204 0.266406i
\(841\) −11.1916 −0.385917
\(842\) 1.48331i 0.0511184i
\(843\) 17.5060 23.6038i 0.602937 0.812959i
\(844\) −18.9666 −0.652858
\(845\) 10.5167i 0.361785i
\(846\) 0.224972 + 0.741657i 0.00773470 + 0.0254987i
\(847\) −4.70829 −0.161779
\(848\) 7.62834 0.261958
\(849\) 0.718808 + 0.533109i 0.0246694 + 0.0182963i
\(850\) 5.56477i 0.190870i
\(851\) 8.89989i 0.305084i
\(852\) −13.9119 + 18.7579i −0.476614 + 0.642634i
\(853\) 17.4833 0.598617 0.299309 0.954156i \(-0.403244\pi\)
0.299309 + 0.954156i \(0.403244\pi\)
\(854\) −33.9217 −1.16078
\(855\) 0 0
\(856\) 4.51669 0.154377
\(857\) 42.0000i 1.43469i −0.696717 0.717346i \(-0.745357\pi\)
0.696717 0.717346i \(-0.254643\pi\)
\(858\) 13.5525 + 10.0513i 0.462675 + 0.343146i
\(859\) 23.7895i 0.811688i −0.913942 0.405844i \(-0.866978\pi\)
0.913942 0.405844i \(-0.133022\pi\)
\(860\) −24.9486 −0.850740
\(861\) −6.72384 + 9.06596i −0.229148 + 0.308967i
\(862\) −1.29171 −0.0439959
\(863\) 7.00238 0.238364 0.119182 0.992872i \(-0.461973\pi\)
0.119182 + 0.992872i \(0.461973\pi\)
\(864\) −4.89238 1.75060i −0.166442 0.0595565i
\(865\) 34.9666 1.18890
\(866\) −2.68953 −0.0913941
\(867\) 19.4303 + 14.4106i 0.659886 + 0.489409i
\(868\) 10.2583 18.1319i 0.348191 0.615437i
\(869\) 24.5167i 0.831672i
\(870\) 11.7417 + 8.70829i 0.398079 + 0.295239i
\(871\) 43.0805i 1.45973i
\(872\) 16.9666i 0.574563i
\(873\) −11.9666 39.4499i −0.405009 1.33518i
\(874\) 0 0
\(875\) 44.8999i 1.51789i
\(876\) 1.48331 2.00000i 0.0501166 0.0675737i
\(877\) −25.4833 −0.860510 −0.430255 0.902707i \(-0.641576\pi\)
−0.430255 + 0.902707i \(0.641576\pi\)
\(878\) 4.77503i 0.161149i
\(879\) −30.4205 + 41.0169i −1.02606 + 1.38347i
\(880\) 7.00238i 0.236050i
\(881\) 48.8310 1.64516 0.822579 0.568651i \(-0.192535\pi\)
0.822579 + 0.568651i \(0.192535\pi\)
\(882\) −20.0958 + 6.09580i −0.676661 + 0.205256i
\(883\) 0.811658i 0.0273145i 0.999907 + 0.0136572i \(0.00434737\pi\)
−0.999907 + 0.0136572i \(0.995653\pi\)
\(884\) 15.4833i 0.520760i
\(885\) −20.8215 15.4424i −0.699905 0.519090i
\(886\) 0.516685 0.0173584
\(887\) 23.2250i 0.779818i 0.920853 + 0.389909i \(0.127494\pi\)
−0.920853 + 0.389909i \(0.872506\pi\)
\(888\) 8.61249 + 6.38751i 0.289016 + 0.214351i
\(889\) 51.7062i 1.73417i
\(890\) −19.3838 −0.649748
\(891\) −26.2005 + 17.5060i −0.877750 + 0.586472i
\(892\) 19.5695i 0.655236i
\(893\) 0 0
\(894\) 3.50119 + 2.59668i 0.117097 + 0.0868461i
\(895\) 10.9438i 0.365812i
\(896\) 3.74166i 0.125000i
\(897\) −4.12715 + 5.56477i −0.137802 + 0.185802i
\(898\) 1.25192i 0.0417770i
\(899\) −11.5698 + 20.4499i −0.385874 + 0.682044i
\(900\) −0.870829 2.87083i −0.0290276 0.0956943i
\(901\) 42.4499 1.41421
\(902\) 6.09788 0.203037
\(903\) −48.1582 + 64.9333i −1.60261 + 2.16084i
\(904\) −2.25834 −0.0751114
\(905\) −10.9438 −0.363785
\(906\) −11.7417 8.70829i −0.390090 0.289313i
\(907\) −1.55006 −0.0514688 −0.0257344 0.999669i \(-0.508192\pi\)
−0.0257344 + 0.999669i \(0.508192\pi\)
\(908\) 14.9666i 0.496685i
\(909\) −48.7083 + 14.7750i −1.61555 + 0.490057i
\(910\) 20.8215i 0.690224i
\(911\) 34.4548 1.14154 0.570770 0.821110i \(-0.306645\pi\)
0.570770 + 0.821110i \(0.306645\pi\)
\(912\) 0 0
\(913\) −58.1249 −1.92365
\(914\) 33.2029 1.09825
\(915\) 25.2250 + 18.7083i 0.833912 + 0.618477i
\(916\) 2.06358i 0.0681824i
\(917\) 13.0334i 0.430400i
\(918\) −27.2250 9.74166i −0.898558 0.321523i
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) −2.87523 −0.0947936
\(921\) −26.3862 19.5695i −0.869455 0.644838i
\(922\) 21.6331i 0.712448i
\(923\) −37.5158 −1.23485
\(924\) 18.2250 + 13.5167i 0.599558 + 0.444666i
\(925\) 6.19073i 0.203550i
\(926\) 5.75047 0.188972
\(927\) −8.25834 27.2250i −0.271240 0.894185i
\(928\) 4.22000i 0.138528i
\(929\) 56.8996 1.86681 0.933407 0.358818i \(-0.116820\pi\)
0.933407 + 0.358818i \(0.116820\pi\)
\(930\) −17.6283 + 7.82570i −0.578056 + 0.256615i
\(931\) 0 0
\(932\) 9.22497i 0.302174i
\(933\) 7.18808 9.69192i 0.235327 0.317299i
\(934\) −38.4499 −1.25812
\(935\) 38.9666i 1.27435i
\(936\) −2.42298 7.98775i −0.0791976 0.261088i
\(937\) 14.9666 0.488938 0.244469 0.969657i \(-0.421386\pi\)
0.244469 + 0.969657i \(0.421386\pi\)
\(938\) 57.9333i 1.89159i
\(939\) −0.191602 + 0.258343i −0.00625269 + 0.00843069i
\(940\) −0.516685 −0.0168524
\(941\) 41.0169 1.33711 0.668557 0.743661i \(-0.266912\pi\)
0.668557 + 0.743661i \(0.266912\pi\)
\(942\) −1.53047 + 2.06358i −0.0498653 + 0.0672349i
\(943\) 2.50384i 0.0815361i
\(944\) 7.48331i 0.243561i
\(945\) 36.6112 + 13.1003i 1.19096 + 0.426151i
\(946\) 43.6749 1.41999
\(947\) 44.7967 1.45570 0.727848 0.685738i \(-0.240520\pi\)
0.727848 + 0.685738i \(0.240520\pi\)
\(948\) 7.22497 9.74166i 0.234656 0.316394i
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 26.2934 35.4522i 0.852621 1.14962i
\(952\) 20.8215i 0.674827i
\(953\) −29.2615 −0.947871 −0.473936 0.880559i \(-0.657167\pi\)
−0.473936 + 0.880559i \(0.657167\pi\)
\(954\) −21.8997 + 6.64298i −0.709028 + 0.215074i
\(955\) −16.5167 −0.534467
\(956\) 18.1319 0.586428
\(957\) −20.5549 15.2447i −0.664445 0.492791i
\(958\) −37.9333 −1.22557
\(959\) 15.4424 0.498661
\(960\) 2.06358 2.78238i 0.0666016 0.0898010i
\(961\) −15.9666 26.5719i −0.515053 0.857159i
\(962\) 17.2250i 0.555355i
\(963\) −12.9666 + 3.93326i −0.417844 + 0.126748i
\(964\) 1.25192i 0.0403216i
\(965\) 8.00000i 0.257529i
\(966\) −5.55006 + 7.48331i −0.178570 + 0.240772i
\(967\) 30.6991i 0.987215i −0.869685 0.493608i \(-0.835678\pi\)
0.869685 0.493608i \(-0.164322\pi\)
\(968\) 1.25834i 0.0404447i
\(969\) 0 0
\(970\) 27.4833 0.882436
\(971\) 50.4499i 1.61902i −0.587109 0.809508i \(-0.699734\pi\)
0.587109 0.809508i \(-0.300266\pi\)
\(972\) 15.5697 + 0.765233i 0.499397 + 0.0245449i
\(973\) 75.5646i 2.42249i
\(974\) −5.56477 −0.178307
\(975\) 2.87083 3.87083i 0.0919401 0.123966i
\(976\) 9.06596i 0.290194i
\(977\) 34.9666i 1.11868i 0.828938 + 0.559341i \(0.188946\pi\)
−0.828938 + 0.559341i \(0.811054\pi\)
\(978\) −0.533109 + 0.718808i −0.0170470 + 0.0229850i
\(979\) 33.9333 1.08451
\(980\) 14.0000i 0.447214i
\(981\) 14.7750 + 48.7083i 0.471730 + 1.55514i
\(982\) 11.0367i 0.352195i
\(983\) −31.7653 −1.01316 −0.506578 0.862194i \(-0.669090\pi\)
−0.506578 + 0.862194i \(0.669090\pi\)
\(984\) −2.42298 1.79702i −0.0772418 0.0572869i
\(985\) 36.0781i 1.14954i
\(986\) 23.4833i 0.747861i
\(987\) −0.997356 + 1.34477i −0.0317462 + 0.0428044i
\(988\) 0 0
\(989\) 17.9333i 0.570244i
\(990\) −6.09788 20.1026i −0.193803 0.638904i
\(991\) 16.8800i 0.536211i −0.963390 0.268105i \(-0.913602\pi\)
0.963390 0.268105i \(-0.0863976\pi\)
\(992\) 4.84596 + 2.74166i 0.153859 + 0.0870477i
\(993\) 10.6459 14.3541i 0.337836 0.455515i
\(994\) −50.4499 −1.60018
\(995\) 2.87523 0.0911510
\(996\) 23.0958 + 17.1292i 0.731818 + 0.542759i
\(997\) −2.00000 −0.0633406 −0.0316703 0.999498i \(-0.510083\pi\)
−0.0316703 + 0.999498i \(0.510083\pi\)
\(998\) 4.40570 0.139460
\(999\) −30.2874 10.8375i −0.958251 0.342882i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 186.2.c.b.185.8 yes 8
3.2 odd 2 inner 186.2.c.b.185.1 8
4.3 odd 2 1488.2.h.c.929.1 8
12.11 even 2 1488.2.h.c.929.7 8
31.30 odd 2 inner 186.2.c.b.185.5 yes 8
93.92 even 2 inner 186.2.c.b.185.4 yes 8
124.123 even 2 1488.2.h.c.929.8 8
372.371 odd 2 1488.2.h.c.929.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.c.b.185.1 8 3.2 odd 2 inner
186.2.c.b.185.4 yes 8 93.92 even 2 inner
186.2.c.b.185.5 yes 8 31.30 odd 2 inner
186.2.c.b.185.8 yes 8 1.1 even 1 trivial
1488.2.h.c.929.1 8 4.3 odd 2
1488.2.h.c.929.2 8 372.371 odd 2
1488.2.h.c.929.7 8 12.11 even 2
1488.2.h.c.929.8 8 124.123 even 2