Properties

Label 186.2.c.b
Level $186$
Weight $2$
Character orbit 186.c
Analytic conductor $1.485$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [186,2,Mod(185,186)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("186.185"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(186, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 186 = 2 \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 186.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.48521747760\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40282095616.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 8x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + \beta_{4} q^{3} - q^{4} + 2 \beta_{3} q^{5} + \beta_{5} q^{6} + (\beta_{7} + \beta_{2}) q^{7} - \beta_{3} q^{8} + ( - \beta_{7} + \beta_{3} - 1) q^{9} - 2 q^{10} + (2 \beta_{6} + \beta_{5} + \cdots + \beta_1) q^{11}+ \cdots + ( - 3 \beta_{6} - \beta_{5} - 6 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 8 q^{9} - 16 q^{10} + 8 q^{16} - 8 q^{18} + 8 q^{25} - 8 q^{31} + 24 q^{33} + 8 q^{36} + 8 q^{39} + 16 q^{40} - 16 q^{45} + 56 q^{49} + 32 q^{51} - 56 q^{63} - 8 q^{64} + 16 q^{66} - 64 q^{67}+ \cdots - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{6} + 8x^{4} - 36x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{6} + \nu^{4} + 43\nu^{2} - 81 ) / 45 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{6} - \nu^{4} + 2\nu^{2} + 36 ) / 45 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4\nu^{7} + 2\nu^{5} + 41\nu^{3} - 162\nu ) / 135 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 4\nu^{5} - 8\nu^{3} + 36\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -2\nu^{7} - \nu^{5} + 2\nu^{3} + 36\nu ) / 45 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -7\nu^{6} + 19\nu^{4} - 38\nu^{2} + 171 ) / 45 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{6} + 3\beta_{4} + 2\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{7} - 5\beta_{3} + 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{6} + 6\beta_{5} + 6\beta_{4} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -\beta_{7} - 19\beta_{3} + 19 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -20\beta_{6} - 3\beta_{5} + 20\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/186\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
185.1
1.03179 1.39119i
−1.71331 0.254137i
1.71331 + 0.254137i
−1.03179 + 1.39119i
1.03179 + 1.39119i
−1.71331 + 0.254137i
1.71331 0.254137i
−1.03179 1.39119i
1.00000i −1.39119 + 1.03179i −1.00000 2.00000i 1.03179 + 1.39119i −3.74166 1.00000i 0.870829 2.87083i −2.00000
185.2 1.00000i −0.254137 1.71331i −1.00000 2.00000i −1.71331 + 0.254137i 3.74166 1.00000i −2.87083 + 0.870829i −2.00000
185.3 1.00000i 0.254137 + 1.71331i −1.00000 2.00000i 1.71331 0.254137i 3.74166 1.00000i −2.87083 + 0.870829i −2.00000
185.4 1.00000i 1.39119 1.03179i −1.00000 2.00000i −1.03179 1.39119i −3.74166 1.00000i 0.870829 2.87083i −2.00000
185.5 1.00000i −1.39119 1.03179i −1.00000 2.00000i 1.03179 1.39119i −3.74166 1.00000i 0.870829 + 2.87083i −2.00000
185.6 1.00000i −0.254137 + 1.71331i −1.00000 2.00000i −1.71331 0.254137i 3.74166 1.00000i −2.87083 0.870829i −2.00000
185.7 1.00000i 0.254137 1.71331i −1.00000 2.00000i 1.71331 + 0.254137i 3.74166 1.00000i −2.87083 0.870829i −2.00000
185.8 1.00000i 1.39119 + 1.03179i −1.00000 2.00000i −1.03179 + 1.39119i −3.74166 1.00000i 0.870829 + 2.87083i −2.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 185.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
31.b odd 2 1 inner
93.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 186.2.c.b 8
3.b odd 2 1 inner 186.2.c.b 8
4.b odd 2 1 1488.2.h.c 8
12.b even 2 1 1488.2.h.c 8
31.b odd 2 1 inner 186.2.c.b 8
93.c even 2 1 inner 186.2.c.b 8
124.d even 2 1 1488.2.h.c 8
372.b odd 2 1 1488.2.h.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
186.2.c.b 8 1.a even 1 1 trivial
186.2.c.b 8 3.b odd 2 1 inner
186.2.c.b 8 31.b odd 2 1 inner
186.2.c.b 8 93.c even 2 1 inner
1488.2.h.c 8 4.b odd 2 1
1488.2.h.c 8 12.b even 2 1
1488.2.h.c 8 124.d even 2 1
1488.2.h.c 8 372.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(186, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} + 4 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 14)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} - 32 T^{2} + 242)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 8 T^{2} + 2)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 32 T^{2} + 32)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} - 64 T^{2} + 128)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 88 T^{2} + 1250)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 4 T^{3} + \cdots + 961)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 144 T^{2} + 4050)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 36 T^{2} + 100)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 184 T^{2} + 4418)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 60 T^{2} + 4)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 64 T^{2} + 338)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 56)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 112 T^{2} + 2450)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 16 T + 8)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 184 T^{2} + 400)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 64 T^{2} + 128)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 128 T^{2} + 3872)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 424 T^{2} + 40898)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 128 T^{2} + 3200)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 20 T + 86)^{4} \) Copy content Toggle raw display
show more
show less