Properties

Label 1859.4.a.i.1.14
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,4,-6,78,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 4 x^{16} - 99 x^{15} + 375 x^{14} + 3949 x^{13} - 13998 x^{12} - 81750 x^{11} + 267574 x^{10} + \cdots + 2596992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(3.98991\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.98991 q^{2} +1.67407 q^{3} +7.91939 q^{4} -20.8270 q^{5} +6.67941 q^{6} +9.96761 q^{7} -0.321630 q^{8} -24.1975 q^{9} -83.0979 q^{10} -11.0000 q^{11} +13.2576 q^{12} +39.7699 q^{14} -34.8659 q^{15} -64.6384 q^{16} -10.2521 q^{17} -96.5458 q^{18} +99.7472 q^{19} -164.937 q^{20} +16.6865 q^{21} -43.8890 q^{22} -41.1988 q^{23} -0.538432 q^{24} +308.764 q^{25} -85.7084 q^{27} +78.9374 q^{28} +79.6896 q^{29} -139.112 q^{30} +19.9662 q^{31} -255.328 q^{32} -18.4148 q^{33} -40.9050 q^{34} -207.595 q^{35} -191.629 q^{36} -64.5829 q^{37} +397.983 q^{38} +6.69858 q^{40} -196.862 q^{41} +66.5778 q^{42} +306.839 q^{43} -87.1133 q^{44} +503.961 q^{45} -164.379 q^{46} -107.239 q^{47} -108.209 q^{48} -243.647 q^{49} +1231.94 q^{50} -17.1628 q^{51} -216.118 q^{53} -341.969 q^{54} +229.097 q^{55} -3.20588 q^{56} +166.984 q^{57} +317.955 q^{58} +234.392 q^{59} -276.117 q^{60} +529.608 q^{61} +79.6635 q^{62} -241.191 q^{63} -501.630 q^{64} -73.4735 q^{66} +222.613 q^{67} -81.1904 q^{68} -68.9698 q^{69} -828.287 q^{70} +1011.21 q^{71} +7.78263 q^{72} +968.334 q^{73} -257.680 q^{74} +516.893 q^{75} +789.937 q^{76} -109.644 q^{77} +1057.84 q^{79} +1346.22 q^{80} +509.850 q^{81} -785.462 q^{82} -175.936 q^{83} +132.147 q^{84} +213.521 q^{85} +1224.26 q^{86} +133.406 q^{87} +3.53793 q^{88} +512.958 q^{89} +2010.76 q^{90} -326.269 q^{92} +33.4250 q^{93} -427.872 q^{94} -2077.43 q^{95} -427.439 q^{96} +1414.73 q^{97} -972.129 q^{98} +266.172 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 4 q^{2} - 6 q^{3} + 78 q^{4} + 16 q^{5} + 14 q^{6} - 6 q^{7} + 63 q^{8} + 135 q^{9} + 2 q^{10} - 187 q^{11} - 95 q^{12} - 60 q^{14} - 28 q^{15} + 350 q^{16} + 118 q^{17} + 478 q^{18} + 403 q^{19}+ \cdots - 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.98991 1.41065 0.705323 0.708886i \(-0.250802\pi\)
0.705323 + 0.708886i \(0.250802\pi\)
\(3\) 1.67407 0.322176 0.161088 0.986940i \(-0.448500\pi\)
0.161088 + 0.986940i \(0.448500\pi\)
\(4\) 7.91939 0.989924
\(5\) −20.8270 −1.86282 −0.931411 0.363968i \(-0.881422\pi\)
−0.931411 + 0.363968i \(0.881422\pi\)
\(6\) 6.67941 0.454476
\(7\) 9.96761 0.538201 0.269100 0.963112i \(-0.413274\pi\)
0.269100 + 0.963112i \(0.413274\pi\)
\(8\) −0.321630 −0.0142142
\(9\) −24.1975 −0.896203
\(10\) −83.0979 −2.62778
\(11\) −11.0000 −0.301511
\(12\) 13.2576 0.318929
\(13\) 0 0
\(14\) 39.7699 0.759211
\(15\) −34.8659 −0.600156
\(16\) −64.6384 −1.00997
\(17\) −10.2521 −0.146265 −0.0731324 0.997322i \(-0.523300\pi\)
−0.0731324 + 0.997322i \(0.523300\pi\)
\(18\) −96.5458 −1.26423
\(19\) 99.7472 1.20440 0.602200 0.798346i \(-0.294291\pi\)
0.602200 + 0.798346i \(0.294291\pi\)
\(20\) −164.937 −1.84405
\(21\) 16.6865 0.173395
\(22\) −43.8890 −0.425326
\(23\) −41.1988 −0.373502 −0.186751 0.982407i \(-0.559796\pi\)
−0.186751 + 0.982407i \(0.559796\pi\)
\(24\) −0.538432 −0.00457946
\(25\) 308.764 2.47011
\(26\) 0 0
\(27\) −85.7084 −0.610911
\(28\) 78.9374 0.532777
\(29\) 79.6896 0.510276 0.255138 0.966905i \(-0.417879\pi\)
0.255138 + 0.966905i \(0.417879\pi\)
\(30\) −139.112 −0.846609
\(31\) 19.9662 0.115679 0.0578394 0.998326i \(-0.481579\pi\)
0.0578394 + 0.998326i \(0.481579\pi\)
\(32\) −255.328 −1.41050
\(33\) −18.4148 −0.0971396
\(34\) −40.9050 −0.206328
\(35\) −207.595 −1.00257
\(36\) −191.629 −0.887172
\(37\) −64.5829 −0.286956 −0.143478 0.989654i \(-0.545829\pi\)
−0.143478 + 0.989654i \(0.545829\pi\)
\(38\) 397.983 1.69898
\(39\) 0 0
\(40\) 6.69858 0.0264785
\(41\) −196.862 −0.749870 −0.374935 0.927051i \(-0.622335\pi\)
−0.374935 + 0.927051i \(0.622335\pi\)
\(42\) 66.5778 0.244599
\(43\) 306.839 1.08820 0.544100 0.839021i \(-0.316871\pi\)
0.544100 + 0.839021i \(0.316871\pi\)
\(44\) −87.1133 −0.298473
\(45\) 503.961 1.66947
\(46\) −164.379 −0.526879
\(47\) −107.239 −0.332816 −0.166408 0.986057i \(-0.553217\pi\)
−0.166408 + 0.986057i \(0.553217\pi\)
\(48\) −108.209 −0.325389
\(49\) −243.647 −0.710340
\(50\) 1231.94 3.48445
\(51\) −17.1628 −0.0471230
\(52\) 0 0
\(53\) −216.118 −0.560116 −0.280058 0.959983i \(-0.590354\pi\)
−0.280058 + 0.959983i \(0.590354\pi\)
\(54\) −341.969 −0.861779
\(55\) 229.097 0.561662
\(56\) −3.20588 −0.00765007
\(57\) 166.984 0.388028
\(58\) 317.955 0.719819
\(59\) 234.392 0.517208 0.258604 0.965983i \(-0.416737\pi\)
0.258604 + 0.965983i \(0.416737\pi\)
\(60\) −276.117 −0.594109
\(61\) 529.608 1.11163 0.555815 0.831306i \(-0.312406\pi\)
0.555815 + 0.831306i \(0.312406\pi\)
\(62\) 79.6635 0.163182
\(63\) −241.191 −0.482337
\(64\) −501.630 −0.979747
\(65\) 0 0
\(66\) −73.4735 −0.137030
\(67\) 222.613 0.405918 0.202959 0.979187i \(-0.434944\pi\)
0.202959 + 0.979187i \(0.434944\pi\)
\(68\) −81.1904 −0.144791
\(69\) −68.9698 −0.120333
\(70\) −828.287 −1.41428
\(71\) 1011.21 1.69027 0.845133 0.534555i \(-0.179521\pi\)
0.845133 + 0.534555i \(0.179521\pi\)
\(72\) 7.78263 0.0127388
\(73\) 968.334 1.55253 0.776267 0.630405i \(-0.217111\pi\)
0.776267 + 0.630405i \(0.217111\pi\)
\(74\) −257.680 −0.404793
\(75\) 516.893 0.795809
\(76\) 789.937 1.19226
\(77\) −109.644 −0.162274
\(78\) 0 0
\(79\) 1057.84 1.50653 0.753267 0.657714i \(-0.228477\pi\)
0.753267 + 0.657714i \(0.228477\pi\)
\(80\) 1346.22 1.88140
\(81\) 509.850 0.699382
\(82\) −785.462 −1.05780
\(83\) −175.936 −0.232668 −0.116334 0.993210i \(-0.537114\pi\)
−0.116334 + 0.993210i \(0.537114\pi\)
\(84\) 132.147 0.171648
\(85\) 213.521 0.272465
\(86\) 1224.26 1.53506
\(87\) 133.406 0.164398
\(88\) 3.53793 0.00428573
\(89\) 512.958 0.610937 0.305469 0.952202i \(-0.401187\pi\)
0.305469 + 0.952202i \(0.401187\pi\)
\(90\) 2010.76 2.35503
\(91\) 0 0
\(92\) −326.269 −0.369738
\(93\) 33.4250 0.0372689
\(94\) −427.872 −0.469486
\(95\) −2077.43 −2.24358
\(96\) −427.439 −0.454430
\(97\) 1414.73 1.48087 0.740435 0.672128i \(-0.234620\pi\)
0.740435 + 0.672128i \(0.234620\pi\)
\(98\) −972.129 −1.00204
\(99\) 266.172 0.270215
\(100\) 2445.22 2.44522
\(101\) −104.380 −0.102834 −0.0514169 0.998677i \(-0.516374\pi\)
−0.0514169 + 0.998677i \(0.516374\pi\)
\(102\) −68.4780 −0.0664739
\(103\) −1087.04 −1.03989 −0.519946 0.854199i \(-0.674048\pi\)
−0.519946 + 0.854199i \(0.674048\pi\)
\(104\) 0 0
\(105\) −347.530 −0.323005
\(106\) −862.293 −0.790126
\(107\) −626.190 −0.565758 −0.282879 0.959156i \(-0.591289\pi\)
−0.282879 + 0.959156i \(0.591289\pi\)
\(108\) −678.758 −0.604755
\(109\) 2004.14 1.76112 0.880560 0.473934i \(-0.157167\pi\)
0.880560 + 0.473934i \(0.157167\pi\)
\(110\) 914.076 0.792307
\(111\) −108.117 −0.0924501
\(112\) −644.291 −0.543569
\(113\) −1831.55 −1.52476 −0.762380 0.647130i \(-0.775969\pi\)
−0.762380 + 0.647130i \(0.775969\pi\)
\(114\) 666.252 0.547371
\(115\) 858.047 0.695767
\(116\) 631.093 0.505134
\(117\) 0 0
\(118\) 935.205 0.729598
\(119\) −102.189 −0.0787198
\(120\) 11.2139 0.00853072
\(121\) 121.000 0.0909091
\(122\) 2113.09 1.56812
\(123\) −329.562 −0.241590
\(124\) 158.120 0.114513
\(125\) −3827.25 −2.73855
\(126\) −962.331 −0.680407
\(127\) 1599.80 1.11779 0.558896 0.829238i \(-0.311225\pi\)
0.558896 + 0.829238i \(0.311225\pi\)
\(128\) 41.1665 0.0284269
\(129\) 513.672 0.350592
\(130\) 0 0
\(131\) 500.858 0.334047 0.167024 0.985953i \(-0.446584\pi\)
0.167024 + 0.985953i \(0.446584\pi\)
\(132\) −145.834 −0.0961608
\(133\) 994.242 0.648208
\(134\) 888.206 0.572607
\(135\) 1785.05 1.13802
\(136\) 3.29738 0.00207903
\(137\) 912.430 0.569009 0.284504 0.958675i \(-0.408171\pi\)
0.284504 + 0.958675i \(0.408171\pi\)
\(138\) −275.183 −0.169748
\(139\) 2193.70 1.33861 0.669306 0.742987i \(-0.266592\pi\)
0.669306 + 0.742987i \(0.266592\pi\)
\(140\) −1644.03 −0.992470
\(141\) −179.525 −0.107225
\(142\) 4034.65 2.38437
\(143\) 0 0
\(144\) 1564.09 0.905142
\(145\) −1659.70 −0.950553
\(146\) 3863.57 2.19008
\(147\) −407.883 −0.228854
\(148\) −511.457 −0.284064
\(149\) 2189.56 1.20387 0.601933 0.798546i \(-0.294397\pi\)
0.601933 + 0.798546i \(0.294397\pi\)
\(150\) 2062.36 1.12261
\(151\) −3273.48 −1.76419 −0.882093 0.471075i \(-0.843866\pi\)
−0.882093 + 0.471075i \(0.843866\pi\)
\(152\) −32.0817 −0.0171195
\(153\) 248.075 0.131083
\(154\) −437.469 −0.228911
\(155\) −415.837 −0.215489
\(156\) 0 0
\(157\) 456.309 0.231958 0.115979 0.993252i \(-0.462999\pi\)
0.115979 + 0.993252i \(0.462999\pi\)
\(158\) 4220.69 2.12519
\(159\) −361.798 −0.180456
\(160\) 5317.72 2.62752
\(161\) −410.653 −0.201019
\(162\) 2034.25 0.986581
\(163\) −3304.85 −1.58807 −0.794036 0.607871i \(-0.792024\pi\)
−0.794036 + 0.607871i \(0.792024\pi\)
\(164\) −1559.03 −0.742314
\(165\) 383.525 0.180954
\(166\) −701.968 −0.328213
\(167\) −3488.01 −1.61623 −0.808114 0.589026i \(-0.799512\pi\)
−0.808114 + 0.589026i \(0.799512\pi\)
\(168\) −5.36688 −0.00246467
\(169\) 0 0
\(170\) 851.928 0.384352
\(171\) −2413.63 −1.07939
\(172\) 2429.98 1.07723
\(173\) −3861.94 −1.69721 −0.848607 0.529023i \(-0.822559\pi\)
−0.848607 + 0.529023i \(0.822559\pi\)
\(174\) 532.280 0.231908
\(175\) 3077.64 1.32941
\(176\) 711.022 0.304519
\(177\) 392.390 0.166632
\(178\) 2046.66 0.861817
\(179\) −3878.93 −1.61969 −0.809845 0.586643i \(-0.800449\pi\)
−0.809845 + 0.586643i \(0.800449\pi\)
\(180\) 3991.06 1.65265
\(181\) −4409.64 −1.81086 −0.905430 0.424495i \(-0.860452\pi\)
−0.905430 + 0.424495i \(0.860452\pi\)
\(182\) 0 0
\(183\) 886.604 0.358140
\(184\) 13.2508 0.00530901
\(185\) 1345.07 0.534547
\(186\) 133.363 0.0525733
\(187\) 112.773 0.0441005
\(188\) −849.264 −0.329462
\(189\) −854.308 −0.328792
\(190\) −8288.78 −3.16490
\(191\) 1885.54 0.714307 0.357154 0.934046i \(-0.383747\pi\)
0.357154 + 0.934046i \(0.383747\pi\)
\(192\) −839.767 −0.315651
\(193\) 574.922 0.214424 0.107212 0.994236i \(-0.465808\pi\)
0.107212 + 0.994236i \(0.465808\pi\)
\(194\) 5644.66 2.08898
\(195\) 0 0
\(196\) −1929.53 −0.703183
\(197\) 3952.45 1.42945 0.714723 0.699408i \(-0.246553\pi\)
0.714723 + 0.699408i \(0.246553\pi\)
\(198\) 1062.00 0.381178
\(199\) 2117.35 0.754248 0.377124 0.926163i \(-0.376913\pi\)
0.377124 + 0.926163i \(0.376913\pi\)
\(200\) −99.3076 −0.0351105
\(201\) 372.671 0.130777
\(202\) −416.467 −0.145062
\(203\) 794.316 0.274631
\(204\) −135.919 −0.0466481
\(205\) 4100.04 1.39688
\(206\) −4337.18 −1.46692
\(207\) 996.906 0.334733
\(208\) 0 0
\(209\) −1097.22 −0.363140
\(210\) −1386.61 −0.455645
\(211\) −3200.46 −1.04421 −0.522106 0.852881i \(-0.674853\pi\)
−0.522106 + 0.852881i \(0.674853\pi\)
\(212\) −1711.53 −0.554472
\(213\) 1692.85 0.544563
\(214\) −2498.44 −0.798084
\(215\) −6390.54 −2.02712
\(216\) 27.5664 0.00868358
\(217\) 199.016 0.0622584
\(218\) 7996.35 2.48432
\(219\) 1621.06 0.500189
\(220\) 1814.31 0.556003
\(221\) 0 0
\(222\) −431.375 −0.130414
\(223\) 4286.80 1.28729 0.643645 0.765324i \(-0.277421\pi\)
0.643645 + 0.765324i \(0.277421\pi\)
\(224\) −2545.01 −0.759134
\(225\) −7471.30 −2.21372
\(226\) −7307.73 −2.15090
\(227\) −1065.70 −0.311600 −0.155800 0.987789i \(-0.549796\pi\)
−0.155800 + 0.987789i \(0.549796\pi\)
\(228\) 1322.41 0.384118
\(229\) −931.338 −0.268753 −0.134377 0.990930i \(-0.542903\pi\)
−0.134377 + 0.990930i \(0.542903\pi\)
\(230\) 3423.53 0.981482
\(231\) −183.552 −0.0522806
\(232\) −25.6306 −0.00725314
\(233\) 1105.63 0.310869 0.155434 0.987846i \(-0.450322\pi\)
0.155434 + 0.987846i \(0.450322\pi\)
\(234\) 0 0
\(235\) 2233.46 0.619977
\(236\) 1856.24 0.511997
\(237\) 1770.90 0.485369
\(238\) −407.725 −0.111046
\(239\) 2857.97 0.773501 0.386750 0.922184i \(-0.373598\pi\)
0.386750 + 0.922184i \(0.373598\pi\)
\(240\) 2253.68 0.606143
\(241\) −1778.91 −0.475477 −0.237738 0.971329i \(-0.576406\pi\)
−0.237738 + 0.971329i \(0.576406\pi\)
\(242\) 482.779 0.128241
\(243\) 3167.65 0.836235
\(244\) 4194.17 1.10043
\(245\) 5074.43 1.32324
\(246\) −1314.92 −0.340798
\(247\) 0 0
\(248\) −6.42174 −0.00164428
\(249\) −294.530 −0.0749601
\(250\) −15270.4 −3.86313
\(251\) 6026.17 1.51541 0.757706 0.652596i \(-0.226320\pi\)
0.757706 + 0.652596i \(0.226320\pi\)
\(252\) −1910.09 −0.477477
\(253\) 453.187 0.112615
\(254\) 6383.07 1.57681
\(255\) 357.449 0.0877818
\(256\) 4177.29 1.01985
\(257\) −4981.07 −1.20899 −0.604495 0.796609i \(-0.706625\pi\)
−0.604495 + 0.796609i \(0.706625\pi\)
\(258\) 2049.51 0.494561
\(259\) −643.737 −0.154440
\(260\) 0 0
\(261\) −1928.29 −0.457311
\(262\) 1998.38 0.471223
\(263\) −2756.17 −0.646209 −0.323104 0.946363i \(-0.604726\pi\)
−0.323104 + 0.946363i \(0.604726\pi\)
\(264\) 5.92275 0.00138076
\(265\) 4501.10 1.04340
\(266\) 3966.94 0.914393
\(267\) 858.730 0.196829
\(268\) 1762.96 0.401828
\(269\) 6043.67 1.36985 0.684924 0.728615i \(-0.259836\pi\)
0.684924 + 0.728615i \(0.259836\pi\)
\(270\) 7122.18 1.60534
\(271\) 1911.18 0.428398 0.214199 0.976790i \(-0.431286\pi\)
0.214199 + 0.976790i \(0.431286\pi\)
\(272\) 662.680 0.147724
\(273\) 0 0
\(274\) 3640.52 0.802670
\(275\) −3396.40 −0.744766
\(276\) −546.199 −0.119121
\(277\) 441.829 0.0958372 0.0479186 0.998851i \(-0.484741\pi\)
0.0479186 + 0.998851i \(0.484741\pi\)
\(278\) 8752.66 1.88831
\(279\) −483.133 −0.103672
\(280\) 66.7689 0.0142507
\(281\) 9369.87 1.98918 0.994590 0.103880i \(-0.0331257\pi\)
0.994590 + 0.103880i \(0.0331257\pi\)
\(282\) −716.290 −0.151257
\(283\) −7193.95 −1.51108 −0.755541 0.655102i \(-0.772626\pi\)
−0.755541 + 0.655102i \(0.772626\pi\)
\(284\) 8008.19 1.67324
\(285\) −3477.78 −0.722828
\(286\) 0 0
\(287\) −1962.24 −0.403581
\(288\) 6178.30 1.26410
\(289\) −4807.89 −0.978607
\(290\) −6622.04 −1.34089
\(291\) 2368.37 0.477100
\(292\) 7668.61 1.53689
\(293\) 6031.95 1.20270 0.601349 0.798987i \(-0.294630\pi\)
0.601349 + 0.798987i \(0.294630\pi\)
\(294\) −1627.42 −0.322833
\(295\) −4881.69 −0.963468
\(296\) 20.7718 0.00407883
\(297\) 942.792 0.184196
\(298\) 8736.17 1.69823
\(299\) 0 0
\(300\) 4093.48 0.787791
\(301\) 3058.46 0.585670
\(302\) −13060.9 −2.48864
\(303\) −174.740 −0.0331306
\(304\) −6447.50 −1.21641
\(305\) −11030.2 −2.07077
\(306\) 989.798 0.184912
\(307\) 677.018 0.125861 0.0629307 0.998018i \(-0.479955\pi\)
0.0629307 + 0.998018i \(0.479955\pi\)
\(308\) −868.312 −0.160638
\(309\) −1819.78 −0.335028
\(310\) −1659.15 −0.303979
\(311\) 2466.20 0.449663 0.224832 0.974398i \(-0.427817\pi\)
0.224832 + 0.974398i \(0.427817\pi\)
\(312\) 0 0
\(313\) 175.679 0.0317251 0.0158626 0.999874i \(-0.494951\pi\)
0.0158626 + 0.999874i \(0.494951\pi\)
\(314\) 1820.63 0.327211
\(315\) 5023.29 0.898508
\(316\) 8377.44 1.49135
\(317\) −10787.5 −1.91131 −0.955653 0.294495i \(-0.904849\pi\)
−0.955653 + 0.294495i \(0.904849\pi\)
\(318\) −1443.54 −0.254559
\(319\) −876.586 −0.153854
\(320\) 10447.5 1.82509
\(321\) −1048.29 −0.182273
\(322\) −1638.47 −0.283566
\(323\) −1022.62 −0.176161
\(324\) 4037.70 0.692335
\(325\) 0 0
\(326\) −13186.1 −2.24021
\(327\) 3355.08 0.567390
\(328\) 63.3167 0.0106588
\(329\) −1068.91 −0.179122
\(330\) 1530.23 0.255262
\(331\) 9415.77 1.56356 0.781779 0.623556i \(-0.214313\pi\)
0.781779 + 0.623556i \(0.214313\pi\)
\(332\) −1393.30 −0.230324
\(333\) 1562.74 0.257170
\(334\) −13916.8 −2.27993
\(335\) −4636.36 −0.756153
\(336\) −1078.59 −0.175125
\(337\) −2553.22 −0.412708 −0.206354 0.978477i \(-0.566160\pi\)
−0.206354 + 0.978477i \(0.566160\pi\)
\(338\) 0 0
\(339\) −3066.15 −0.491241
\(340\) 1690.95 0.269720
\(341\) −219.629 −0.0348785
\(342\) −9630.17 −1.52263
\(343\) −5847.47 −0.920506
\(344\) −98.6887 −0.0154678
\(345\) 1436.43 0.224159
\(346\) −15408.8 −2.39417
\(347\) 2355.29 0.364377 0.182188 0.983264i \(-0.441682\pi\)
0.182188 + 0.983264i \(0.441682\pi\)
\(348\) 1056.50 0.162742
\(349\) 1877.70 0.287997 0.143999 0.989578i \(-0.454004\pi\)
0.143999 + 0.989578i \(0.454004\pi\)
\(350\) 12279.5 1.87533
\(351\) 0 0
\(352\) 2808.61 0.425283
\(353\) −2382.83 −0.359278 −0.179639 0.983733i \(-0.557493\pi\)
−0.179639 + 0.983733i \(0.557493\pi\)
\(354\) 1565.60 0.235059
\(355\) −21060.5 −3.14867
\(356\) 4062.31 0.604781
\(357\) −171.072 −0.0253616
\(358\) −15476.6 −2.28481
\(359\) 9552.64 1.40437 0.702185 0.711995i \(-0.252208\pi\)
0.702185 + 0.711995i \(0.252208\pi\)
\(360\) −162.089 −0.0237301
\(361\) 3090.51 0.450577
\(362\) −17594.1 −2.55448
\(363\) 202.563 0.0292887
\(364\) 0 0
\(365\) −20167.5 −2.89209
\(366\) 3537.47 0.505209
\(367\) 1892.40 0.269163 0.134581 0.990903i \(-0.457031\pi\)
0.134581 + 0.990903i \(0.457031\pi\)
\(368\) 2663.02 0.377227
\(369\) 4763.56 0.672036
\(370\) 5366.70 0.754057
\(371\) −2154.18 −0.301455
\(372\) 264.705 0.0368934
\(373\) −6605.65 −0.916964 −0.458482 0.888704i \(-0.651607\pi\)
−0.458482 + 0.888704i \(0.651607\pi\)
\(374\) 449.955 0.0622102
\(375\) −6407.09 −0.882296
\(376\) 34.4911 0.00473070
\(377\) 0 0
\(378\) −3408.61 −0.463810
\(379\) 11736.6 1.59068 0.795341 0.606162i \(-0.207292\pi\)
0.795341 + 0.606162i \(0.207292\pi\)
\(380\) −16452.0 −2.22098
\(381\) 2678.19 0.360125
\(382\) 7523.13 1.00764
\(383\) 7361.16 0.982082 0.491041 0.871136i \(-0.336616\pi\)
0.491041 + 0.871136i \(0.336616\pi\)
\(384\) 68.9158 0.00915845
\(385\) 2283.55 0.302287
\(386\) 2293.89 0.302476
\(387\) −7424.74 −0.975247
\(388\) 11203.8 1.46595
\(389\) −6587.34 −0.858590 −0.429295 0.903164i \(-0.641238\pi\)
−0.429295 + 0.903164i \(0.641238\pi\)
\(390\) 0 0
\(391\) 422.374 0.0546301
\(392\) 78.3640 0.0100969
\(393\) 838.474 0.107622
\(394\) 15769.9 2.01644
\(395\) −22031.6 −2.80641
\(396\) 2107.92 0.267493
\(397\) 256.809 0.0324657 0.0162329 0.999868i \(-0.494833\pi\)
0.0162329 + 0.999868i \(0.494833\pi\)
\(398\) 8448.05 1.06398
\(399\) 1664.43 0.208837
\(400\) −19958.0 −2.49475
\(401\) −7440.06 −0.926531 −0.463266 0.886219i \(-0.653322\pi\)
−0.463266 + 0.886219i \(0.653322\pi\)
\(402\) 1486.92 0.184480
\(403\) 0 0
\(404\) −826.627 −0.101798
\(405\) −10618.6 −1.30283
\(406\) 3169.25 0.387407
\(407\) 710.411 0.0865204
\(408\) 5.52006 0.000669813 0
\(409\) −5133.83 −0.620664 −0.310332 0.950628i \(-0.600440\pi\)
−0.310332 + 0.950628i \(0.600440\pi\)
\(410\) 16358.8 1.97050
\(411\) 1527.48 0.183321
\(412\) −8608.67 −1.02941
\(413\) 2336.33 0.278362
\(414\) 3977.57 0.472190
\(415\) 3664.22 0.433420
\(416\) 0 0
\(417\) 3672.41 0.431268
\(418\) −4377.81 −0.512262
\(419\) 7954.17 0.927415 0.463707 0.885988i \(-0.346519\pi\)
0.463707 + 0.885988i \(0.346519\pi\)
\(420\) −2752.23 −0.319750
\(421\) −16008.8 −1.85325 −0.926626 0.375984i \(-0.877305\pi\)
−0.926626 + 0.375984i \(0.877305\pi\)
\(422\) −12769.5 −1.47301
\(423\) 2594.90 0.298270
\(424\) 69.5101 0.00796158
\(425\) −3165.48 −0.361290
\(426\) 6754.31 0.768186
\(427\) 5278.93 0.598280
\(428\) −4959.04 −0.560057
\(429\) 0 0
\(430\) −25497.7 −2.85955
\(431\) 9917.78 1.10841 0.554203 0.832382i \(-0.313023\pi\)
0.554203 + 0.832382i \(0.313023\pi\)
\(432\) 5540.05 0.617004
\(433\) 3790.36 0.420677 0.210338 0.977629i \(-0.432543\pi\)
0.210338 + 0.977629i \(0.432543\pi\)
\(434\) 794.055 0.0878246
\(435\) −2778.45 −0.306245
\(436\) 15871.6 1.74337
\(437\) −4109.46 −0.449845
\(438\) 6467.90 0.705589
\(439\) 4648.60 0.505388 0.252694 0.967546i \(-0.418683\pi\)
0.252694 + 0.967546i \(0.418683\pi\)
\(440\) −73.6844 −0.00798356
\(441\) 5895.63 0.636609
\(442\) 0 0
\(443\) 1479.09 0.158632 0.0793159 0.996850i \(-0.474726\pi\)
0.0793159 + 0.996850i \(0.474726\pi\)
\(444\) −856.217 −0.0915186
\(445\) −10683.4 −1.13807
\(446\) 17104.0 1.81591
\(447\) 3665.49 0.387857
\(448\) −5000.06 −0.527300
\(449\) 5046.75 0.530447 0.265224 0.964187i \(-0.414554\pi\)
0.265224 + 0.964187i \(0.414554\pi\)
\(450\) −29809.8 −3.12278
\(451\) 2165.48 0.226094
\(452\) −14504.8 −1.50940
\(453\) −5480.05 −0.568378
\(454\) −4252.06 −0.439558
\(455\) 0 0
\(456\) −53.7071 −0.00551550
\(457\) −7765.04 −0.794821 −0.397410 0.917641i \(-0.630091\pi\)
−0.397410 + 0.917641i \(0.630091\pi\)
\(458\) −3715.95 −0.379116
\(459\) 878.692 0.0893547
\(460\) 6795.21 0.688757
\(461\) 3234.31 0.326761 0.163380 0.986563i \(-0.447760\pi\)
0.163380 + 0.986563i \(0.447760\pi\)
\(462\) −732.355 −0.0737495
\(463\) 10228.1 1.02666 0.513329 0.858192i \(-0.328412\pi\)
0.513329 + 0.858192i \(0.328412\pi\)
\(464\) −5151.01 −0.515366
\(465\) −696.142 −0.0694254
\(466\) 4411.37 0.438526
\(467\) −646.021 −0.0640135 −0.0320067 0.999488i \(-0.510190\pi\)
−0.0320067 + 0.999488i \(0.510190\pi\)
\(468\) 0 0
\(469\) 2218.92 0.218465
\(470\) 8911.29 0.874568
\(471\) 763.896 0.0747314
\(472\) −75.3876 −0.00735168
\(473\) −3375.23 −0.328104
\(474\) 7065.74 0.684684
\(475\) 30798.3 2.97500
\(476\) −809.275 −0.0779266
\(477\) 5229.52 0.501977
\(478\) 11403.0 1.09114
\(479\) −6535.42 −0.623405 −0.311703 0.950180i \(-0.600899\pi\)
−0.311703 + 0.950180i \(0.600899\pi\)
\(480\) 8902.26 0.846523
\(481\) 0 0
\(482\) −7097.71 −0.670730
\(483\) −687.464 −0.0647634
\(484\) 958.246 0.0899931
\(485\) −29464.6 −2.75860
\(486\) 12638.7 1.17963
\(487\) −11975.1 −1.11426 −0.557128 0.830426i \(-0.688097\pi\)
−0.557128 + 0.830426i \(0.688097\pi\)
\(488\) −170.338 −0.0158009
\(489\) −5532.56 −0.511638
\(490\) 20246.5 1.86662
\(491\) 1270.34 0.116761 0.0583805 0.998294i \(-0.481406\pi\)
0.0583805 + 0.998294i \(0.481406\pi\)
\(492\) −2609.93 −0.239156
\(493\) −816.987 −0.0746354
\(494\) 0 0
\(495\) −5543.57 −0.503363
\(496\) −1290.59 −0.116833
\(497\) 10079.4 0.909703
\(498\) −1175.15 −0.105742
\(499\) 20645.1 1.85210 0.926052 0.377396i \(-0.123180\pi\)
0.926052 + 0.377396i \(0.123180\pi\)
\(500\) −30309.4 −2.71096
\(501\) −5839.19 −0.520710
\(502\) 24043.9 2.13771
\(503\) 7902.74 0.700529 0.350264 0.936651i \(-0.386092\pi\)
0.350264 + 0.936651i \(0.386092\pi\)
\(504\) 77.5742 0.00685601
\(505\) 2173.92 0.191561
\(506\) 1808.17 0.158860
\(507\) 0 0
\(508\) 12669.5 1.10653
\(509\) 2677.65 0.233173 0.116586 0.993181i \(-0.462805\pi\)
0.116586 + 0.993181i \(0.462805\pi\)
\(510\) 1426.19 0.123829
\(511\) 9651.98 0.835574
\(512\) 16337.7 1.41022
\(513\) −8549.17 −0.735780
\(514\) −19874.0 −1.70546
\(515\) 22639.7 1.93714
\(516\) 4067.97 0.347059
\(517\) 1179.62 0.100348
\(518\) −2568.45 −0.217860
\(519\) −6465.18 −0.546802
\(520\) 0 0
\(521\) −15013.4 −1.26248 −0.631239 0.775588i \(-0.717453\pi\)
−0.631239 + 0.775588i \(0.717453\pi\)
\(522\) −7693.70 −0.645104
\(523\) −7571.54 −0.633041 −0.316521 0.948586i \(-0.602515\pi\)
−0.316521 + 0.948586i \(0.602515\pi\)
\(524\) 3966.49 0.330681
\(525\) 5152.19 0.428305
\(526\) −10996.9 −0.911572
\(527\) −204.696 −0.0169197
\(528\) 1190.30 0.0981086
\(529\) −10469.7 −0.860497
\(530\) 17959.0 1.47186
\(531\) −5671.70 −0.463524
\(532\) 7873.79 0.641677
\(533\) 0 0
\(534\) 3426.25 0.277656
\(535\) 13041.7 1.05391
\(536\) −71.5989 −0.00576978
\(537\) −6493.61 −0.521825
\(538\) 24113.7 1.93237
\(539\) 2680.11 0.214176
\(540\) 14136.5 1.12655
\(541\) 6565.46 0.521758 0.260879 0.965371i \(-0.415988\pi\)
0.260879 + 0.965371i \(0.415988\pi\)
\(542\) 7625.43 0.604318
\(543\) −7382.06 −0.583415
\(544\) 2617.65 0.206307
\(545\) −41740.3 −3.28066
\(546\) 0 0
\(547\) −18563.4 −1.45103 −0.725514 0.688208i \(-0.758398\pi\)
−0.725514 + 0.688208i \(0.758398\pi\)
\(548\) 7225.89 0.563275
\(549\) −12815.2 −0.996246
\(550\) −13551.3 −1.05060
\(551\) 7948.82 0.614576
\(552\) 22.1827 0.00171044
\(553\) 10544.1 0.810818
\(554\) 1762.86 0.135192
\(555\) 2251.74 0.172218
\(556\) 17372.8 1.32512
\(557\) −13379.7 −1.01780 −0.508902 0.860825i \(-0.669948\pi\)
−0.508902 + 0.860825i \(0.669948\pi\)
\(558\) −1927.66 −0.146244
\(559\) 0 0
\(560\) 13418.6 1.01257
\(561\) 188.791 0.0142081
\(562\) 37384.9 2.80603
\(563\) 11070.8 0.828738 0.414369 0.910109i \(-0.364002\pi\)
0.414369 + 0.910109i \(0.364002\pi\)
\(564\) −1421.73 −0.106145
\(565\) 38145.7 2.84036
\(566\) −28703.2 −2.13160
\(567\) 5081.98 0.376408
\(568\) −325.236 −0.0240257
\(569\) 16024.2 1.18061 0.590307 0.807179i \(-0.299007\pi\)
0.590307 + 0.807179i \(0.299007\pi\)
\(570\) −13876.0 −1.01965
\(571\) 14927.3 1.09402 0.547012 0.837125i \(-0.315765\pi\)
0.547012 + 0.837125i \(0.315765\pi\)
\(572\) 0 0
\(573\) 3156.53 0.230133
\(574\) −7829.18 −0.569310
\(575\) −12720.7 −0.922590
\(576\) 12138.2 0.878052
\(577\) 7279.04 0.525182 0.262591 0.964907i \(-0.415423\pi\)
0.262591 + 0.964907i \(0.415423\pi\)
\(578\) −19183.1 −1.38047
\(579\) 962.461 0.0690821
\(580\) −13143.8 −0.940975
\(581\) −1753.66 −0.125222
\(582\) 9449.58 0.673020
\(583\) 2377.30 0.168881
\(584\) −311.445 −0.0220680
\(585\) 0 0
\(586\) 24067.0 1.69658
\(587\) 18192.4 1.27918 0.639591 0.768715i \(-0.279104\pi\)
0.639591 + 0.768715i \(0.279104\pi\)
\(588\) −3230.18 −0.226548
\(589\) 1991.58 0.139323
\(590\) −19477.5 −1.35911
\(591\) 6616.70 0.460533
\(592\) 4174.53 0.289818
\(593\) −17189.1 −1.19034 −0.595172 0.803599i \(-0.702916\pi\)
−0.595172 + 0.803599i \(0.702916\pi\)
\(594\) 3761.66 0.259836
\(595\) 2128.29 0.146641
\(596\) 17340.0 1.19174
\(597\) 3544.61 0.243000
\(598\) 0 0
\(599\) 15773.3 1.07593 0.537963 0.842969i \(-0.319194\pi\)
0.537963 + 0.842969i \(0.319194\pi\)
\(600\) −166.248 −0.0113118
\(601\) 9916.19 0.673028 0.336514 0.941679i \(-0.390752\pi\)
0.336514 + 0.941679i \(0.390752\pi\)
\(602\) 12203.0 0.826173
\(603\) −5386.67 −0.363785
\(604\) −25924.0 −1.74641
\(605\) −2520.07 −0.169348
\(606\) −697.198 −0.0467355
\(607\) 7522.34 0.503002 0.251501 0.967857i \(-0.419076\pi\)
0.251501 + 0.967857i \(0.419076\pi\)
\(608\) −25468.3 −1.69881
\(609\) 1329.74 0.0884794
\(610\) −44009.3 −2.92112
\(611\) 0 0
\(612\) 1964.60 0.129762
\(613\) 10397.0 0.685040 0.342520 0.939510i \(-0.388719\pi\)
0.342520 + 0.939510i \(0.388719\pi\)
\(614\) 2701.24 0.177546
\(615\) 6863.78 0.450040
\(616\) 35.2647 0.00230658
\(617\) −7775.64 −0.507351 −0.253675 0.967289i \(-0.581639\pi\)
−0.253675 + 0.967289i \(0.581639\pi\)
\(618\) −7260.76 −0.472606
\(619\) 27006.4 1.75360 0.876801 0.480853i \(-0.159673\pi\)
0.876801 + 0.480853i \(0.159673\pi\)
\(620\) −3293.17 −0.213318
\(621\) 3531.08 0.228176
\(622\) 9839.91 0.634316
\(623\) 5112.97 0.328807
\(624\) 0 0
\(625\) 41114.6 2.63133
\(626\) 700.943 0.0447529
\(627\) −1836.83 −0.116995
\(628\) 3613.69 0.229621
\(629\) 662.110 0.0419715
\(630\) 20042.5 1.26748
\(631\) 13093.9 0.826083 0.413042 0.910712i \(-0.364466\pi\)
0.413042 + 0.910712i \(0.364466\pi\)
\(632\) −340.233 −0.0214141
\(633\) −5357.80 −0.336420
\(634\) −43041.0 −2.69618
\(635\) −33319.1 −2.08225
\(636\) −2865.22 −0.178637
\(637\) 0 0
\(638\) −3497.50 −0.217033
\(639\) −24468.8 −1.51482
\(640\) −857.375 −0.0529542
\(641\) 22003.5 1.35583 0.677913 0.735142i \(-0.262885\pi\)
0.677913 + 0.735142i \(0.262885\pi\)
\(642\) −4182.58 −0.257123
\(643\) 27204.8 1.66851 0.834254 0.551380i \(-0.185899\pi\)
0.834254 + 0.551380i \(0.185899\pi\)
\(644\) −3252.12 −0.198993
\(645\) −10698.2 −0.653090
\(646\) −4080.16 −0.248501
\(647\) 1142.76 0.0694385 0.0347192 0.999397i \(-0.488946\pi\)
0.0347192 + 0.999397i \(0.488946\pi\)
\(648\) −163.983 −0.00994113
\(649\) −2578.32 −0.155944
\(650\) 0 0
\(651\) 333.167 0.0200581
\(652\) −26172.4 −1.57207
\(653\) −3664.24 −0.219591 −0.109795 0.993954i \(-0.535020\pi\)
−0.109795 + 0.993954i \(0.535020\pi\)
\(654\) 13386.5 0.800387
\(655\) −10431.4 −0.622271
\(656\) 12724.8 0.757350
\(657\) −23431.2 −1.39138
\(658\) −4264.86 −0.252677
\(659\) −3953.10 −0.233674 −0.116837 0.993151i \(-0.537275\pi\)
−0.116837 + 0.993151i \(0.537275\pi\)
\(660\) 3037.29 0.179131
\(661\) 31581.7 1.85838 0.929188 0.369608i \(-0.120508\pi\)
0.929188 + 0.369608i \(0.120508\pi\)
\(662\) 37568.1 2.20563
\(663\) 0 0
\(664\) 56.5862 0.00330718
\(665\) −20707.1 −1.20750
\(666\) 6235.20 0.362777
\(667\) −3283.12 −0.190589
\(668\) −27622.9 −1.59994
\(669\) 7176.43 0.414733
\(670\) −18498.7 −1.06666
\(671\) −5825.69 −0.335169
\(672\) −4260.54 −0.244574
\(673\) 26922.9 1.54205 0.771027 0.636802i \(-0.219743\pi\)
0.771027 + 0.636802i \(0.219743\pi\)
\(674\) −10187.1 −0.582185
\(675\) −26463.6 −1.50902
\(676\) 0 0
\(677\) 697.353 0.0395886 0.0197943 0.999804i \(-0.493699\pi\)
0.0197943 + 0.999804i \(0.493699\pi\)
\(678\) −12233.7 −0.692967
\(679\) 14101.5 0.797005
\(680\) −68.6746 −0.00387287
\(681\) −1784.07 −0.100390
\(682\) −876.299 −0.0492012
\(683\) −20810.4 −1.16587 −0.582933 0.812520i \(-0.698095\pi\)
−0.582933 + 0.812520i \(0.698095\pi\)
\(684\) −19114.5 −1.06851
\(685\) −19003.2 −1.05996
\(686\) −23330.9 −1.29851
\(687\) −1559.13 −0.0865858
\(688\) −19833.6 −1.09905
\(689\) 0 0
\(690\) 5731.24 0.316210
\(691\) 32183.1 1.77179 0.885893 0.463890i \(-0.153547\pi\)
0.885893 + 0.463890i \(0.153547\pi\)
\(692\) −30584.2 −1.68011
\(693\) 2653.10 0.145430
\(694\) 9397.40 0.514007
\(695\) −45688.1 −2.49360
\(696\) −42.9075 −0.00233679
\(697\) 2018.25 0.109680
\(698\) 7491.86 0.406262
\(699\) 1850.91 0.100154
\(700\) 24373.0 1.31602
\(701\) −6160.64 −0.331932 −0.165966 0.986131i \(-0.553074\pi\)
−0.165966 + 0.986131i \(0.553074\pi\)
\(702\) 0 0
\(703\) −6441.96 −0.345609
\(704\) 5517.93 0.295405
\(705\) 3738.97 0.199742
\(706\) −9507.27 −0.506814
\(707\) −1040.42 −0.0553452
\(708\) 3107.49 0.164953
\(709\) −2601.97 −0.137827 −0.0689134 0.997623i \(-0.521953\pi\)
−0.0689134 + 0.997623i \(0.521953\pi\)
\(710\) −84029.7 −4.44166
\(711\) −25597.0 −1.35016
\(712\) −164.983 −0.00868396
\(713\) −822.585 −0.0432062
\(714\) −682.562 −0.0357763
\(715\) 0 0
\(716\) −30718.7 −1.60337
\(717\) 4784.45 0.249203
\(718\) 38114.2 1.98107
\(719\) −1195.65 −0.0620168 −0.0310084 0.999519i \(-0.509872\pi\)
−0.0310084 + 0.999519i \(0.509872\pi\)
\(720\) −32575.2 −1.68612
\(721\) −10835.2 −0.559671
\(722\) 12330.9 0.635605
\(723\) −2978.03 −0.153187
\(724\) −34921.6 −1.79261
\(725\) 24605.3 1.26044
\(726\) 808.208 0.0413160
\(727\) 12799.5 0.652968 0.326484 0.945203i \(-0.394136\pi\)
0.326484 + 0.945203i \(0.394136\pi\)
\(728\) 0 0
\(729\) −8463.05 −0.429968
\(730\) −80466.5 −4.07972
\(731\) −3145.75 −0.159165
\(732\) 7021.36 0.354531
\(733\) −3924.79 −0.197770 −0.0988850 0.995099i \(-0.531528\pi\)
−0.0988850 + 0.995099i \(0.531528\pi\)
\(734\) 7550.52 0.379693
\(735\) 8494.97 0.426315
\(736\) 10519.2 0.526825
\(737\) −2448.74 −0.122389
\(738\) 19006.2 0.948005
\(739\) −21672.0 −1.07878 −0.539389 0.842057i \(-0.681345\pi\)
−0.539389 + 0.842057i \(0.681345\pi\)
\(740\) 10652.1 0.529161
\(741\) 0 0
\(742\) −8595.01 −0.425246
\(743\) 26790.1 1.32279 0.661396 0.750037i \(-0.269964\pi\)
0.661396 + 0.750037i \(0.269964\pi\)
\(744\) −10.7505 −0.000529746 0
\(745\) −45602.0 −2.24259
\(746\) −26355.9 −1.29351
\(747\) 4257.20 0.208518
\(748\) 893.095 0.0436561
\(749\) −6241.62 −0.304491
\(750\) −25563.7 −1.24461
\(751\) 12312.5 0.598257 0.299128 0.954213i \(-0.403304\pi\)
0.299128 + 0.954213i \(0.403304\pi\)
\(752\) 6931.72 0.336136
\(753\) 10088.3 0.488229
\(754\) 0 0
\(755\) 68176.8 3.28637
\(756\) −6765.60 −0.325479
\(757\) 6127.02 0.294175 0.147087 0.989124i \(-0.453010\pi\)
0.147087 + 0.989124i \(0.453010\pi\)
\(758\) 46828.0 2.24389
\(759\) 758.668 0.0362818
\(760\) 668.165 0.0318906
\(761\) 782.672 0.0372823 0.0186412 0.999826i \(-0.494066\pi\)
0.0186412 + 0.999826i \(0.494066\pi\)
\(762\) 10685.7 0.508009
\(763\) 19976.5 0.947836
\(764\) 14932.3 0.707110
\(765\) −5166.66 −0.244184
\(766\) 29370.4 1.38537
\(767\) 0 0
\(768\) 6993.10 0.328570
\(769\) −19785.0 −0.927784 −0.463892 0.885892i \(-0.653547\pi\)
−0.463892 + 0.885892i \(0.653547\pi\)
\(770\) 9111.16 0.426420
\(771\) −8338.68 −0.389507
\(772\) 4553.03 0.212263
\(773\) 28038.9 1.30464 0.652321 0.757943i \(-0.273795\pi\)
0.652321 + 0.757943i \(0.273795\pi\)
\(774\) −29624.1 −1.37573
\(775\) 6164.85 0.285739
\(776\) −455.020 −0.0210493
\(777\) −1077.66 −0.0497567
\(778\) −26282.9 −1.21117
\(779\) −19636.4 −0.903143
\(780\) 0 0
\(781\) −11123.3 −0.509635
\(782\) 1685.24 0.0770638
\(783\) −6830.07 −0.311733
\(784\) 15748.9 0.717426
\(785\) −9503.55 −0.432097
\(786\) 3345.44 0.151817
\(787\) −32661.4 −1.47936 −0.739679 0.672960i \(-0.765022\pi\)
−0.739679 + 0.672960i \(0.765022\pi\)
\(788\) 31301.0 1.41504
\(789\) −4614.04 −0.208193
\(790\) −87904.2 −3.95885
\(791\) −18256.2 −0.820627
\(792\) −85.6089 −0.00384088
\(793\) 0 0
\(794\) 1024.65 0.0457976
\(795\) 7535.17 0.336157
\(796\) 16768.2 0.746647
\(797\) −18169.1 −0.807506 −0.403753 0.914868i \(-0.632295\pi\)
−0.403753 + 0.914868i \(0.632295\pi\)
\(798\) 6640.95 0.294595
\(799\) 1099.42 0.0486792
\(800\) −78836.1 −3.48410
\(801\) −12412.3 −0.547524
\(802\) −29685.2 −1.30701
\(803\) −10651.7 −0.468106
\(804\) 2951.32 0.129459
\(805\) 8552.68 0.374462
\(806\) 0 0
\(807\) 10117.5 0.441332
\(808\) 33.5718 0.00146170
\(809\) −33500.0 −1.45587 −0.727934 0.685647i \(-0.759519\pi\)
−0.727934 + 0.685647i \(0.759519\pi\)
\(810\) −42367.4 −1.83783
\(811\) −39882.2 −1.72682 −0.863411 0.504501i \(-0.831676\pi\)
−0.863411 + 0.504501i \(0.831676\pi\)
\(812\) 6290.49 0.271863
\(813\) 3199.46 0.138019
\(814\) 2834.48 0.122050
\(815\) 68830.1 2.95830
\(816\) 1109.38 0.0475930
\(817\) 30606.4 1.31063
\(818\) −20483.5 −0.875537
\(819\) 0 0
\(820\) 32469.8 1.38280
\(821\) −10675.7 −0.453816 −0.226908 0.973916i \(-0.572862\pi\)
−0.226908 + 0.973916i \(0.572862\pi\)
\(822\) 6094.49 0.258601
\(823\) −10242.5 −0.433819 −0.216909 0.976192i \(-0.569598\pi\)
−0.216909 + 0.976192i \(0.569598\pi\)
\(824\) 349.623 0.0147812
\(825\) −5685.83 −0.239946
\(826\) 9321.76 0.392670
\(827\) 19343.7 0.813359 0.406680 0.913571i \(-0.366687\pi\)
0.406680 + 0.913571i \(0.366687\pi\)
\(828\) 7894.89 0.331360
\(829\) 6854.35 0.287167 0.143584 0.989638i \(-0.454137\pi\)
0.143584 + 0.989638i \(0.454137\pi\)
\(830\) 14619.9 0.611402
\(831\) 739.654 0.0308764
\(832\) 0 0
\(833\) 2497.89 0.103898
\(834\) 14652.6 0.608367
\(835\) 72644.7 3.01075
\(836\) −8689.31 −0.359481
\(837\) −1711.27 −0.0706694
\(838\) 31736.4 1.30825
\(839\) −17749.2 −0.730358 −0.365179 0.930937i \(-0.618992\pi\)
−0.365179 + 0.930937i \(0.618992\pi\)
\(840\) 111.776 0.00459124
\(841\) −18038.6 −0.739619
\(842\) −63873.5 −2.61428
\(843\) 15685.9 0.640866
\(844\) −25345.7 −1.03369
\(845\) 0 0
\(846\) 10353.4 0.420754
\(847\) 1206.08 0.0489273
\(848\) 13969.5 0.565703
\(849\) −12043.2 −0.486834
\(850\) −12630.0 −0.509653
\(851\) 2660.73 0.107178
\(852\) 13406.3 0.539076
\(853\) −12586.4 −0.505217 −0.252608 0.967569i \(-0.581288\pi\)
−0.252608 + 0.967569i \(0.581288\pi\)
\(854\) 21062.5 0.843961
\(855\) 50268.7 2.01070
\(856\) 201.401 0.00804177
\(857\) −16185.5 −0.645141 −0.322570 0.946545i \(-0.604547\pi\)
−0.322570 + 0.946545i \(0.604547\pi\)
\(858\) 0 0
\(859\) −24377.9 −0.968293 −0.484147 0.874987i \(-0.660870\pi\)
−0.484147 + 0.874987i \(0.660870\pi\)
\(860\) −50609.2 −2.00670
\(861\) −3284.94 −0.130024
\(862\) 39571.1 1.56357
\(863\) −1535.01 −0.0605474 −0.0302737 0.999542i \(-0.509638\pi\)
−0.0302737 + 0.999542i \(0.509638\pi\)
\(864\) 21883.8 0.861691
\(865\) 80432.7 3.16161
\(866\) 15123.2 0.593426
\(867\) −8048.77 −0.315283
\(868\) 1576.08 0.0616311
\(869\) −11636.2 −0.454237
\(870\) −11085.8 −0.432004
\(871\) 0 0
\(872\) −644.592 −0.0250328
\(873\) −34233.0 −1.32716
\(874\) −16396.4 −0.634572
\(875\) −38148.5 −1.47389
\(876\) 12837.8 0.495148
\(877\) −11405.0 −0.439131 −0.219566 0.975598i \(-0.570464\pi\)
−0.219566 + 0.975598i \(0.570464\pi\)
\(878\) 18547.5 0.712924
\(879\) 10097.9 0.387480
\(880\) −14808.5 −0.567265
\(881\) 8252.61 0.315593 0.157796 0.987472i \(-0.449561\pi\)
0.157796 + 0.987472i \(0.449561\pi\)
\(882\) 23523.1 0.898030
\(883\) 11884.7 0.452945 0.226473 0.974018i \(-0.427281\pi\)
0.226473 + 0.974018i \(0.427281\pi\)
\(884\) 0 0
\(885\) −8172.31 −0.310406
\(886\) 5901.45 0.223773
\(887\) 20904.6 0.791329 0.395664 0.918395i \(-0.370514\pi\)
0.395664 + 0.918395i \(0.370514\pi\)
\(888\) 34.7735 0.00131410
\(889\) 15946.2 0.601596
\(890\) −42625.7 −1.60541
\(891\) −5608.35 −0.210872
\(892\) 33948.9 1.27432
\(893\) −10696.7 −0.400843
\(894\) 14625.0 0.547129
\(895\) 80786.4 3.01720
\(896\) 410.332 0.0152994
\(897\) 0 0
\(898\) 20136.1 0.748274
\(899\) 1591.10 0.0590281
\(900\) −59168.1 −2.19141
\(901\) 2215.67 0.0819252
\(902\) 8640.08 0.318939
\(903\) 5120.08 0.188689
\(904\) 589.081 0.0216732
\(905\) 91839.5 3.37331
\(906\) −21864.9 −0.801781
\(907\) 37869.9 1.38638 0.693192 0.720753i \(-0.256204\pi\)
0.693192 + 0.720753i \(0.256204\pi\)
\(908\) −8439.73 −0.308460
\(909\) 2525.74 0.0921599
\(910\) 0 0
\(911\) 36633.8 1.33231 0.666154 0.745814i \(-0.267939\pi\)
0.666154 + 0.745814i \(0.267939\pi\)
\(912\) −10793.6 −0.391899
\(913\) 1935.29 0.0701521
\(914\) −30981.8 −1.12121
\(915\) −18465.3 −0.667152
\(916\) −7375.63 −0.266045
\(917\) 4992.36 0.179784
\(918\) 3505.90 0.126048
\(919\) −2386.32 −0.0856556 −0.0428278 0.999082i \(-0.513637\pi\)
−0.0428278 + 0.999082i \(0.513637\pi\)
\(920\) −275.973 −0.00988975
\(921\) 1133.38 0.0405495
\(922\) 12904.6 0.460944
\(923\) 0 0
\(924\) −1453.62 −0.0517538
\(925\) −19940.8 −0.708812
\(926\) 40809.4 1.44825
\(927\) 26303.5 0.931954
\(928\) −20347.0 −0.719746
\(929\) 24671.8 0.871320 0.435660 0.900111i \(-0.356515\pi\)
0.435660 + 0.900111i \(0.356515\pi\)
\(930\) −2777.54 −0.0979347
\(931\) −24303.1 −0.855533
\(932\) 8755.93 0.307736
\(933\) 4128.60 0.144871
\(934\) −2577.57 −0.0903004
\(935\) −2348.73 −0.0821514
\(936\) 0 0
\(937\) 3045.78 0.106191 0.0530956 0.998589i \(-0.483091\pi\)
0.0530956 + 0.998589i \(0.483091\pi\)
\(938\) 8853.29 0.308177
\(939\) 294.100 0.0102211
\(940\) 17687.6 0.613730
\(941\) 40232.6 1.39378 0.696889 0.717179i \(-0.254567\pi\)
0.696889 + 0.717179i \(0.254567\pi\)
\(942\) 3047.88 0.105420
\(943\) 8110.47 0.280078
\(944\) −15150.7 −0.522367
\(945\) 17792.7 0.612482
\(946\) −13466.9 −0.462839
\(947\) 6768.36 0.232252 0.116126 0.993235i \(-0.462952\pi\)
0.116126 + 0.993235i \(0.462952\pi\)
\(948\) 14024.5 0.480478
\(949\) 0 0
\(950\) 122883. 4.19667
\(951\) −18059.0 −0.615776
\(952\) 32.8670 0.00111894
\(953\) 4770.35 0.162148 0.0810739 0.996708i \(-0.474165\pi\)
0.0810739 + 0.996708i \(0.474165\pi\)
\(954\) 20865.3 0.708113
\(955\) −39270.1 −1.33063
\(956\) 22633.4 0.765707
\(957\) −1467.47 −0.0495680
\(958\) −26075.8 −0.879405
\(959\) 9094.75 0.306241
\(960\) 17489.8 0.588001
\(961\) −29392.3 −0.986618
\(962\) 0 0
\(963\) 15152.2 0.507034
\(964\) −14087.9 −0.470686
\(965\) −11973.9 −0.399433
\(966\) −2742.92 −0.0913582
\(967\) −6004.49 −0.199681 −0.0998404 0.995003i \(-0.531833\pi\)
−0.0998404 + 0.995003i \(0.531833\pi\)
\(968\) −38.9172 −0.00129220
\(969\) −1711.94 −0.0567549
\(970\) −117561. −3.89141
\(971\) 12670.2 0.418750 0.209375 0.977835i \(-0.432857\pi\)
0.209375 + 0.977835i \(0.432857\pi\)
\(972\) 25085.9 0.827808
\(973\) 21865.9 0.720442
\(974\) −47779.5 −1.57182
\(975\) 0 0
\(976\) −34233.0 −1.12272
\(977\) −16673.3 −0.545983 −0.272992 0.962016i \(-0.588013\pi\)
−0.272992 + 0.962016i \(0.588013\pi\)
\(978\) −22074.4 −0.721741
\(979\) −5642.54 −0.184205
\(980\) 40186.4 1.30990
\(981\) −48495.2 −1.57832
\(982\) 5068.55 0.164709
\(983\) 11945.8 0.387602 0.193801 0.981041i \(-0.437918\pi\)
0.193801 + 0.981041i \(0.437918\pi\)
\(984\) 105.997 0.00343400
\(985\) −82317.7 −2.66280
\(986\) −3259.70 −0.105284
\(987\) −1789.44 −0.0577087
\(988\) 0 0
\(989\) −12641.4 −0.406444
\(990\) −22118.3 −0.710068
\(991\) 13371.6 0.428619 0.214310 0.976766i \(-0.431250\pi\)
0.214310 + 0.976766i \(0.431250\pi\)
\(992\) −5097.95 −0.163165
\(993\) 15762.7 0.503740
\(994\) 40215.8 1.28327
\(995\) −44098.1 −1.40503
\(996\) −2332.50 −0.0742048
\(997\) 37713.0 1.19798 0.598988 0.800758i \(-0.295570\pi\)
0.598988 + 0.800758i \(0.295570\pi\)
\(998\) 82372.0 2.61266
\(999\) 5535.29 0.175304
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.i.1.14 17
13.3 even 3 143.4.e.a.100.4 34
13.9 even 3 143.4.e.a.133.4 yes 34
13.12 even 2 1859.4.a.f.1.4 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.e.a.100.4 34 13.3 even 3
143.4.e.a.133.4 yes 34 13.9 even 3
1859.4.a.f.1.4 17 13.12 even 2
1859.4.a.i.1.14 17 1.1 even 1 trivial