Properties

Label 1859.4.a.i
Level $1859$
Weight $4$
Character orbit 1859.a
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,4,-6,78,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 4 x^{16} - 99 x^{15} + 375 x^{14} + 3949 x^{13} - 13998 x^{12} - 81750 x^{11} + 267574 x^{10} + \cdots + 2596992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{16}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{8} q^{3} + (\beta_{2} + 5) q^{4} + (\beta_{6} + 1) q^{5} + ( - \beta_{8} - \beta_{6} + \beta_{4} + \cdots + 1) q^{6} - \beta_{7} q^{7} + (\beta_{3} + \beta_{2} + 4 \beta_1 + 3) q^{8}+ \cdots + (11 \beta_{15} - 11 \beta_{8} + \cdots - 77) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 4 q^{2} - 6 q^{3} + 78 q^{4} + 16 q^{5} + 14 q^{6} - 6 q^{7} + 63 q^{8} + 135 q^{9} + 2 q^{10} - 187 q^{11} - 95 q^{12} - 60 q^{14} - 28 q^{15} + 350 q^{16} + 118 q^{17} + 478 q^{18} + 403 q^{19}+ \cdots - 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{17} - 4 x^{16} - 99 x^{15} + 375 x^{14} + 3949 x^{13} - 13998 x^{12} - 81750 x^{11} + 267574 x^{10} + \cdots + 2596992 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 20\nu + 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 32\!\cdots\!77 \nu^{16} + \cdots - 40\!\cdots\!80 ) / 19\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 38\!\cdots\!51 \nu^{16} + \cdots + 16\!\cdots\!60 ) / 19\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 83\!\cdots\!63 \nu^{16} + \cdots + 94\!\cdots\!32 ) / 19\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 24\!\cdots\!43 \nu^{16} + \cdots + 18\!\cdots\!00 ) / 33\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 79\!\cdots\!35 \nu^{16} + \cdots - 31\!\cdots\!24 ) / 99\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 15\!\cdots\!27 \nu^{16} + \cdots + 44\!\cdots\!40 ) / 16\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 40\!\cdots\!89 \nu^{16} + \cdots - 46\!\cdots\!32 ) / 16\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 48\!\cdots\!93 \nu^{16} + \cdots - 71\!\cdots\!56 ) / 19\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 14\!\cdots\!39 \nu^{16} + \cdots - 51\!\cdots\!52 ) / 49\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 35\!\cdots\!11 \nu^{16} + \cdots + 65\!\cdots\!92 ) / 99\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 11\!\cdots\!67 \nu^{16} + \cdots - 57\!\cdots\!84 ) / 30\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 57\!\cdots\!55 \nu^{16} + \cdots + 42\!\cdots\!68 ) / 99\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 69\!\cdots\!81 \nu^{16} + \cdots - 21\!\cdots\!96 ) / 99\!\cdots\!12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 20\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{14} + \beta_{13} - \beta_{12} - \beta_{11} + \beta_{10} - 2 \beta_{8} + \beta_{6} - \beta_{5} + \cdots + 270 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{12} + \beta_{11} - 4 \beta_{9} - 6 \beta_{8} + 2 \beta_{7} - 2 \beta_{6} + 2 \beta_{5} + \cdots + 141 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - \beta_{16} - \beta_{15} - 38 \beta_{14} + 45 \beta_{13} - 42 \beta_{12} - 38 \beta_{11} + 51 \beta_{10} + \cdots + 6530 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 4 \beta_{16} + 24 \beta_{15} - 13 \beta_{14} + 5 \beta_{13} + 63 \beta_{12} + 75 \beta_{11} + \cdots + 5057 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 76 \beta_{16} - 28 \beta_{15} - 1170 \beta_{14} + 1574 \beta_{13} - 1413 \beta_{12} - 1173 \beta_{11} + \cdots + 169491 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 345 \beta_{16} + 1579 \beta_{15} - 723 \beta_{14} + 250 \beta_{13} + 2655 \beta_{12} + 3491 \beta_{11} + \cdots + 163801 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 3718 \beta_{16} - 190 \beta_{15} - 34032 \beta_{14} + 50710 \beta_{13} - 44323 \beta_{12} + \cdots + 4568062 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 18009 \beta_{16} + 70427 \beta_{15} - 27372 \beta_{14} + 9395 \beta_{13} + 94656 \beta_{12} + \cdots + 5080318 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 153116 \beta_{16} + 18360 \beta_{15} - 970618 \beta_{14} + 1577410 \beta_{13} - 1347192 \beta_{12} + \cdots + 125942716 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 764378 \beta_{16} + 2660158 \beta_{15} - 879847 \beta_{14} + 342061 \beta_{13} + 3096891 \beta_{12} + \cdots + 154334378 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 5757958 \beta_{16} + 1212598 \beta_{15} - 27452667 \beta_{14} + 48227045 \beta_{13} + \cdots + 3524491166 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 29143851 \beta_{16} + 91765041 \beta_{15} - 25797947 \beta_{14} + 12824784 \beta_{13} + \cdots + 4638375275 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 204737235 \beta_{16} + 52327109 \beta_{15} - 772903021 \beta_{14} + 1460641142 \beta_{13} + \cdots + 99659560772 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.36576
−4.61453
−4.18927
−3.21160
−3.17483
−2.47248
−1.07101
−0.549217
−0.114461
1.75097
2.02345
2.74484
2.79502
3.98991
4.70666
5.30056
5.45173
−5.36576 −0.836231 20.7914 1.92861 4.48702 17.6723 −68.6355 −26.3007 −10.3485
1.2 −4.61453 3.68758 13.2939 19.7910 −17.0165 −18.7869 −24.4287 −13.4017 −91.3259
1.3 −4.18927 −8.20774 9.54998 −18.8743 34.3844 −14.8122 −6.49330 40.3670 79.0697
1.4 −3.21160 −6.73941 2.31437 9.24473 21.6443 8.56428 18.2600 18.4196 −29.6904
1.5 −3.17483 2.79441 2.07954 −8.68483 −8.87177 −6.73544 18.7965 −19.1913 27.5728
1.6 −2.47248 6.49330 −1.88686 −10.7576 −16.0545 24.9760 24.4450 15.1629 26.5979
1.7 −1.07101 −5.99193 −6.85294 0.973634 6.41740 −28.3191 15.9076 8.90321 −1.04277
1.8 −0.549217 −0.561969 −7.69836 16.1600 0.308643 31.1335 8.62181 −26.6842 −8.87537
1.9 −0.114461 5.80602 −7.98690 11.2238 −0.664561 −15.9656 1.82987 6.70989 −1.28469
1.10 1.75097 3.47555 −4.93410 −8.23074 6.08559 −17.9650 −22.6472 −14.9205 −14.4118
1.11 2.02345 −7.47211 −3.90564 −6.22433 −15.1195 28.5679 −24.0905 28.8324 −12.5946
1.12 2.74484 −4.19208 −0.465832 5.57379 −11.5066 −6.88148 −23.2374 −9.42645 15.2992
1.13 2.79502 10.1456 −0.187860 5.45712 28.3572 7.73594 −22.8852 75.9332 15.2528
1.14 3.98991 1.67407 7.91939 −20.8270 6.67941 9.96761 −0.321630 −24.1975 −83.0979
1.15 4.70666 −10.1964 14.1527 19.7628 −47.9909 −2.86520 28.9586 76.9660 93.0167
1.16 5.30056 −2.59422 20.0959 −4.49343 −13.7508 −33.2644 64.1151 −20.2700 −23.8177
1.17 5.45173 6.71552 21.7213 3.97680 36.6112 10.9778 74.8051 18.0982 21.6804
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1859.4.a.i 17
13.b even 2 1 1859.4.a.f 17
13.c even 3 2 143.4.e.a 34
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
143.4.e.a 34 13.c even 3 2
1859.4.a.f 17 13.b even 2 1
1859.4.a.i 17 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{17} - 4 T_{2}^{16} - 99 T_{2}^{15} + 375 T_{2}^{14} + 3949 T_{2}^{13} - 13998 T_{2}^{12} + \cdots + 2596992 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1859))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{17} - 4 T^{16} + \cdots + 2596992 \) Copy content Toggle raw display
$3$ \( T^{17} + \cdots + 19875034496 \) Copy content Toggle raw display
$5$ \( T^{17} + \cdots + 12\!\cdots\!88 \) Copy content Toggle raw display
$7$ \( T^{17} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( (T + 11)^{17} \) Copy content Toggle raw display
$13$ \( T^{17} \) Copy content Toggle raw display
$17$ \( T^{17} + \cdots + 14\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{17} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{17} + \cdots + 12\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{17} + \cdots - 40\!\cdots\!57 \) Copy content Toggle raw display
$31$ \( T^{17} + \cdots + 59\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{17} + \cdots + 64\!\cdots\!74 \) Copy content Toggle raw display
$41$ \( T^{17} + \cdots - 87\!\cdots\!50 \) Copy content Toggle raw display
$43$ \( T^{17} + \cdots - 89\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{17} + \cdots - 74\!\cdots\!68 \) Copy content Toggle raw display
$53$ \( T^{17} + \cdots - 44\!\cdots\!54 \) Copy content Toggle raw display
$59$ \( T^{17} + \cdots + 68\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( T^{17} + \cdots + 13\!\cdots\!50 \) Copy content Toggle raw display
$67$ \( T^{17} + \cdots + 28\!\cdots\!28 \) Copy content Toggle raw display
$71$ \( T^{17} + \cdots - 30\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{17} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{17} + \cdots - 30\!\cdots\!88 \) Copy content Toggle raw display
$83$ \( T^{17} + \cdots + 81\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{17} + \cdots + 12\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{17} + \cdots - 49\!\cdots\!76 \) Copy content Toggle raw display
show more
show less