Properties

Label 1859.4.a.i.1.12
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,4,-6,78,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 4 x^{16} - 99 x^{15} + 375 x^{14} + 3949 x^{13} - 13998 x^{12} - 81750 x^{11} + 267574 x^{10} + \cdots + 2596992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(2.74484\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.74484 q^{2} -4.19208 q^{3} -0.465832 q^{4} +5.57379 q^{5} -11.5066 q^{6} -6.88148 q^{7} -23.2374 q^{8} -9.42645 q^{9} +15.2992 q^{10} -11.0000 q^{11} +1.95281 q^{12} -18.8886 q^{14} -23.3658 q^{15} -60.0563 q^{16} -96.9572 q^{17} -25.8741 q^{18} -91.3208 q^{19} -2.59645 q^{20} +28.8477 q^{21} -30.1933 q^{22} +4.92652 q^{23} +97.4130 q^{24} -93.9329 q^{25} +152.703 q^{27} +3.20562 q^{28} +120.698 q^{29} -64.1354 q^{30} +62.6271 q^{31} +21.0538 q^{32} +46.1129 q^{33} -266.132 q^{34} -38.3559 q^{35} +4.39115 q^{36} +59.9413 q^{37} -250.661 q^{38} -129.520 q^{40} -54.8955 q^{41} +79.1826 q^{42} -418.966 q^{43} +5.12415 q^{44} -52.5411 q^{45} +13.5225 q^{46} -158.651 q^{47} +251.761 q^{48} -295.645 q^{49} -257.831 q^{50} +406.453 q^{51} +89.8532 q^{53} +419.145 q^{54} -61.3117 q^{55} +159.908 q^{56} +382.824 q^{57} +331.298 q^{58} +658.045 q^{59} +10.8845 q^{60} +439.684 q^{61} +171.901 q^{62} +64.8680 q^{63} +538.240 q^{64} +126.573 q^{66} -1051.80 q^{67} +45.1658 q^{68} -20.6524 q^{69} -105.281 q^{70} +1077.54 q^{71} +219.046 q^{72} -338.912 q^{73} +164.530 q^{74} +393.774 q^{75} +42.5402 q^{76} +75.6963 q^{77} +664.285 q^{79} -334.741 q^{80} -385.628 q^{81} -150.680 q^{82} -1011.19 q^{83} -13.4382 q^{84} -540.419 q^{85} -1150.00 q^{86} -505.977 q^{87} +255.611 q^{88} -237.802 q^{89} -144.217 q^{90} -2.29493 q^{92} -262.538 q^{93} -435.472 q^{94} -509.003 q^{95} -88.2593 q^{96} -150.055 q^{97} -811.500 q^{98} +103.691 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 4 q^{2} - 6 q^{3} + 78 q^{4} + 16 q^{5} + 14 q^{6} - 6 q^{7} + 63 q^{8} + 135 q^{9} + 2 q^{10} - 187 q^{11} - 95 q^{12} - 60 q^{14} - 28 q^{15} + 350 q^{16} + 118 q^{17} + 478 q^{18} + 403 q^{19}+ \cdots - 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.74484 0.970449 0.485224 0.874390i \(-0.338738\pi\)
0.485224 + 0.874390i \(0.338738\pi\)
\(3\) −4.19208 −0.806766 −0.403383 0.915031i \(-0.632166\pi\)
−0.403383 + 0.915031i \(0.632166\pi\)
\(4\) −0.465832 −0.0582290
\(5\) 5.57379 0.498535 0.249267 0.968435i \(-0.419810\pi\)
0.249267 + 0.968435i \(0.419810\pi\)
\(6\) −11.5066 −0.782926
\(7\) −6.88148 −0.371565 −0.185783 0.982591i \(-0.559482\pi\)
−0.185783 + 0.982591i \(0.559482\pi\)
\(8\) −23.2374 −1.02696
\(9\) −9.42645 −0.349128
\(10\) 15.2992 0.483803
\(11\) −11.0000 −0.301511
\(12\) 1.95281 0.0469772
\(13\) 0 0
\(14\) −18.8886 −0.360585
\(15\) −23.3658 −0.402201
\(16\) −60.0563 −0.938380
\(17\) −96.9572 −1.38327 −0.691635 0.722247i \(-0.743109\pi\)
−0.691635 + 0.722247i \(0.743109\pi\)
\(18\) −25.8741 −0.338811
\(19\) −91.3208 −1.10265 −0.551327 0.834289i \(-0.685878\pi\)
−0.551327 + 0.834289i \(0.685878\pi\)
\(20\) −2.59645 −0.0290292
\(21\) 28.8477 0.299766
\(22\) −30.1933 −0.292601
\(23\) 4.92652 0.0446630 0.0223315 0.999751i \(-0.492891\pi\)
0.0223315 + 0.999751i \(0.492891\pi\)
\(24\) 97.4130 0.828515
\(25\) −93.9329 −0.751463
\(26\) 0 0
\(27\) 152.703 1.08843
\(28\) 3.20562 0.0216359
\(29\) 120.698 0.772865 0.386433 0.922318i \(-0.373707\pi\)
0.386433 + 0.922318i \(0.373707\pi\)
\(30\) −64.1354 −0.390316
\(31\) 62.6271 0.362844 0.181422 0.983405i \(-0.441930\pi\)
0.181422 + 0.983405i \(0.441930\pi\)
\(32\) 21.0538 0.116307
\(33\) 46.1129 0.243249
\(34\) −266.132 −1.34239
\(35\) −38.3559 −0.185238
\(36\) 4.39115 0.0203294
\(37\) 59.9413 0.266332 0.133166 0.991094i \(-0.457486\pi\)
0.133166 + 0.991094i \(0.457486\pi\)
\(38\) −250.661 −1.07007
\(39\) 0 0
\(40\) −129.520 −0.511974
\(41\) −54.8955 −0.209103 −0.104552 0.994519i \(-0.533341\pi\)
−0.104552 + 0.994519i \(0.533341\pi\)
\(42\) 79.1826 0.290908
\(43\) −418.966 −1.48585 −0.742927 0.669373i \(-0.766563\pi\)
−0.742927 + 0.669373i \(0.766563\pi\)
\(44\) 5.12415 0.0175567
\(45\) −52.5411 −0.174052
\(46\) 13.5225 0.0433432
\(47\) −158.651 −0.492375 −0.246187 0.969222i \(-0.579178\pi\)
−0.246187 + 0.969222i \(0.579178\pi\)
\(48\) 251.761 0.757054
\(49\) −295.645 −0.861939
\(50\) −257.831 −0.729256
\(51\) 406.453 1.11598
\(52\) 0 0
\(53\) 89.8532 0.232873 0.116437 0.993198i \(-0.462853\pi\)
0.116437 + 0.993198i \(0.462853\pi\)
\(54\) 419.145 1.05627
\(55\) −61.3117 −0.150314
\(56\) 159.908 0.381582
\(57\) 382.824 0.889584
\(58\) 331.298 0.750026
\(59\) 658.045 1.45204 0.726018 0.687676i \(-0.241369\pi\)
0.726018 + 0.687676i \(0.241369\pi\)
\(60\) 10.8845 0.0234198
\(61\) 439.684 0.922881 0.461441 0.887171i \(-0.347333\pi\)
0.461441 + 0.887171i \(0.347333\pi\)
\(62\) 171.901 0.352121
\(63\) 64.8680 0.129724
\(64\) 538.240 1.05125
\(65\) 0 0
\(66\) 126.573 0.236061
\(67\) −1051.80 −1.91788 −0.958941 0.283605i \(-0.908470\pi\)
−0.958941 + 0.283605i \(0.908470\pi\)
\(68\) 45.1658 0.0805464
\(69\) −20.6524 −0.0360326
\(70\) −105.281 −0.179764
\(71\) 1077.54 1.80114 0.900570 0.434710i \(-0.143149\pi\)
0.900570 + 0.434710i \(0.143149\pi\)
\(72\) 219.046 0.358539
\(73\) −338.912 −0.543379 −0.271689 0.962385i \(-0.587582\pi\)
−0.271689 + 0.962385i \(0.587582\pi\)
\(74\) 164.530 0.258462
\(75\) 393.774 0.606255
\(76\) 42.5402 0.0642065
\(77\) 75.6963 0.112031
\(78\) 0 0
\(79\) 664.285 0.946049 0.473024 0.881049i \(-0.343162\pi\)
0.473024 + 0.881049i \(0.343162\pi\)
\(80\) −334.741 −0.467815
\(81\) −385.628 −0.528982
\(82\) −150.680 −0.202924
\(83\) −1011.19 −1.33726 −0.668628 0.743597i \(-0.733118\pi\)
−0.668628 + 0.743597i \(0.733118\pi\)
\(84\) −13.4382 −0.0174551
\(85\) −540.419 −0.689608
\(86\) −1150.00 −1.44194
\(87\) −505.977 −0.623522
\(88\) 255.611 0.309639
\(89\) −237.802 −0.283224 −0.141612 0.989922i \(-0.545229\pi\)
−0.141612 + 0.989922i \(0.545229\pi\)
\(90\) −144.217 −0.168909
\(91\) 0 0
\(92\) −2.29493 −0.00260068
\(93\) −262.538 −0.292730
\(94\) −435.472 −0.477824
\(95\) −509.003 −0.549711
\(96\) −88.2593 −0.0938326
\(97\) −150.055 −0.157069 −0.0785347 0.996911i \(-0.525024\pi\)
−0.0785347 + 0.996911i \(0.525024\pi\)
\(98\) −811.500 −0.836468
\(99\) 103.691 0.105266
\(100\) 43.7570 0.0437570
\(101\) 1632.70 1.60851 0.804254 0.594286i \(-0.202565\pi\)
0.804254 + 0.594286i \(0.202565\pi\)
\(102\) 1115.65 1.08300
\(103\) −38.9576 −0.0372681 −0.0186340 0.999826i \(-0.505932\pi\)
−0.0186340 + 0.999826i \(0.505932\pi\)
\(104\) 0 0
\(105\) 160.791 0.149444
\(106\) 246.633 0.225992
\(107\) 296.619 0.267993 0.133996 0.990982i \(-0.457219\pi\)
0.133996 + 0.990982i \(0.457219\pi\)
\(108\) −71.1338 −0.0633783
\(109\) −1405.78 −1.23532 −0.617658 0.786447i \(-0.711918\pi\)
−0.617658 + 0.786447i \(0.711918\pi\)
\(110\) −168.291 −0.145872
\(111\) −251.279 −0.214868
\(112\) 413.277 0.348670
\(113\) 1459.72 1.21521 0.607607 0.794238i \(-0.292130\pi\)
0.607607 + 0.794238i \(0.292130\pi\)
\(114\) 1050.79 0.863296
\(115\) 27.4594 0.0222661
\(116\) −56.2251 −0.0450032
\(117\) 0 0
\(118\) 1806.23 1.40913
\(119\) 667.210 0.513975
\(120\) 542.960 0.413043
\(121\) 121.000 0.0909091
\(122\) 1206.86 0.895609
\(123\) 230.127 0.168698
\(124\) −29.1737 −0.0211280
\(125\) −1220.29 −0.873165
\(126\) 178.053 0.125890
\(127\) −2229.27 −1.55760 −0.778801 0.627272i \(-0.784172\pi\)
−0.778801 + 0.627272i \(0.784172\pi\)
\(128\) 1308.95 0.903878
\(129\) 1756.34 1.19874
\(130\) 0 0
\(131\) 804.754 0.536730 0.268365 0.963317i \(-0.413517\pi\)
0.268365 + 0.963317i \(0.413517\pi\)
\(132\) −21.4809 −0.0141642
\(133\) 628.423 0.409708
\(134\) −2887.03 −1.86121
\(135\) 851.132 0.542621
\(136\) 2253.03 1.42056
\(137\) −2048.95 −1.27776 −0.638881 0.769306i \(-0.720602\pi\)
−0.638881 + 0.769306i \(0.720602\pi\)
\(138\) −56.6875 −0.0349678
\(139\) 843.182 0.514516 0.257258 0.966343i \(-0.417181\pi\)
0.257258 + 0.966343i \(0.417181\pi\)
\(140\) 17.8674 0.0107862
\(141\) 665.077 0.397231
\(142\) 2957.69 1.74791
\(143\) 0 0
\(144\) 566.118 0.327615
\(145\) 672.746 0.385300
\(146\) −930.261 −0.527321
\(147\) 1239.37 0.695384
\(148\) −27.9226 −0.0155083
\(149\) 3159.85 1.73735 0.868674 0.495385i \(-0.164973\pi\)
0.868674 + 0.495385i \(0.164973\pi\)
\(150\) 1080.85 0.588340
\(151\) 2493.03 1.34357 0.671787 0.740745i \(-0.265527\pi\)
0.671787 + 0.740745i \(0.265527\pi\)
\(152\) 2122.06 1.13238
\(153\) 913.963 0.482938
\(154\) 207.775 0.108720
\(155\) 349.070 0.180890
\(156\) 0 0
\(157\) 176.934 0.0899421 0.0449710 0.998988i \(-0.485680\pi\)
0.0449710 + 0.998988i \(0.485680\pi\)
\(158\) 1823.36 0.918092
\(159\) −376.672 −0.187874
\(160\) 117.350 0.0579831
\(161\) −33.9017 −0.0165952
\(162\) −1058.49 −0.513350
\(163\) −1020.11 −0.490193 −0.245097 0.969499i \(-0.578820\pi\)
−0.245097 + 0.969499i \(0.578820\pi\)
\(164\) 25.5721 0.0121759
\(165\) 257.024 0.121268
\(166\) −2775.55 −1.29774
\(167\) −245.512 −0.113762 −0.0568812 0.998381i \(-0.518116\pi\)
−0.0568812 + 0.998381i \(0.518116\pi\)
\(168\) −670.346 −0.307847
\(169\) 0 0
\(170\) −1483.37 −0.669229
\(171\) 860.831 0.384967
\(172\) 195.168 0.0865198
\(173\) −1090.74 −0.479350 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(174\) −1388.83 −0.605096
\(175\) 646.398 0.279218
\(176\) 660.620 0.282932
\(177\) −2758.58 −1.17145
\(178\) −652.729 −0.274855
\(179\) 3377.85 1.41046 0.705229 0.708979i \(-0.250844\pi\)
0.705229 + 0.708979i \(0.250844\pi\)
\(180\) 24.4753 0.0101349
\(181\) 3464.79 1.42285 0.711424 0.702763i \(-0.248051\pi\)
0.711424 + 0.702763i \(0.248051\pi\)
\(182\) 0 0
\(183\) −1843.19 −0.744550
\(184\) −114.479 −0.0458670
\(185\) 334.100 0.132776
\(186\) −720.625 −0.284079
\(187\) 1066.53 0.417072
\(188\) 73.9047 0.0286705
\(189\) −1050.82 −0.404423
\(190\) −1397.13 −0.533467
\(191\) 2903.39 1.09991 0.549953 0.835196i \(-0.314646\pi\)
0.549953 + 0.835196i \(0.314646\pi\)
\(192\) −2256.35 −0.848113
\(193\) 4605.72 1.71776 0.858878 0.512180i \(-0.171162\pi\)
0.858878 + 0.512180i \(0.171162\pi\)
\(194\) −411.877 −0.152428
\(195\) 0 0
\(196\) 137.721 0.0501899
\(197\) 25.4797 0.00921500 0.00460750 0.999989i \(-0.498533\pi\)
0.00460750 + 0.999989i \(0.498533\pi\)
\(198\) 284.616 0.102155
\(199\) −2697.05 −0.960748 −0.480374 0.877064i \(-0.659499\pi\)
−0.480374 + 0.877064i \(0.659499\pi\)
\(200\) 2182.75 0.771720
\(201\) 4409.24 1.54728
\(202\) 4481.49 1.56097
\(203\) −830.583 −0.287170
\(204\) −189.339 −0.0649822
\(205\) −305.976 −0.104245
\(206\) −106.933 −0.0361667
\(207\) −46.4396 −0.0155931
\(208\) 0 0
\(209\) 1004.53 0.332463
\(210\) 441.347 0.145028
\(211\) −3381.79 −1.10337 −0.551687 0.834051i \(-0.686016\pi\)
−0.551687 + 0.834051i \(0.686016\pi\)
\(212\) −41.8565 −0.0135600
\(213\) −4517.15 −1.45310
\(214\) 814.173 0.260073
\(215\) −2335.23 −0.740750
\(216\) −3548.41 −1.11777
\(217\) −430.967 −0.134820
\(218\) −3858.65 −1.19881
\(219\) 1420.75 0.438380
\(220\) 28.5610 0.00875263
\(221\) 0 0
\(222\) −689.722 −0.208518
\(223\) 3980.55 1.19533 0.597663 0.801747i \(-0.296096\pi\)
0.597663 + 0.801747i \(0.296096\pi\)
\(224\) −144.882 −0.0432156
\(225\) 885.454 0.262357
\(226\) 4006.71 1.17930
\(227\) 1307.72 0.382363 0.191181 0.981555i \(-0.438768\pi\)
0.191181 + 0.981555i \(0.438768\pi\)
\(228\) −178.332 −0.0517996
\(229\) −3204.14 −0.924611 −0.462305 0.886721i \(-0.652978\pi\)
−0.462305 + 0.886721i \(0.652978\pi\)
\(230\) 75.3717 0.0216081
\(231\) −317.325 −0.0903830
\(232\) −2804.71 −0.793699
\(233\) 308.568 0.0867596 0.0433798 0.999059i \(-0.486187\pi\)
0.0433798 + 0.999059i \(0.486187\pi\)
\(234\) 0 0
\(235\) −884.286 −0.245466
\(236\) −306.538 −0.0845506
\(237\) −2784.74 −0.763241
\(238\) 1831.39 0.498786
\(239\) 3295.42 0.891895 0.445948 0.895059i \(-0.352867\pi\)
0.445948 + 0.895059i \(0.352867\pi\)
\(240\) 1403.26 0.377418
\(241\) 5144.69 1.37510 0.687549 0.726138i \(-0.258687\pi\)
0.687549 + 0.726138i \(0.258687\pi\)
\(242\) 332.126 0.0882226
\(243\) −2506.39 −0.661666
\(244\) −204.819 −0.0537385
\(245\) −1647.86 −0.429707
\(246\) 631.661 0.163712
\(247\) 0 0
\(248\) −1455.29 −0.372625
\(249\) 4238.98 1.07885
\(250\) −3349.49 −0.847362
\(251\) −678.142 −0.170534 −0.0852668 0.996358i \(-0.527174\pi\)
−0.0852668 + 0.996358i \(0.527174\pi\)
\(252\) −30.2176 −0.00755369
\(253\) −54.1917 −0.0134664
\(254\) −6118.99 −1.51157
\(255\) 2265.48 0.556353
\(256\) −713.045 −0.174083
\(257\) 927.443 0.225106 0.112553 0.993646i \(-0.464097\pi\)
0.112553 + 0.993646i \(0.464097\pi\)
\(258\) 4820.88 1.16331
\(259\) −412.485 −0.0989599
\(260\) 0 0
\(261\) −1137.76 −0.269829
\(262\) 2208.92 0.520869
\(263\) −2468.42 −0.578742 −0.289371 0.957217i \(-0.593446\pi\)
−0.289371 + 0.957217i \(0.593446\pi\)
\(264\) −1071.54 −0.249807
\(265\) 500.823 0.116096
\(266\) 1724.92 0.397601
\(267\) 996.885 0.228496
\(268\) 489.963 0.111676
\(269\) −1161.84 −0.263340 −0.131670 0.991294i \(-0.542034\pi\)
−0.131670 + 0.991294i \(0.542034\pi\)
\(270\) 2336.23 0.526586
\(271\) −4535.04 −1.01655 −0.508273 0.861196i \(-0.669716\pi\)
−0.508273 + 0.861196i \(0.669716\pi\)
\(272\) 5822.90 1.29803
\(273\) 0 0
\(274\) −5624.04 −1.24000
\(275\) 1033.26 0.226575
\(276\) 9.62053 0.00209815
\(277\) 2214.86 0.480426 0.240213 0.970720i \(-0.422783\pi\)
0.240213 + 0.970720i \(0.422783\pi\)
\(278\) 2314.40 0.499311
\(279\) −590.351 −0.126679
\(280\) 891.292 0.190232
\(281\) −1806.53 −0.383518 −0.191759 0.981442i \(-0.561419\pi\)
−0.191759 + 0.981442i \(0.561419\pi\)
\(282\) 1825.53 0.385493
\(283\) 6881.60 1.44547 0.722736 0.691125i \(-0.242884\pi\)
0.722736 + 0.691125i \(0.242884\pi\)
\(284\) −501.955 −0.104879
\(285\) 2133.78 0.443489
\(286\) 0 0
\(287\) 377.763 0.0776956
\(288\) −198.463 −0.0406060
\(289\) 4487.71 0.913435
\(290\) 1846.58 0.373914
\(291\) 629.041 0.126718
\(292\) 157.876 0.0316404
\(293\) 845.454 0.168573 0.0842866 0.996442i \(-0.473139\pi\)
0.0842866 + 0.996442i \(0.473139\pi\)
\(294\) 3401.87 0.674834
\(295\) 3667.80 0.723890
\(296\) −1392.88 −0.273512
\(297\) −1679.73 −0.328174
\(298\) 8673.29 1.68601
\(299\) 0 0
\(300\) −183.433 −0.0353016
\(301\) 2883.11 0.552092
\(302\) 6842.97 1.30387
\(303\) −6844.39 −1.29769
\(304\) 5484.39 1.03471
\(305\) 2450.71 0.460088
\(306\) 2508.69 0.468667
\(307\) 3457.05 0.642685 0.321342 0.946963i \(-0.395866\pi\)
0.321342 + 0.946963i \(0.395866\pi\)
\(308\) −35.2618 −0.00652346
\(309\) 163.314 0.0300666
\(310\) 958.143 0.175545
\(311\) −1756.56 −0.320275 −0.160137 0.987095i \(-0.551194\pi\)
−0.160137 + 0.987095i \(0.551194\pi\)
\(312\) 0 0
\(313\) −4815.76 −0.869659 −0.434829 0.900513i \(-0.643191\pi\)
−0.434829 + 0.900513i \(0.643191\pi\)
\(314\) 485.657 0.0872842
\(315\) 361.561 0.0646718
\(316\) −309.445 −0.0550875
\(317\) −1278.25 −0.226479 −0.113239 0.993568i \(-0.536123\pi\)
−0.113239 + 0.993568i \(0.536123\pi\)
\(318\) −1033.91 −0.182323
\(319\) −1327.68 −0.233028
\(320\) 3000.04 0.524085
\(321\) −1243.45 −0.216208
\(322\) −93.0550 −0.0161048
\(323\) 8854.21 1.52527
\(324\) 179.638 0.0308021
\(325\) 0 0
\(326\) −2800.05 −0.475707
\(327\) 5893.15 0.996611
\(328\) 1275.63 0.214740
\(329\) 1091.75 0.182949
\(330\) 705.489 0.117685
\(331\) −5940.96 −0.986539 −0.493270 0.869876i \(-0.664198\pi\)
−0.493270 + 0.869876i \(0.664198\pi\)
\(332\) 471.043 0.0778671
\(333\) −565.034 −0.0929841
\(334\) −673.893 −0.110401
\(335\) −5862.53 −0.956131
\(336\) −1732.49 −0.281295
\(337\) −4606.79 −0.744652 −0.372326 0.928102i \(-0.621440\pi\)
−0.372326 + 0.928102i \(0.621440\pi\)
\(338\) 0 0
\(339\) −6119.28 −0.980394
\(340\) 251.745 0.0401552
\(341\) −688.898 −0.109401
\(342\) 2362.85 0.373591
\(343\) 4394.83 0.691832
\(344\) 9735.67 1.52591
\(345\) −115.112 −0.0179635
\(346\) −2993.91 −0.465184
\(347\) −10457.6 −1.61786 −0.808928 0.587908i \(-0.799952\pi\)
−0.808928 + 0.587908i \(0.799952\pi\)
\(348\) 235.700 0.0363071
\(349\) −5867.84 −0.899996 −0.449998 0.893030i \(-0.648575\pi\)
−0.449998 + 0.893030i \(0.648575\pi\)
\(350\) 1774.26 0.270966
\(351\) 0 0
\(352\) −231.592 −0.0350679
\(353\) 4876.00 0.735194 0.367597 0.929985i \(-0.380181\pi\)
0.367597 + 0.929985i \(0.380181\pi\)
\(354\) −7571.86 −1.13684
\(355\) 6006.00 0.897931
\(356\) 110.776 0.0164919
\(357\) −2797.00 −0.414658
\(358\) 9271.66 1.36878
\(359\) 5199.25 0.764362 0.382181 0.924087i \(-0.375173\pi\)
0.382181 + 0.924087i \(0.375173\pi\)
\(360\) 1220.92 0.178744
\(361\) 1480.49 0.215846
\(362\) 9510.29 1.38080
\(363\) −507.242 −0.0733424
\(364\) 0 0
\(365\) −1889.02 −0.270893
\(366\) −5059.27 −0.722547
\(367\) −6154.64 −0.875394 −0.437697 0.899122i \(-0.644206\pi\)
−0.437697 + 0.899122i \(0.644206\pi\)
\(368\) −295.869 −0.0419109
\(369\) 517.470 0.0730039
\(370\) 917.053 0.128852
\(371\) −618.324 −0.0865277
\(372\) 122.299 0.0170454
\(373\) 10952.0 1.52030 0.760151 0.649747i \(-0.225125\pi\)
0.760151 + 0.649747i \(0.225125\pi\)
\(374\) 2927.46 0.404747
\(375\) 5115.54 0.704440
\(376\) 3686.63 0.505648
\(377\) 0 0
\(378\) −2884.34 −0.392472
\(379\) 2139.45 0.289963 0.144982 0.989434i \(-0.453688\pi\)
0.144982 + 0.989434i \(0.453688\pi\)
\(380\) 237.110 0.0320092
\(381\) 9345.26 1.25662
\(382\) 7969.36 1.06740
\(383\) −2695.52 −0.359620 −0.179810 0.983701i \(-0.557548\pi\)
−0.179810 + 0.983701i \(0.557548\pi\)
\(384\) −5487.24 −0.729218
\(385\) 421.915 0.0558514
\(386\) 12642.0 1.66699
\(387\) 3949.36 0.518753
\(388\) 69.9003 0.00914600
\(389\) −9522.84 −1.24120 −0.620600 0.784127i \(-0.713111\pi\)
−0.620600 + 0.784127i \(0.713111\pi\)
\(390\) 0 0
\(391\) −477.661 −0.0617810
\(392\) 6870.02 0.885175
\(393\) −3373.59 −0.433016
\(394\) 69.9378 0.00894268
\(395\) 3702.58 0.471638
\(396\) −48.3026 −0.00612954
\(397\) −4313.11 −0.545261 −0.272630 0.962119i \(-0.587894\pi\)
−0.272630 + 0.962119i \(0.587894\pi\)
\(398\) −7402.98 −0.932357
\(399\) −2634.40 −0.330539
\(400\) 5641.27 0.705158
\(401\) −14532.0 −1.80971 −0.904853 0.425725i \(-0.860019\pi\)
−0.904853 + 0.425725i \(0.860019\pi\)
\(402\) 12102.7 1.50156
\(403\) 0 0
\(404\) −760.562 −0.0936618
\(405\) −2149.41 −0.263716
\(406\) −2279.82 −0.278684
\(407\) −659.355 −0.0803022
\(408\) −9444.90 −1.14606
\(409\) 10546.2 1.27501 0.637504 0.770447i \(-0.279967\pi\)
0.637504 + 0.770447i \(0.279967\pi\)
\(410\) −839.857 −0.101165
\(411\) 8589.35 1.03085
\(412\) 18.1477 0.00217008
\(413\) −4528.32 −0.539526
\(414\) −127.469 −0.0151323
\(415\) −5636.14 −0.666668
\(416\) 0 0
\(417\) −3534.69 −0.415094
\(418\) 2757.27 0.322638
\(419\) −12463.7 −1.45320 −0.726602 0.687058i \(-0.758902\pi\)
−0.726602 + 0.687058i \(0.758902\pi\)
\(420\) −74.9017 −0.00870198
\(421\) −5963.21 −0.690330 −0.345165 0.938542i \(-0.612177\pi\)
−0.345165 + 0.938542i \(0.612177\pi\)
\(422\) −9282.48 −1.07077
\(423\) 1495.52 0.171902
\(424\) −2087.95 −0.239151
\(425\) 9107.47 1.03948
\(426\) −12398.9 −1.41016
\(427\) −3025.68 −0.342911
\(428\) −138.175 −0.0156050
\(429\) 0 0
\(430\) −6409.83 −0.718860
\(431\) −129.688 −0.0144939 −0.00724694 0.999974i \(-0.502307\pi\)
−0.00724694 + 0.999974i \(0.502307\pi\)
\(432\) −9170.76 −1.02136
\(433\) −6991.05 −0.775908 −0.387954 0.921679i \(-0.626818\pi\)
−0.387954 + 0.921679i \(0.626818\pi\)
\(434\) −1182.94 −0.130836
\(435\) −2820.21 −0.310847
\(436\) 654.858 0.0719312
\(437\) −449.893 −0.0492479
\(438\) 3899.73 0.425425
\(439\) −4073.08 −0.442819 −0.221410 0.975181i \(-0.571066\pi\)
−0.221410 + 0.975181i \(0.571066\pi\)
\(440\) 1424.72 0.154366
\(441\) 2786.89 0.300927
\(442\) 0 0
\(443\) 9000.98 0.965348 0.482674 0.875800i \(-0.339666\pi\)
0.482674 + 0.875800i \(0.339666\pi\)
\(444\) 117.054 0.0125116
\(445\) −1325.46 −0.141197
\(446\) 10926.0 1.16000
\(447\) −13246.3 −1.40163
\(448\) −3703.89 −0.390608
\(449\) 14909.6 1.56710 0.783551 0.621328i \(-0.213407\pi\)
0.783551 + 0.621328i \(0.213407\pi\)
\(450\) 2430.43 0.254604
\(451\) 603.851 0.0630471
\(452\) −679.986 −0.0707607
\(453\) −10451.0 −1.08395
\(454\) 3589.48 0.371063
\(455\) 0 0
\(456\) −8895.83 −0.913565
\(457\) 12358.5 1.26500 0.632502 0.774559i \(-0.282028\pi\)
0.632502 + 0.774559i \(0.282028\pi\)
\(458\) −8794.88 −0.897287
\(459\) −14805.6 −1.50559
\(460\) −12.7915 −0.00129653
\(461\) −767.522 −0.0775424 −0.0387712 0.999248i \(-0.512344\pi\)
−0.0387712 + 0.999248i \(0.512344\pi\)
\(462\) −871.008 −0.0877120
\(463\) −2323.66 −0.233239 −0.116620 0.993177i \(-0.537206\pi\)
−0.116620 + 0.993177i \(0.537206\pi\)
\(464\) −7248.69 −0.725241
\(465\) −1463.33 −0.145936
\(466\) 846.972 0.0841958
\(467\) 5615.29 0.556413 0.278206 0.960521i \(-0.410260\pi\)
0.278206 + 0.960521i \(0.410260\pi\)
\(468\) 0 0
\(469\) 7237.96 0.712619
\(470\) −2427.23 −0.238212
\(471\) −741.723 −0.0725622
\(472\) −15291.2 −1.49118
\(473\) 4608.62 0.448002
\(474\) −7643.66 −0.740686
\(475\) 8578.03 0.828604
\(476\) −310.808 −0.0299283
\(477\) −846.997 −0.0813026
\(478\) 9045.41 0.865539
\(479\) −11072.0 −1.05614 −0.528070 0.849201i \(-0.677084\pi\)
−0.528070 + 0.849201i \(0.677084\pi\)
\(480\) −491.939 −0.0467788
\(481\) 0 0
\(482\) 14121.4 1.33446
\(483\) 142.119 0.0133885
\(484\) −56.3657 −0.00529355
\(485\) −836.373 −0.0783046
\(486\) −6879.65 −0.642113
\(487\) −8597.17 −0.799949 −0.399974 0.916526i \(-0.630981\pi\)
−0.399974 + 0.916526i \(0.630981\pi\)
\(488\) −10217.1 −0.947759
\(489\) 4276.40 0.395471
\(490\) −4523.13 −0.417008
\(491\) −8208.03 −0.754426 −0.377213 0.926126i \(-0.623118\pi\)
−0.377213 + 0.926126i \(0.623118\pi\)
\(492\) −107.200 −0.00982310
\(493\) −11702.6 −1.06908
\(494\) 0 0
\(495\) 577.952 0.0524788
\(496\) −3761.15 −0.340485
\(497\) −7415.10 −0.669241
\(498\) 11635.3 1.04697
\(499\) 9787.67 0.878069 0.439034 0.898470i \(-0.355321\pi\)
0.439034 + 0.898470i \(0.355321\pi\)
\(500\) 568.448 0.0508436
\(501\) 1029.21 0.0917797
\(502\) −1861.39 −0.165494
\(503\) 17677.7 1.56702 0.783508 0.621382i \(-0.213428\pi\)
0.783508 + 0.621382i \(0.213428\pi\)
\(504\) −1507.36 −0.133221
\(505\) 9100.30 0.801897
\(506\) −148.748 −0.0130685
\(507\) 0 0
\(508\) 1038.46 0.0906976
\(509\) 9611.63 0.836990 0.418495 0.908219i \(-0.362558\pi\)
0.418495 + 0.908219i \(0.362558\pi\)
\(510\) 6218.39 0.539912
\(511\) 2332.22 0.201901
\(512\) −12428.8 −1.07282
\(513\) −13944.9 −1.20016
\(514\) 2545.69 0.218454
\(515\) −217.142 −0.0185794
\(516\) −818.159 −0.0698013
\(517\) 1745.16 0.148457
\(518\) −1132.21 −0.0960355
\(519\) 4572.48 0.386723
\(520\) 0 0
\(521\) 3095.56 0.260305 0.130152 0.991494i \(-0.458453\pi\)
0.130152 + 0.991494i \(0.458453\pi\)
\(522\) −3122.96 −0.261855
\(523\) 9957.66 0.832539 0.416270 0.909241i \(-0.363337\pi\)
0.416270 + 0.909241i \(0.363337\pi\)
\(524\) −374.880 −0.0312533
\(525\) −2709.75 −0.225263
\(526\) −6775.42 −0.561640
\(527\) −6072.15 −0.501911
\(528\) −2769.37 −0.228260
\(529\) −12142.7 −0.998005
\(530\) 1374.68 0.112665
\(531\) −6203.03 −0.506946
\(532\) −292.740 −0.0238569
\(533\) 0 0
\(534\) 2736.29 0.221743
\(535\) 1653.29 0.133604
\(536\) 24441.1 1.96958
\(537\) −14160.2 −1.13791
\(538\) −3189.07 −0.255558
\(539\) 3252.10 0.259884
\(540\) −396.485 −0.0315963
\(541\) 2425.98 0.192793 0.0963965 0.995343i \(-0.469268\pi\)
0.0963965 + 0.995343i \(0.469268\pi\)
\(542\) −12448.0 −0.986506
\(543\) −14524.7 −1.14791
\(544\) −2041.32 −0.160884
\(545\) −7835.53 −0.615848
\(546\) 0 0
\(547\) −20777.9 −1.62413 −0.812064 0.583568i \(-0.801656\pi\)
−0.812064 + 0.583568i \(0.801656\pi\)
\(548\) 954.465 0.0744028
\(549\) −4144.66 −0.322204
\(550\) 2836.14 0.219879
\(551\) −11022.3 −0.852203
\(552\) 479.907 0.0370040
\(553\) −4571.27 −0.351519
\(554\) 6079.44 0.466229
\(555\) −1400.58 −0.107119
\(556\) −392.781 −0.0299598
\(557\) 19780.4 1.50470 0.752352 0.658761i \(-0.228919\pi\)
0.752352 + 0.658761i \(0.228919\pi\)
\(558\) −1620.42 −0.122935
\(559\) 0 0
\(560\) 2303.52 0.173824
\(561\) −4470.98 −0.336479
\(562\) −4958.65 −0.372185
\(563\) −8441.16 −0.631887 −0.315943 0.948778i \(-0.602321\pi\)
−0.315943 + 0.948778i \(0.602321\pi\)
\(564\) −309.814 −0.0231304
\(565\) 8136.19 0.605826
\(566\) 18888.9 1.40276
\(567\) 2653.69 0.196551
\(568\) −25039.3 −1.84969
\(569\) 23677.8 1.74451 0.872254 0.489053i \(-0.162658\pi\)
0.872254 + 0.489053i \(0.162658\pi\)
\(570\) 5856.90 0.430383
\(571\) −22123.9 −1.62147 −0.810734 0.585415i \(-0.800932\pi\)
−0.810734 + 0.585415i \(0.800932\pi\)
\(572\) 0 0
\(573\) −12171.3 −0.887367
\(574\) 1036.90 0.0753996
\(575\) −462.762 −0.0335626
\(576\) −5073.70 −0.367021
\(577\) 3030.42 0.218645 0.109323 0.994006i \(-0.465132\pi\)
0.109323 + 0.994006i \(0.465132\pi\)
\(578\) 12318.1 0.886442
\(579\) −19307.6 −1.38583
\(580\) −313.387 −0.0224357
\(581\) 6958.47 0.496878
\(582\) 1726.62 0.122974
\(583\) −988.386 −0.0702140
\(584\) 7875.43 0.558027
\(585\) 0 0
\(586\) 2320.64 0.163592
\(587\) −13752.7 −0.967006 −0.483503 0.875343i \(-0.660636\pi\)
−0.483503 + 0.875343i \(0.660636\pi\)
\(588\) −577.338 −0.0404915
\(589\) −5719.15 −0.400091
\(590\) 10067.5 0.702498
\(591\) −106.813 −0.00743435
\(592\) −3599.86 −0.249921
\(593\) 25257.1 1.74905 0.874524 0.484983i \(-0.161174\pi\)
0.874524 + 0.484983i \(0.161174\pi\)
\(594\) −4610.59 −0.318476
\(595\) 3718.89 0.256234
\(596\) −1471.96 −0.101164
\(597\) 11306.3 0.775099
\(598\) 0 0
\(599\) 13380.9 0.912735 0.456367 0.889791i \(-0.349150\pi\)
0.456367 + 0.889791i \(0.349150\pi\)
\(600\) −9150.29 −0.622598
\(601\) −13498.9 −0.916195 −0.458098 0.888902i \(-0.651469\pi\)
−0.458098 + 0.888902i \(0.651469\pi\)
\(602\) 7913.68 0.535777
\(603\) 9914.77 0.669586
\(604\) −1161.33 −0.0782350
\(605\) 674.428 0.0453213
\(606\) −18786.8 −1.25934
\(607\) −26685.0 −1.78436 −0.892182 0.451676i \(-0.850826\pi\)
−0.892182 + 0.451676i \(0.850826\pi\)
\(608\) −1922.65 −0.128246
\(609\) 3481.87 0.231679
\(610\) 6726.80 0.446492
\(611\) 0 0
\(612\) −425.753 −0.0281210
\(613\) −11935.7 −0.786425 −0.393212 0.919448i \(-0.628636\pi\)
−0.393212 + 0.919448i \(0.628636\pi\)
\(614\) 9489.06 0.623693
\(615\) 1282.68 0.0841016
\(616\) −1758.99 −0.115051
\(617\) 11001.0 0.717801 0.358900 0.933376i \(-0.383152\pi\)
0.358900 + 0.933376i \(0.383152\pi\)
\(618\) 448.270 0.0291781
\(619\) −16473.1 −1.06964 −0.534821 0.844965i \(-0.679621\pi\)
−0.534821 + 0.844965i \(0.679621\pi\)
\(620\) −162.608 −0.0105331
\(621\) 752.292 0.0486126
\(622\) −4821.49 −0.310810
\(623\) 1636.43 0.105236
\(624\) 0 0
\(625\) 4940.00 0.316160
\(626\) −13218.5 −0.843959
\(627\) −4211.07 −0.268220
\(628\) −82.4217 −0.00523724
\(629\) −5811.75 −0.368409
\(630\) 992.427 0.0627607
\(631\) 18621.0 1.17479 0.587394 0.809301i \(-0.300154\pi\)
0.587394 + 0.809301i \(0.300154\pi\)
\(632\) −15436.2 −0.971552
\(633\) 14176.7 0.890165
\(634\) −3508.60 −0.219786
\(635\) −12425.5 −0.776518
\(636\) 175.466 0.0109397
\(637\) 0 0
\(638\) −3644.27 −0.226141
\(639\) −10157.4 −0.628829
\(640\) 7295.84 0.450615
\(641\) −17638.9 −1.08688 −0.543442 0.839447i \(-0.682879\pi\)
−0.543442 + 0.839447i \(0.682879\pi\)
\(642\) −3413.08 −0.209819
\(643\) −3116.85 −0.191161 −0.0955805 0.995422i \(-0.530471\pi\)
−0.0955805 + 0.995422i \(0.530471\pi\)
\(644\) 15.7925 0.000966324 0
\(645\) 9789.46 0.597612
\(646\) 24303.4 1.48019
\(647\) −4611.77 −0.280228 −0.140114 0.990135i \(-0.544747\pi\)
−0.140114 + 0.990135i \(0.544747\pi\)
\(648\) 8960.98 0.543242
\(649\) −7238.49 −0.437805
\(650\) 0 0
\(651\) 1806.65 0.108768
\(652\) 475.202 0.0285435
\(653\) −23189.2 −1.38968 −0.694841 0.719164i \(-0.744525\pi\)
−0.694841 + 0.719164i \(0.744525\pi\)
\(654\) 16175.8 0.967160
\(655\) 4485.53 0.267579
\(656\) 3296.82 0.196219
\(657\) 3194.74 0.189709
\(658\) 2996.69 0.177543
\(659\) 20632.6 1.21962 0.609812 0.792546i \(-0.291245\pi\)
0.609812 + 0.792546i \(0.291245\pi\)
\(660\) −119.730 −0.00706133
\(661\) −15114.0 −0.889359 −0.444679 0.895690i \(-0.646682\pi\)
−0.444679 + 0.895690i \(0.646682\pi\)
\(662\) −16307.0 −0.957386
\(663\) 0 0
\(664\) 23497.3 1.37330
\(665\) 3502.70 0.204254
\(666\) −1550.93 −0.0902363
\(667\) 594.622 0.0345185
\(668\) 114.368 0.00662427
\(669\) −16686.8 −0.964349
\(670\) −16091.7 −0.927876
\(671\) −4836.52 −0.278259
\(672\) 607.355 0.0348649
\(673\) 17153.6 0.982499 0.491249 0.871019i \(-0.336540\pi\)
0.491249 + 0.871019i \(0.336540\pi\)
\(674\) −12644.9 −0.722647
\(675\) −14343.8 −0.817916
\(676\) 0 0
\(677\) 9987.36 0.566980 0.283490 0.958975i \(-0.408508\pi\)
0.283490 + 0.958975i \(0.408508\pi\)
\(678\) −16796.5 −0.951422
\(679\) 1032.60 0.0583616
\(680\) 12557.9 0.708198
\(681\) −5482.06 −0.308477
\(682\) −1890.92 −0.106169
\(683\) −15590.0 −0.873405 −0.436702 0.899606i \(-0.643854\pi\)
−0.436702 + 0.899606i \(0.643854\pi\)
\(684\) −401.003 −0.0224163
\(685\) −11420.4 −0.637008
\(686\) 12063.1 0.671388
\(687\) 13432.0 0.745945
\(688\) 25161.6 1.39430
\(689\) 0 0
\(690\) −315.964 −0.0174327
\(691\) −14518.7 −0.799304 −0.399652 0.916667i \(-0.630869\pi\)
−0.399652 + 0.916667i \(0.630869\pi\)
\(692\) 508.102 0.0279121
\(693\) −713.548 −0.0391132
\(694\) −28704.6 −1.57005
\(695\) 4699.72 0.256504
\(696\) 11757.6 0.640330
\(697\) 5322.52 0.289246
\(698\) −16106.3 −0.873400
\(699\) −1293.54 −0.0699947
\(700\) −301.113 −0.0162586
\(701\) −17959.6 −0.967650 −0.483825 0.875165i \(-0.660753\pi\)
−0.483825 + 0.875165i \(0.660753\pi\)
\(702\) 0 0
\(703\) −5473.89 −0.293672
\(704\) −5920.64 −0.316964
\(705\) 3707.00 0.198034
\(706\) 13383.9 0.713468
\(707\) −11235.4 −0.597666
\(708\) 1285.03 0.0682126
\(709\) 67.5784 0.00357963 0.00178982 0.999998i \(-0.499430\pi\)
0.00178982 + 0.999998i \(0.499430\pi\)
\(710\) 16485.5 0.871396
\(711\) −6261.85 −0.330292
\(712\) 5525.89 0.290859
\(713\) 308.533 0.0162057
\(714\) −7677.32 −0.402404
\(715\) 0 0
\(716\) −1573.51 −0.0821296
\(717\) −13814.7 −0.719551
\(718\) 14271.1 0.741775
\(719\) 6924.60 0.359171 0.179586 0.983742i \(-0.442524\pi\)
0.179586 + 0.983742i \(0.442524\pi\)
\(720\) 3155.42 0.163327
\(721\) 268.086 0.0138475
\(722\) 4063.71 0.209468
\(723\) −21567.0 −1.10938
\(724\) −1614.01 −0.0828510
\(725\) −11337.5 −0.580780
\(726\) −1392.30 −0.0711750
\(727\) −31335.3 −1.59857 −0.799287 0.600950i \(-0.794789\pi\)
−0.799287 + 0.600950i \(0.794789\pi\)
\(728\) 0 0
\(729\) 20918.9 1.06279
\(730\) −5185.08 −0.262888
\(731\) 40621.8 2.05534
\(732\) 858.618 0.0433544
\(733\) 165.612 0.00834517 0.00417258 0.999991i \(-0.498672\pi\)
0.00417258 + 0.999991i \(0.498672\pi\)
\(734\) −16893.5 −0.849525
\(735\) 6907.98 0.346673
\(736\) 103.722 0.00519462
\(737\) 11569.8 0.578263
\(738\) 1420.37 0.0708465
\(739\) 21103.6 1.05048 0.525242 0.850953i \(-0.323975\pi\)
0.525242 + 0.850953i \(0.323975\pi\)
\(740\) −155.635 −0.00773141
\(741\) 0 0
\(742\) −1697.20 −0.0839707
\(743\) −19069.7 −0.941589 −0.470795 0.882243i \(-0.656033\pi\)
−0.470795 + 0.882243i \(0.656033\pi\)
\(744\) 6100.69 0.300621
\(745\) 17612.3 0.866128
\(746\) 30061.5 1.47537
\(747\) 9531.91 0.466873
\(748\) −496.824 −0.0242857
\(749\) −2041.18 −0.0995769
\(750\) 14041.3 0.683623
\(751\) 8966.42 0.435672 0.217836 0.975985i \(-0.430100\pi\)
0.217836 + 0.975985i \(0.430100\pi\)
\(752\) 9527.99 0.462035
\(753\) 2842.83 0.137581
\(754\) 0 0
\(755\) 13895.6 0.669818
\(756\) 489.506 0.0235492
\(757\) 38368.4 1.84217 0.921085 0.389362i \(-0.127304\pi\)
0.921085 + 0.389362i \(0.127304\pi\)
\(758\) 5872.45 0.281394
\(759\) 227.176 0.0108642
\(760\) 11827.9 0.564530
\(761\) −20959.7 −0.998406 −0.499203 0.866485i \(-0.666374\pi\)
−0.499203 + 0.866485i \(0.666374\pi\)
\(762\) 25651.3 1.21949
\(763\) 9673.86 0.459000
\(764\) −1352.49 −0.0640465
\(765\) 5094.24 0.240761
\(766\) −7398.78 −0.348993
\(767\) 0 0
\(768\) 2989.14 0.140445
\(769\) 24396.7 1.14404 0.572021 0.820239i \(-0.306160\pi\)
0.572021 + 0.820239i \(0.306160\pi\)
\(770\) 1158.09 0.0542010
\(771\) −3887.92 −0.181608
\(772\) −2145.49 −0.100023
\(773\) −11301.5 −0.525855 −0.262927 0.964816i \(-0.584688\pi\)
−0.262927 + 0.964816i \(0.584688\pi\)
\(774\) 10840.4 0.503423
\(775\) −5882.74 −0.272664
\(776\) 3486.88 0.161304
\(777\) 1729.17 0.0798375
\(778\) −26138.7 −1.20452
\(779\) 5013.10 0.230569
\(780\) 0 0
\(781\) −11853.0 −0.543064
\(782\) −1311.11 −0.0599553
\(783\) 18430.9 0.841210
\(784\) 17755.4 0.808827
\(785\) 986.195 0.0448392
\(786\) −9259.99 −0.420220
\(787\) −20542.2 −0.930431 −0.465215 0.885198i \(-0.654023\pi\)
−0.465215 + 0.885198i \(0.654023\pi\)
\(788\) −11.8693 −0.000536580 0
\(789\) 10347.8 0.466910
\(790\) 10163.0 0.457701
\(791\) −10045.1 −0.451531
\(792\) −2409.51 −0.108104
\(793\) 0 0
\(794\) −11838.8 −0.529148
\(795\) −2099.49 −0.0936620
\(796\) 1256.37 0.0559434
\(797\) −24044.4 −1.06863 −0.534313 0.845287i \(-0.679430\pi\)
−0.534313 + 0.845287i \(0.679430\pi\)
\(798\) −7231.01 −0.320771
\(799\) 15382.4 0.681087
\(800\) −1977.65 −0.0874004
\(801\) 2241.63 0.0988815
\(802\) −39888.0 −1.75623
\(803\) 3728.03 0.163835
\(804\) −2053.97 −0.0900968
\(805\) −188.961 −0.00827330
\(806\) 0 0
\(807\) 4870.52 0.212454
\(808\) −37939.6 −1.65187
\(809\) 20153.3 0.875839 0.437919 0.899014i \(-0.355716\pi\)
0.437919 + 0.899014i \(0.355716\pi\)
\(810\) −5899.79 −0.255923
\(811\) 22525.4 0.975305 0.487653 0.873038i \(-0.337853\pi\)
0.487653 + 0.873038i \(0.337853\pi\)
\(812\) 386.912 0.0167216
\(813\) 19011.2 0.820115
\(814\) −1809.83 −0.0779292
\(815\) −5685.90 −0.244378
\(816\) −24410.1 −1.04721
\(817\) 38260.3 1.63838
\(818\) 28947.8 1.23733
\(819\) 0 0
\(820\) 142.533 0.00607010
\(821\) 24043.1 1.02206 0.511029 0.859564i \(-0.329265\pi\)
0.511029 + 0.859564i \(0.329265\pi\)
\(822\) 23576.4 1.00039
\(823\) 21709.9 0.919515 0.459758 0.888044i \(-0.347936\pi\)
0.459758 + 0.888044i \(0.347936\pi\)
\(824\) 905.274 0.0382727
\(825\) −4331.52 −0.182793
\(826\) −12429.5 −0.523582
\(827\) −4842.01 −0.203595 −0.101797 0.994805i \(-0.532459\pi\)
−0.101797 + 0.994805i \(0.532459\pi\)
\(828\) 21.6331 0.000907972 0
\(829\) −36772.6 −1.54061 −0.770304 0.637677i \(-0.779895\pi\)
−0.770304 + 0.637677i \(0.779895\pi\)
\(830\) −15470.3 −0.646967
\(831\) −9284.86 −0.387591
\(832\) 0 0
\(833\) 28664.9 1.19229
\(834\) −9702.16 −0.402828
\(835\) −1368.43 −0.0567145
\(836\) −467.942 −0.0193590
\(837\) 9563.32 0.394930
\(838\) −34211.0 −1.41026
\(839\) −3261.95 −0.134225 −0.0671126 0.997745i \(-0.521379\pi\)
−0.0671126 + 0.997745i \(0.521379\pi\)
\(840\) −3736.37 −0.153473
\(841\) −9820.95 −0.402680
\(842\) −16368.1 −0.669930
\(843\) 7573.13 0.309410
\(844\) 1575.35 0.0642484
\(845\) 0 0
\(846\) 4104.96 0.166822
\(847\) −832.660 −0.0337787
\(848\) −5396.26 −0.218524
\(849\) −28848.2 −1.16616
\(850\) 24998.6 1.00876
\(851\) 295.302 0.0118952
\(852\) 2104.24 0.0846126
\(853\) 7398.89 0.296991 0.148495 0.988913i \(-0.452557\pi\)
0.148495 + 0.988913i \(0.452557\pi\)
\(854\) −8305.01 −0.332777
\(855\) 4798.09 0.191920
\(856\) −6892.65 −0.275217
\(857\) 21584.3 0.860332 0.430166 0.902750i \(-0.358455\pi\)
0.430166 + 0.902750i \(0.358455\pi\)
\(858\) 0 0
\(859\) −11879.3 −0.471848 −0.235924 0.971771i \(-0.575812\pi\)
−0.235924 + 0.971771i \(0.575812\pi\)
\(860\) 1087.82 0.0431331
\(861\) −1583.61 −0.0626822
\(862\) −355.974 −0.0140656
\(863\) 6366.72 0.251131 0.125565 0.992085i \(-0.459926\pi\)
0.125565 + 0.992085i \(0.459926\pi\)
\(864\) 3214.97 0.126592
\(865\) −6079.56 −0.238973
\(866\) −19189.3 −0.752979
\(867\) −18812.8 −0.736929
\(868\) 200.758 0.00785044
\(869\) −7307.13 −0.285245
\(870\) −7741.03 −0.301661
\(871\) 0 0
\(872\) 32666.7 1.26862
\(873\) 1414.48 0.0548373
\(874\) −1234.89 −0.0477925
\(875\) 8397.38 0.324438
\(876\) −661.830 −0.0255264
\(877\) 17337.2 0.667542 0.333771 0.942654i \(-0.391679\pi\)
0.333771 + 0.942654i \(0.391679\pi\)
\(878\) −11180.0 −0.429733
\(879\) −3544.21 −0.135999
\(880\) 3682.16 0.141052
\(881\) 37166.4 1.42130 0.710651 0.703545i \(-0.248400\pi\)
0.710651 + 0.703545i \(0.248400\pi\)
\(882\) 7649.57 0.292034
\(883\) −30523.4 −1.16330 −0.581651 0.813438i \(-0.697593\pi\)
−0.581651 + 0.813438i \(0.697593\pi\)
\(884\) 0 0
\(885\) −15375.7 −0.584010
\(886\) 24706.3 0.936821
\(887\) 41231.1 1.56077 0.780386 0.625299i \(-0.215023\pi\)
0.780386 + 0.625299i \(0.215023\pi\)
\(888\) 5839.07 0.220660
\(889\) 15340.7 0.578751
\(890\) −3638.17 −0.137025
\(891\) 4241.90 0.159494
\(892\) −1854.27 −0.0696027
\(893\) 14488.1 0.542919
\(894\) −36359.1 −1.36021
\(895\) 18827.4 0.703163
\(896\) −9007.55 −0.335850
\(897\) 0 0
\(898\) 40924.6 1.52079
\(899\) 7558.97 0.280429
\(900\) −412.473 −0.0152768
\(901\) −8711.92 −0.322127
\(902\) 1657.48 0.0611839
\(903\) −12086.2 −0.445409
\(904\) −33920.1 −1.24797
\(905\) 19312.0 0.709339
\(906\) −28686.3 −1.05192
\(907\) −16628.8 −0.608766 −0.304383 0.952550i \(-0.598450\pi\)
−0.304383 + 0.952550i \(0.598450\pi\)
\(908\) −609.177 −0.0222646
\(909\) −15390.5 −0.561575
\(910\) 0 0
\(911\) 46330.1 1.68495 0.842473 0.538739i \(-0.181099\pi\)
0.842473 + 0.538739i \(0.181099\pi\)
\(912\) −22991.0 −0.834768
\(913\) 11123.1 0.403198
\(914\) 33922.2 1.22762
\(915\) −10273.6 −0.371184
\(916\) 1492.59 0.0538392
\(917\) −5537.90 −0.199430
\(918\) −40639.1 −1.46110
\(919\) −18488.1 −0.663618 −0.331809 0.943347i \(-0.607659\pi\)
−0.331809 + 0.943347i \(0.607659\pi\)
\(920\) −638.084 −0.0228663
\(921\) −14492.2 −0.518496
\(922\) −2106.73 −0.0752509
\(923\) 0 0
\(924\) 147.820 0.00526291
\(925\) −5630.46 −0.200139
\(926\) −6378.09 −0.226347
\(927\) 367.232 0.0130113
\(928\) 2541.16 0.0898896
\(929\) −17200.9 −0.607474 −0.303737 0.952756i \(-0.598234\pi\)
−0.303737 + 0.952756i \(0.598234\pi\)
\(930\) −4016.61 −0.141624
\(931\) 26998.6 0.950421
\(932\) −143.741 −0.00505193
\(933\) 7363.65 0.258387
\(934\) 15413.1 0.539970
\(935\) 5944.61 0.207925
\(936\) 0 0
\(937\) −34989.5 −1.21991 −0.609955 0.792436i \(-0.708813\pi\)
−0.609955 + 0.792436i \(0.708813\pi\)
\(938\) 19867.1 0.691560
\(939\) 20188.1 0.701611
\(940\) 411.929 0.0142932
\(941\) −31179.6 −1.08015 −0.540077 0.841616i \(-0.681605\pi\)
−0.540077 + 0.841616i \(0.681605\pi\)
\(942\) −2035.91 −0.0704179
\(943\) −270.444 −0.00933919
\(944\) −39519.7 −1.36256
\(945\) −5857.05 −0.201619
\(946\) 12650.0 0.434763
\(947\) −33273.5 −1.14176 −0.570879 0.821034i \(-0.693397\pi\)
−0.570879 + 0.821034i \(0.693397\pi\)
\(948\) 1297.22 0.0444428
\(949\) 0 0
\(950\) 23545.3 0.804118
\(951\) 5358.54 0.182716
\(952\) −15504.2 −0.527830
\(953\) 16842.6 0.572491 0.286246 0.958156i \(-0.407593\pi\)
0.286246 + 0.958156i \(0.407593\pi\)
\(954\) −2324.88 −0.0789000
\(955\) 16182.9 0.548342
\(956\) −1535.11 −0.0519342
\(957\) 5565.74 0.187999
\(958\) −30390.8 −1.02493
\(959\) 14099.8 0.474772
\(960\) −12576.4 −0.422814
\(961\) −25868.9 −0.868345
\(962\) 0 0
\(963\) −2796.07 −0.0935638
\(964\) −2396.56 −0.0800706
\(965\) 25671.3 0.856361
\(966\) 390.094 0.0129928
\(967\) −44144.9 −1.46805 −0.734025 0.679122i \(-0.762361\pi\)
−0.734025 + 0.679122i \(0.762361\pi\)
\(968\) −2811.72 −0.0933597
\(969\) −37117.6 −1.23054
\(970\) −2295.71 −0.0759906
\(971\) 18193.8 0.601304 0.300652 0.953734i \(-0.402796\pi\)
0.300652 + 0.953734i \(0.402796\pi\)
\(972\) 1167.56 0.0385282
\(973\) −5802.34 −0.191176
\(974\) −23597.9 −0.776309
\(975\) 0 0
\(976\) −26405.8 −0.866014
\(977\) 17584.9 0.575833 0.287917 0.957655i \(-0.407037\pi\)
0.287917 + 0.957655i \(0.407037\pi\)
\(978\) 11738.1 0.383785
\(979\) 2615.82 0.0853953
\(980\) 767.628 0.0250214
\(981\) 13251.5 0.431283
\(982\) −22529.8 −0.732132
\(983\) 16945.0 0.549808 0.274904 0.961472i \(-0.411354\pi\)
0.274904 + 0.961472i \(0.411354\pi\)
\(984\) −5347.54 −0.173245
\(985\) 142.019 0.00459400
\(986\) −32121.7 −1.03749
\(987\) −4576.72 −0.147597
\(988\) 0 0
\(989\) −2064.04 −0.0663627
\(990\) 1586.39 0.0509280
\(991\) 109.868 0.00352176 0.00176088 0.999998i \(-0.499439\pi\)
0.00176088 + 0.999998i \(0.499439\pi\)
\(992\) 1318.54 0.0422012
\(993\) 24905.0 0.795907
\(994\) −20353.3 −0.649464
\(995\) −15032.8 −0.478966
\(996\) −1974.65 −0.0628205
\(997\) 48317.7 1.53484 0.767421 0.641143i \(-0.221540\pi\)
0.767421 + 0.641143i \(0.221540\pi\)
\(998\) 26865.6 0.852121
\(999\) 9153.20 0.289884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.i.1.12 17
13.3 even 3 143.4.e.a.100.6 34
13.9 even 3 143.4.e.a.133.6 yes 34
13.12 even 2 1859.4.a.f.1.6 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.e.a.100.6 34 13.3 even 3
143.4.e.a.133.6 yes 34 13.9 even 3
1859.4.a.f.1.6 17 13.12 even 2
1859.4.a.i.1.12 17 1.1 even 1 trivial