Properties

Label 1848.2.a.t.1.3
Level $1848$
Weight $2$
Character 1848.1
Self dual yes
Analytic conductor $14.756$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1848,2,Mod(1,1848)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1848.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1848, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1848.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,1,0,3,0,3,0,-3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.7563542935\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.961.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 10x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.29707\) of defining polynomial
Character \(\chi\) \(=\) 1848.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.29707 q^{5} +1.00000 q^{7} +1.00000 q^{9} -1.00000 q^{11} +4.87067 q^{13} +3.29707 q^{15} +0.426396 q^{17} -1.29707 q^{19} +1.00000 q^{21} +5.87067 q^{25} +1.00000 q^{27} -0.870674 q^{29} -4.16774 q^{31} -1.00000 q^{33} +3.29707 q^{35} -0.870674 q^{37} +4.87067 q^{39} +6.16774 q^{41} +4.00000 q^{43} +3.29707 q^{45} -7.89121 q^{47} +1.00000 q^{49} +0.426396 q^{51} -4.59414 q^{53} -3.29707 q^{55} -1.29707 q^{57} +2.87067 q^{59} -10.3355 q^{61} +1.00000 q^{63} +16.0590 q^{65} -0.276533 q^{67} +3.14721 q^{71} +13.0384 q^{73} +5.87067 q^{75} -1.00000 q^{77} +1.00000 q^{81} -8.16774 q^{83} +1.40586 q^{85} -0.870674 q^{87} -6.00000 q^{89} +4.87067 q^{91} -4.16774 q^{93} -4.27653 q^{95} -16.9296 q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + q^{5} + 3 q^{7} + 3 q^{9} - 3 q^{11} + 3 q^{13} + q^{15} + 4 q^{17} + 5 q^{19} + 3 q^{21} + 6 q^{25} + 3 q^{27} + 9 q^{29} + 8 q^{31} - 3 q^{33} + q^{35} + 9 q^{37} + 3 q^{39} - 2 q^{41}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.29707 1.47449 0.737247 0.675623i \(-0.236125\pi\)
0.737247 + 0.675623i \(0.236125\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.87067 1.35088 0.675441 0.737414i \(-0.263953\pi\)
0.675441 + 0.737414i \(0.263953\pi\)
\(14\) 0 0
\(15\) 3.29707 0.851300
\(16\) 0 0
\(17\) 0.426396 0.103416 0.0517082 0.998662i \(-0.483533\pi\)
0.0517082 + 0.998662i \(0.483533\pi\)
\(18\) 0 0
\(19\) −1.29707 −0.297568 −0.148784 0.988870i \(-0.547536\pi\)
−0.148784 + 0.988870i \(0.547536\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 5.87067 1.17413
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.870674 −0.161680 −0.0808401 0.996727i \(-0.525760\pi\)
−0.0808401 + 0.996727i \(0.525760\pi\)
\(30\) 0 0
\(31\) −4.16774 −0.748549 −0.374275 0.927318i \(-0.622108\pi\)
−0.374275 + 0.927318i \(0.622108\pi\)
\(32\) 0 0
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) 3.29707 0.557307
\(36\) 0 0
\(37\) −0.870674 −0.143138 −0.0715690 0.997436i \(-0.522801\pi\)
−0.0715690 + 0.997436i \(0.522801\pi\)
\(38\) 0 0
\(39\) 4.87067 0.779932
\(40\) 0 0
\(41\) 6.16774 0.963240 0.481620 0.876380i \(-0.340049\pi\)
0.481620 + 0.876380i \(0.340049\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 3.29707 0.491498
\(46\) 0 0
\(47\) −7.89121 −1.15105 −0.575526 0.817784i \(-0.695203\pi\)
−0.575526 + 0.817784i \(0.695203\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.426396 0.0597074
\(52\) 0 0
\(53\) −4.59414 −0.631054 −0.315527 0.948917i \(-0.602181\pi\)
−0.315527 + 0.948917i \(0.602181\pi\)
\(54\) 0 0
\(55\) −3.29707 −0.444577
\(56\) 0 0
\(57\) −1.29707 −0.171801
\(58\) 0 0
\(59\) 2.87067 0.373730 0.186865 0.982386i \(-0.440167\pi\)
0.186865 + 0.982386i \(0.440167\pi\)
\(60\) 0 0
\(61\) −10.3355 −1.32332 −0.661662 0.749802i \(-0.730149\pi\)
−0.661662 + 0.749802i \(0.730149\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 16.0590 1.99187
\(66\) 0 0
\(67\) −0.276533 −0.0337839 −0.0168919 0.999857i \(-0.505377\pi\)
−0.0168919 + 0.999857i \(0.505377\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.14721 0.373505 0.186752 0.982407i \(-0.440204\pi\)
0.186752 + 0.982407i \(0.440204\pi\)
\(72\) 0 0
\(73\) 13.0384 1.52603 0.763016 0.646380i \(-0.223718\pi\)
0.763016 + 0.646380i \(0.223718\pi\)
\(74\) 0 0
\(75\) 5.87067 0.677887
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.16774 −0.896526 −0.448263 0.893902i \(-0.647957\pi\)
−0.448263 + 0.893902i \(0.647957\pi\)
\(84\) 0 0
\(85\) 1.40586 0.152487
\(86\) 0 0
\(87\) −0.870674 −0.0933461
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 4.87067 0.510585
\(92\) 0 0
\(93\) −4.16774 −0.432175
\(94\) 0 0
\(95\) −4.27653 −0.438763
\(96\) 0 0
\(97\) −16.9296 −1.71894 −0.859472 0.511183i \(-0.829207\pi\)
−0.859472 + 0.511183i \(0.829207\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −9.02054 −0.888820 −0.444410 0.895824i \(-0.646587\pi\)
−0.444410 + 0.895824i \(0.646587\pi\)
\(104\) 0 0
\(105\) 3.29707 0.321761
\(106\) 0 0
\(107\) −10.3176 −0.997441 −0.498720 0.866763i \(-0.666197\pi\)
−0.498720 + 0.866763i \(0.666197\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −0.870674 −0.0826407
\(112\) 0 0
\(113\) 5.14721 0.484209 0.242104 0.970250i \(-0.422162\pi\)
0.242104 + 0.970250i \(0.422162\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.87067 0.450294
\(118\) 0 0
\(119\) 0.426396 0.0390877
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 6.16774 0.556127
\(124\) 0 0
\(125\) 2.87067 0.256761
\(126\) 0 0
\(127\) 18.9296 1.67973 0.839867 0.542793i \(-0.182633\pi\)
0.839867 + 0.542793i \(0.182633\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 2.42640 0.211995 0.105998 0.994366i \(-0.466196\pi\)
0.105998 + 0.994366i \(0.466196\pi\)
\(132\) 0 0
\(133\) −1.29707 −0.112470
\(134\) 0 0
\(135\) 3.29707 0.283767
\(136\) 0 0
\(137\) −9.14721 −0.781499 −0.390749 0.920497i \(-0.627784\pi\)
−0.390749 + 0.920497i \(0.627784\pi\)
\(138\) 0 0
\(139\) −2.42640 −0.205804 −0.102902 0.994691i \(-0.532813\pi\)
−0.102902 + 0.994691i \(0.532813\pi\)
\(140\) 0 0
\(141\) −7.89121 −0.664560
\(142\) 0 0
\(143\) −4.87067 −0.407306
\(144\) 0 0
\(145\) −2.87067 −0.238397
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) 15.4648 1.26693 0.633464 0.773773i \(-0.281633\pi\)
0.633464 + 0.773773i \(0.281633\pi\)
\(150\) 0 0
\(151\) −0.553066 −0.0450079 −0.0225039 0.999747i \(-0.507164\pi\)
−0.0225039 + 0.999747i \(0.507164\pi\)
\(152\) 0 0
\(153\) 0.426396 0.0344721
\(154\) 0 0
\(155\) −13.7413 −1.10373
\(156\) 0 0
\(157\) 15.0205 1.19877 0.599385 0.800461i \(-0.295412\pi\)
0.599385 + 0.800461i \(0.295412\pi\)
\(158\) 0 0
\(159\) −4.59414 −0.364339
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.276533 −0.0216597 −0.0108299 0.999941i \(-0.503447\pi\)
−0.0108299 + 0.999941i \(0.503447\pi\)
\(164\) 0 0
\(165\) −3.29707 −0.256677
\(166\) 0 0
\(167\) 10.0411 0.777002 0.388501 0.921448i \(-0.372993\pi\)
0.388501 + 0.921448i \(0.372993\pi\)
\(168\) 0 0
\(169\) 10.7235 0.824882
\(170\) 0 0
\(171\) −1.29707 −0.0991895
\(172\) 0 0
\(173\) −17.7824 −1.35197 −0.675986 0.736914i \(-0.736282\pi\)
−0.675986 + 0.736914i \(0.736282\pi\)
\(174\) 0 0
\(175\) 5.87067 0.443781
\(176\) 0 0
\(177\) 2.87067 0.215773
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 4.97946 0.370121 0.185060 0.982727i \(-0.440752\pi\)
0.185060 + 0.982727i \(0.440752\pi\)
\(182\) 0 0
\(183\) −10.3355 −0.764021
\(184\) 0 0
\(185\) −2.87067 −0.211056
\(186\) 0 0
\(187\) −0.426396 −0.0311812
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 10.9296 0.790840 0.395420 0.918500i \(-0.370599\pi\)
0.395420 + 0.918500i \(0.370599\pi\)
\(192\) 0 0
\(193\) 20.9296 1.50655 0.753274 0.657707i \(-0.228473\pi\)
0.753274 + 0.657707i \(0.228473\pi\)
\(194\) 0 0
\(195\) 16.0590 1.15001
\(196\) 0 0
\(197\) −10.3355 −0.736373 −0.368187 0.929752i \(-0.620021\pi\)
−0.368187 + 0.929752i \(0.620021\pi\)
\(198\) 0 0
\(199\) 15.0974 1.07022 0.535112 0.844781i \(-0.320269\pi\)
0.535112 + 0.844781i \(0.320269\pi\)
\(200\) 0 0
\(201\) −0.276533 −0.0195051
\(202\) 0 0
\(203\) −0.870674 −0.0611093
\(204\) 0 0
\(205\) 20.3355 1.42029
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.29707 0.0897202
\(210\) 0 0
\(211\) 3.44693 0.237297 0.118648 0.992936i \(-0.462144\pi\)
0.118648 + 0.992936i \(0.462144\pi\)
\(212\) 0 0
\(213\) 3.14721 0.215643
\(214\) 0 0
\(215\) 13.1883 0.899433
\(216\) 0 0
\(217\) −4.16774 −0.282925
\(218\) 0 0
\(219\) 13.0384 0.881055
\(220\) 0 0
\(221\) 2.07684 0.139703
\(222\) 0 0
\(223\) −4.16774 −0.279093 −0.139546 0.990216i \(-0.544564\pi\)
−0.139546 + 0.990216i \(0.544564\pi\)
\(224\) 0 0
\(225\) 5.87067 0.391378
\(226\) 0 0
\(227\) −26.2088 −1.73954 −0.869770 0.493457i \(-0.835733\pi\)
−0.869770 + 0.493457i \(0.835733\pi\)
\(228\) 0 0
\(229\) 16.4622 1.08785 0.543925 0.839134i \(-0.316938\pi\)
0.543925 + 0.839134i \(0.316938\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −26.0179 −1.69722
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.91175 −0.576453 −0.288227 0.957562i \(-0.593066\pi\)
−0.288227 + 0.957562i \(0.593066\pi\)
\(240\) 0 0
\(241\) 28.4854 1.83490 0.917451 0.397848i \(-0.130243\pi\)
0.917451 + 0.397848i \(0.130243\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 3.29707 0.210642
\(246\) 0 0
\(247\) −6.31761 −0.401980
\(248\) 0 0
\(249\) −8.16774 −0.517610
\(250\) 0 0
\(251\) −4.57626 −0.288851 −0.144425 0.989516i \(-0.546133\pi\)
−0.144425 + 0.989516i \(0.546133\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.40586 0.0880383
\(256\) 0 0
\(257\) −10.2765 −0.641033 −0.320516 0.947243i \(-0.603856\pi\)
−0.320516 + 0.947243i \(0.603856\pi\)
\(258\) 0 0
\(259\) −0.870674 −0.0541011
\(260\) 0 0
\(261\) −0.870674 −0.0538934
\(262\) 0 0
\(263\) 7.20616 0.444351 0.222176 0.975007i \(-0.428684\pi\)
0.222176 + 0.975007i \(0.428684\pi\)
\(264\) 0 0
\(265\) −15.1472 −0.930486
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 12.7619 0.778106 0.389053 0.921215i \(-0.372802\pi\)
0.389053 + 0.921215i \(0.372802\pi\)
\(270\) 0 0
\(271\) −28.0590 −1.70446 −0.852230 0.523167i \(-0.824750\pi\)
−0.852230 + 0.523167i \(0.824750\pi\)
\(272\) 0 0
\(273\) 4.87067 0.294787
\(274\) 0 0
\(275\) −5.87067 −0.354015
\(276\) 0 0
\(277\) 0.258652 0.0155409 0.00777044 0.999970i \(-0.497527\pi\)
0.00777044 + 0.999970i \(0.497527\pi\)
\(278\) 0 0
\(279\) −4.16774 −0.249516
\(280\) 0 0
\(281\) −26.3944 −1.57456 −0.787280 0.616595i \(-0.788512\pi\)
−0.787280 + 0.616595i \(0.788512\pi\)
\(282\) 0 0
\(283\) −6.14986 −0.365571 −0.182786 0.983153i \(-0.558511\pi\)
−0.182786 + 0.983153i \(0.558511\pi\)
\(284\) 0 0
\(285\) −4.27653 −0.253320
\(286\) 0 0
\(287\) 6.16774 0.364070
\(288\) 0 0
\(289\) −16.8182 −0.989305
\(290\) 0 0
\(291\) −16.9296 −0.992433
\(292\) 0 0
\(293\) −16.0768 −0.939219 −0.469609 0.882874i \(-0.655605\pi\)
−0.469609 + 0.882874i \(0.655605\pi\)
\(294\) 0 0
\(295\) 9.46482 0.551063
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) −34.0768 −1.95123
\(306\) 0 0
\(307\) 26.7619 1.52738 0.763691 0.645582i \(-0.223385\pi\)
0.763691 + 0.645582i \(0.223385\pi\)
\(308\) 0 0
\(309\) −9.02054 −0.513160
\(310\) 0 0
\(311\) −29.0563 −1.64763 −0.823816 0.566858i \(-0.808159\pi\)
−0.823816 + 0.566858i \(0.808159\pi\)
\(312\) 0 0
\(313\) 2.33549 0.132010 0.0660048 0.997819i \(-0.478975\pi\)
0.0660048 + 0.997819i \(0.478975\pi\)
\(314\) 0 0
\(315\) 3.29707 0.185769
\(316\) 0 0
\(317\) −12.5941 −0.707357 −0.353679 0.935367i \(-0.615069\pi\)
−0.353679 + 0.935367i \(0.615069\pi\)
\(318\) 0 0
\(319\) 0.870674 0.0487484
\(320\) 0 0
\(321\) −10.3176 −0.575873
\(322\) 0 0
\(323\) −0.553066 −0.0307734
\(324\) 0 0
\(325\) 28.5941 1.58612
\(326\) 0 0
\(327\) 6.00000 0.331801
\(328\) 0 0
\(329\) −7.89121 −0.435057
\(330\) 0 0
\(331\) −17.1883 −0.944753 −0.472377 0.881397i \(-0.656604\pi\)
−0.472377 + 0.881397i \(0.656604\pi\)
\(332\) 0 0
\(333\) −0.870674 −0.0477127
\(334\) 0 0
\(335\) −0.911749 −0.0498142
\(336\) 0 0
\(337\) 17.7824 0.968670 0.484335 0.874883i \(-0.339062\pi\)
0.484335 + 0.874883i \(0.339062\pi\)
\(338\) 0 0
\(339\) 5.14721 0.279558
\(340\) 0 0
\(341\) 4.16774 0.225696
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.0411 −1.61269 −0.806345 0.591446i \(-0.798557\pi\)
−0.806345 + 0.591446i \(0.798557\pi\)
\(348\) 0 0
\(349\) 22.9117 1.22644 0.613219 0.789913i \(-0.289874\pi\)
0.613219 + 0.789913i \(0.289874\pi\)
\(350\) 0 0
\(351\) 4.87067 0.259977
\(352\) 0 0
\(353\) −17.7235 −0.943325 −0.471662 0.881779i \(-0.656346\pi\)
−0.471662 + 0.881779i \(0.656346\pi\)
\(354\) 0 0
\(355\) 10.3766 0.550731
\(356\) 0 0
\(357\) 0.426396 0.0225673
\(358\) 0 0
\(359\) −13.1883 −0.696051 −0.348025 0.937485i \(-0.613148\pi\)
−0.348025 + 0.937485i \(0.613148\pi\)
\(360\) 0 0
\(361\) −17.3176 −0.911453
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) 42.9886 2.25013
\(366\) 0 0
\(367\) −25.3560 −1.32357 −0.661787 0.749692i \(-0.730202\pi\)
−0.661787 + 0.749692i \(0.730202\pi\)
\(368\) 0 0
\(369\) 6.16774 0.321080
\(370\) 0 0
\(371\) −4.59414 −0.238516
\(372\) 0 0
\(373\) 22.3355 1.15649 0.578244 0.815864i \(-0.303738\pi\)
0.578244 + 0.815864i \(0.303738\pi\)
\(374\) 0 0
\(375\) 2.87067 0.148241
\(376\) 0 0
\(377\) −4.24077 −0.218411
\(378\) 0 0
\(379\) −6.01788 −0.309118 −0.154559 0.987984i \(-0.549396\pi\)
−0.154559 + 0.987984i \(0.549396\pi\)
\(380\) 0 0
\(381\) 18.9296 0.969794
\(382\) 0 0
\(383\) 27.6147 1.41104 0.705522 0.708688i \(-0.250713\pi\)
0.705522 + 0.708688i \(0.250713\pi\)
\(384\) 0 0
\(385\) −3.29707 −0.168034
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) −34.1179 −1.72985 −0.864923 0.501904i \(-0.832633\pi\)
−0.864923 + 0.501904i \(0.832633\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 2.42640 0.122396
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −35.9091 −1.80223 −0.901113 0.433585i \(-0.857249\pi\)
−0.901113 + 0.433585i \(0.857249\pi\)
\(398\) 0 0
\(399\) −1.29707 −0.0649347
\(400\) 0 0
\(401\) 1.78242 0.0890100 0.0445050 0.999009i \(-0.485829\pi\)
0.0445050 + 0.999009i \(0.485829\pi\)
\(402\) 0 0
\(403\) −20.2997 −1.01120
\(404\) 0 0
\(405\) 3.29707 0.163833
\(406\) 0 0
\(407\) 0.870674 0.0431577
\(408\) 0 0
\(409\) 3.23811 0.160114 0.0800572 0.996790i \(-0.474490\pi\)
0.0800572 + 0.996790i \(0.474490\pi\)
\(410\) 0 0
\(411\) −9.14721 −0.451198
\(412\) 0 0
\(413\) 2.87067 0.141257
\(414\) 0 0
\(415\) −26.9296 −1.32192
\(416\) 0 0
\(417\) −2.42640 −0.118821
\(418\) 0 0
\(419\) 26.6531 1.30209 0.651045 0.759040i \(-0.274331\pi\)
0.651045 + 0.759040i \(0.274331\pi\)
\(420\) 0 0
\(421\) 37.2062 1.81332 0.906659 0.421865i \(-0.138624\pi\)
0.906659 + 0.421865i \(0.138624\pi\)
\(422\) 0 0
\(423\) −7.89121 −0.383684
\(424\) 0 0
\(425\) 2.50323 0.121425
\(426\) 0 0
\(427\) −10.3355 −0.500169
\(428\) 0 0
\(429\) −4.87067 −0.235158
\(430\) 0 0
\(431\) −0.793836 −0.0382378 −0.0191189 0.999817i \(-0.506086\pi\)
−0.0191189 + 0.999817i \(0.506086\pi\)
\(432\) 0 0
\(433\) −26.6352 −1.28001 −0.640003 0.768372i \(-0.721067\pi\)
−0.640003 + 0.768372i \(0.721067\pi\)
\(434\) 0 0
\(435\) −2.87067 −0.137638
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −36.7299 −1.75302 −0.876512 0.481380i \(-0.840136\pi\)
−0.876512 + 0.481380i \(0.840136\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −33.1883 −1.57682 −0.788411 0.615148i \(-0.789096\pi\)
−0.788411 + 0.615148i \(0.789096\pi\)
\(444\) 0 0
\(445\) −19.7824 −0.937777
\(446\) 0 0
\(447\) 15.4648 0.731461
\(448\) 0 0
\(449\) 24.0768 1.13626 0.568128 0.822940i \(-0.307668\pi\)
0.568128 + 0.822940i \(0.307668\pi\)
\(450\) 0 0
\(451\) −6.16774 −0.290428
\(452\) 0 0
\(453\) −0.553066 −0.0259853
\(454\) 0 0
\(455\) 16.0590 0.752855
\(456\) 0 0
\(457\) 14.0358 0.656565 0.328283 0.944580i \(-0.393530\pi\)
0.328283 + 0.944580i \(0.393530\pi\)
\(458\) 0 0
\(459\) 0.426396 0.0199025
\(460\) 0 0
\(461\) 11.7413 0.546849 0.273425 0.961893i \(-0.411844\pi\)
0.273425 + 0.961893i \(0.411844\pi\)
\(462\) 0 0
\(463\) −25.4648 −1.18345 −0.591725 0.806140i \(-0.701553\pi\)
−0.591725 + 0.806140i \(0.701553\pi\)
\(464\) 0 0
\(465\) −13.7413 −0.637240
\(466\) 0 0
\(467\) 28.9117 1.33788 0.668938 0.743318i \(-0.266749\pi\)
0.668938 + 0.743318i \(0.266749\pi\)
\(468\) 0 0
\(469\) −0.276533 −0.0127691
\(470\) 0 0
\(471\) 15.0205 0.692110
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) −7.61468 −0.349385
\(476\) 0 0
\(477\) −4.59414 −0.210351
\(478\) 0 0
\(479\) 13.7413 0.627858 0.313929 0.949446i \(-0.398355\pi\)
0.313929 + 0.949446i \(0.398355\pi\)
\(480\) 0 0
\(481\) −4.24077 −0.193362
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −55.8182 −2.53457
\(486\) 0 0
\(487\) −12.8528 −0.582416 −0.291208 0.956660i \(-0.594057\pi\)
−0.291208 + 0.956660i \(0.594057\pi\)
\(488\) 0 0
\(489\) −0.276533 −0.0125053
\(490\) 0 0
\(491\) 3.20616 0.144692 0.0723461 0.997380i \(-0.476951\pi\)
0.0723461 + 0.997380i \(0.476951\pi\)
\(492\) 0 0
\(493\) −0.371252 −0.0167204
\(494\) 0 0
\(495\) −3.29707 −0.148192
\(496\) 0 0
\(497\) 3.14721 0.141172
\(498\) 0 0
\(499\) 2.65310 0.118769 0.0593845 0.998235i \(-0.481086\pi\)
0.0593845 + 0.998235i \(0.481086\pi\)
\(500\) 0 0
\(501\) 10.0411 0.448602
\(502\) 0 0
\(503\) 26.0411 1.16111 0.580557 0.814220i \(-0.302835\pi\)
0.580557 + 0.814220i \(0.302835\pi\)
\(504\) 0 0
\(505\) 19.7824 0.880306
\(506\) 0 0
\(507\) 10.7235 0.476246
\(508\) 0 0
\(509\) −19.9091 −0.882455 −0.441228 0.897395i \(-0.645457\pi\)
−0.441228 + 0.897395i \(0.645457\pi\)
\(510\) 0 0
\(511\) 13.0384 0.576786
\(512\) 0 0
\(513\) −1.29707 −0.0572671
\(514\) 0 0
\(515\) −29.7413 −1.31056
\(516\) 0 0
\(517\) 7.89121 0.347055
\(518\) 0 0
\(519\) −17.7824 −0.780562
\(520\) 0 0
\(521\) −28.6531 −1.25531 −0.627657 0.778490i \(-0.715986\pi\)
−0.627657 + 0.778490i \(0.715986\pi\)
\(522\) 0 0
\(523\) −4.99734 −0.218519 −0.109259 0.994013i \(-0.534848\pi\)
−0.109259 + 0.994013i \(0.534848\pi\)
\(524\) 0 0
\(525\) 5.87067 0.256217
\(526\) 0 0
\(527\) −1.77711 −0.0774122
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 2.87067 0.124577
\(532\) 0 0
\(533\) 30.0411 1.30122
\(534\) 0 0
\(535\) −34.0179 −1.47072
\(536\) 0 0
\(537\) −20.0000 −0.863064
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −14.2997 −0.614793 −0.307397 0.951581i \(-0.599458\pi\)
−0.307397 + 0.951581i \(0.599458\pi\)
\(542\) 0 0
\(543\) 4.97946 0.213689
\(544\) 0 0
\(545\) 19.7824 0.847386
\(546\) 0 0
\(547\) 41.5238 1.77543 0.887714 0.460395i \(-0.152292\pi\)
0.887714 + 0.460395i \(0.152292\pi\)
\(548\) 0 0
\(549\) −10.3355 −0.441108
\(550\) 0 0
\(551\) 1.12933 0.0481109
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.87067 −0.121853
\(556\) 0 0
\(557\) −11.6824 −0.494999 −0.247499 0.968888i \(-0.579609\pi\)
−0.247499 + 0.968888i \(0.579609\pi\)
\(558\) 0 0
\(559\) 19.4827 0.824030
\(560\) 0 0
\(561\) −0.426396 −0.0180025
\(562\) 0 0
\(563\) 46.5801 1.96312 0.981558 0.191165i \(-0.0612264\pi\)
0.981558 + 0.191165i \(0.0612264\pi\)
\(564\) 0 0
\(565\) 16.9707 0.713963
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −27.1883 −1.13979 −0.569896 0.821717i \(-0.693017\pi\)
−0.569896 + 0.821717i \(0.693017\pi\)
\(570\) 0 0
\(571\) −19.2294 −0.804724 −0.402362 0.915481i \(-0.631811\pi\)
−0.402362 + 0.915481i \(0.631811\pi\)
\(572\) 0 0
\(573\) 10.9296 0.456592
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 5.14721 0.214281 0.107141 0.994244i \(-0.465831\pi\)
0.107141 + 0.994244i \(0.465831\pi\)
\(578\) 0 0
\(579\) 20.9296 0.869806
\(580\) 0 0
\(581\) −8.16774 −0.338855
\(582\) 0 0
\(583\) 4.59414 0.190270
\(584\) 0 0
\(585\) 16.0590 0.663956
\(586\) 0 0
\(587\) −6.35337 −0.262232 −0.131116 0.991367i \(-0.541856\pi\)
−0.131116 + 0.991367i \(0.541856\pi\)
\(588\) 0 0
\(589\) 5.40586 0.222745
\(590\) 0 0
\(591\) −10.3355 −0.425145
\(592\) 0 0
\(593\) −13.3150 −0.546780 −0.273390 0.961903i \(-0.588145\pi\)
−0.273390 + 0.961903i \(0.588145\pi\)
\(594\) 0 0
\(595\) 1.40586 0.0576346
\(596\) 0 0
\(597\) 15.0974 0.617894
\(598\) 0 0
\(599\) 23.2294 0.949126 0.474563 0.880222i \(-0.342606\pi\)
0.474563 + 0.880222i \(0.342606\pi\)
\(600\) 0 0
\(601\) −33.5915 −1.37023 −0.685113 0.728437i \(-0.740247\pi\)
−0.685113 + 0.728437i \(0.740247\pi\)
\(602\) 0 0
\(603\) −0.276533 −0.0112613
\(604\) 0 0
\(605\) 3.29707 0.134045
\(606\) 0 0
\(607\) −24.9117 −1.01114 −0.505568 0.862787i \(-0.668717\pi\)
−0.505568 + 0.862787i \(0.668717\pi\)
\(608\) 0 0
\(609\) −0.870674 −0.0352815
\(610\) 0 0
\(611\) −38.4355 −1.55493
\(612\) 0 0
\(613\) 27.5238 1.11167 0.555837 0.831291i \(-0.312398\pi\)
0.555837 + 0.831291i \(0.312398\pi\)
\(614\) 0 0
\(615\) 20.3355 0.820006
\(616\) 0 0
\(617\) −32.3766 −1.30343 −0.651716 0.758463i \(-0.725950\pi\)
−0.651716 + 0.758463i \(0.725950\pi\)
\(618\) 0 0
\(619\) 9.74135 0.391538 0.195769 0.980650i \(-0.437280\pi\)
0.195769 + 0.980650i \(0.437280\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −19.8886 −0.795542
\(626\) 0 0
\(627\) 1.29707 0.0518000
\(628\) 0 0
\(629\) −0.371252 −0.0148028
\(630\) 0 0
\(631\) −7.66451 −0.305119 −0.152560 0.988294i \(-0.548752\pi\)
−0.152560 + 0.988294i \(0.548752\pi\)
\(632\) 0 0
\(633\) 3.44693 0.137003
\(634\) 0 0
\(635\) 62.4123 2.47676
\(636\) 0 0
\(637\) 4.87067 0.192983
\(638\) 0 0
\(639\) 3.14721 0.124502
\(640\) 0 0
\(641\) −40.3766 −1.59478 −0.797389 0.603465i \(-0.793786\pi\)
−0.797389 + 0.603465i \(0.793786\pi\)
\(642\) 0 0
\(643\) 32.8528 1.29559 0.647794 0.761816i \(-0.275692\pi\)
0.647794 + 0.761816i \(0.275692\pi\)
\(644\) 0 0
\(645\) 13.1883 0.519288
\(646\) 0 0
\(647\) 37.0795 1.45775 0.728873 0.684649i \(-0.240045\pi\)
0.728873 + 0.684649i \(0.240045\pi\)
\(648\) 0 0
\(649\) −2.87067 −0.112684
\(650\) 0 0
\(651\) −4.16774 −0.163347
\(652\) 0 0
\(653\) 6.11791 0.239412 0.119706 0.992809i \(-0.461805\pi\)
0.119706 + 0.992809i \(0.461805\pi\)
\(654\) 0 0
\(655\) 8.00000 0.312586
\(656\) 0 0
\(657\) 13.0384 0.508677
\(658\) 0 0
\(659\) 18.8707 0.735097 0.367549 0.930004i \(-0.380197\pi\)
0.367549 + 0.930004i \(0.380197\pi\)
\(660\) 0 0
\(661\) −1.31495 −0.0511457 −0.0255729 0.999673i \(-0.508141\pi\)
−0.0255729 + 0.999673i \(0.508141\pi\)
\(662\) 0 0
\(663\) 2.07684 0.0806577
\(664\) 0 0
\(665\) −4.27653 −0.165837
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −4.16774 −0.161134
\(670\) 0 0
\(671\) 10.3355 0.398997
\(672\) 0 0
\(673\) −30.4534 −1.17389 −0.586946 0.809626i \(-0.699670\pi\)
−0.586946 + 0.809626i \(0.699670\pi\)
\(674\) 0 0
\(675\) 5.87067 0.225962
\(676\) 0 0
\(677\) 15.4416 0.593470 0.296735 0.954960i \(-0.404102\pi\)
0.296735 + 0.954960i \(0.404102\pi\)
\(678\) 0 0
\(679\) −16.9296 −0.649700
\(680\) 0 0
\(681\) −26.2088 −1.00432
\(682\) 0 0
\(683\) −9.74135 −0.372742 −0.186371 0.982479i \(-0.559673\pi\)
−0.186371 + 0.982479i \(0.559673\pi\)
\(684\) 0 0
\(685\) −30.1590 −1.15232
\(686\) 0 0
\(687\) 16.4622 0.628071
\(688\) 0 0
\(689\) −22.3766 −0.852479
\(690\) 0 0
\(691\) 42.0768 1.60068 0.800339 0.599548i \(-0.204653\pi\)
0.800339 + 0.599548i \(0.204653\pi\)
\(692\) 0 0
\(693\) −1.00000 −0.0379869
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) 2.62990 0.0996147
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 0.811718 0.0306582 0.0153291 0.999883i \(-0.495120\pi\)
0.0153291 + 0.999883i \(0.495120\pi\)
\(702\) 0 0
\(703\) 1.12933 0.0425933
\(704\) 0 0
\(705\) −26.0179 −0.979890
\(706\) 0 0
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) 2.49411 0.0936683 0.0468341 0.998903i \(-0.485087\pi\)
0.0468341 + 0.998903i \(0.485087\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −16.0590 −0.600571
\(716\) 0 0
\(717\) −8.91175 −0.332815
\(718\) 0 0
\(719\) 46.1856 1.72243 0.861217 0.508238i \(-0.169703\pi\)
0.861217 + 0.508238i \(0.169703\pi\)
\(720\) 0 0
\(721\) −9.02054 −0.335942
\(722\) 0 0
\(723\) 28.4854 1.05938
\(724\) 0 0
\(725\) −5.11144 −0.189834
\(726\) 0 0
\(727\) 43.9502 1.63002 0.815011 0.579446i \(-0.196731\pi\)
0.815011 + 0.579446i \(0.196731\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.70559 0.0630834
\(732\) 0 0
\(733\) −48.6299 −1.79619 −0.898093 0.439805i \(-0.855048\pi\)
−0.898093 + 0.439805i \(0.855048\pi\)
\(734\) 0 0
\(735\) 3.29707 0.121614
\(736\) 0 0
\(737\) 0.276533 0.0101862
\(738\) 0 0
\(739\) −7.14721 −0.262914 −0.131457 0.991322i \(-0.541966\pi\)
−0.131457 + 0.991322i \(0.541966\pi\)
\(740\) 0 0
\(741\) −6.31761 −0.232083
\(742\) 0 0
\(743\) 0.240770 0.00883300 0.00441650 0.999990i \(-0.498594\pi\)
0.00441650 + 0.999990i \(0.498594\pi\)
\(744\) 0 0
\(745\) 50.9886 1.86808
\(746\) 0 0
\(747\) −8.16774 −0.298842
\(748\) 0 0
\(749\) −10.3176 −0.376997
\(750\) 0 0
\(751\) 4.05896 0.148113 0.0740567 0.997254i \(-0.476405\pi\)
0.0740567 + 0.997254i \(0.476405\pi\)
\(752\) 0 0
\(753\) −4.57626 −0.166768
\(754\) 0 0
\(755\) −1.82350 −0.0663639
\(756\) 0 0
\(757\) 15.8003 0.574272 0.287136 0.957890i \(-0.407297\pi\)
0.287136 + 0.957890i \(0.407297\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −29.6504 −1.07483 −0.537414 0.843319i \(-0.680599\pi\)
−0.537414 + 0.843319i \(0.680599\pi\)
\(762\) 0 0
\(763\) 6.00000 0.217215
\(764\) 0 0
\(765\) 1.40586 0.0508289
\(766\) 0 0
\(767\) 13.9821 0.504865
\(768\) 0 0
\(769\) −1.03842 −0.0374463 −0.0187232 0.999825i \(-0.505960\pi\)
−0.0187232 + 0.999825i \(0.505960\pi\)
\(770\) 0 0
\(771\) −10.2765 −0.370100
\(772\) 0 0
\(773\) 17.9270 0.644788 0.322394 0.946605i \(-0.395512\pi\)
0.322394 + 0.946605i \(0.395512\pi\)
\(774\) 0 0
\(775\) −24.4675 −0.878898
\(776\) 0 0
\(777\) −0.870674 −0.0312353
\(778\) 0 0
\(779\) −8.00000 −0.286630
\(780\) 0 0
\(781\) −3.14721 −0.112616
\(782\) 0 0
\(783\) −0.870674 −0.0311154
\(784\) 0 0
\(785\) 49.5238 1.76758
\(786\) 0 0
\(787\) 11.7733 0.419673 0.209836 0.977737i \(-0.432707\pi\)
0.209836 + 0.977737i \(0.432707\pi\)
\(788\) 0 0
\(789\) 7.20616 0.256546
\(790\) 0 0
\(791\) 5.14721 0.183014
\(792\) 0 0
\(793\) −50.3408 −1.78765
\(794\) 0 0
\(795\) −15.1472 −0.537216
\(796\) 0 0
\(797\) 43.0795 1.52595 0.762977 0.646426i \(-0.223737\pi\)
0.762977 + 0.646426i \(0.223737\pi\)
\(798\) 0 0
\(799\) −3.36478 −0.119038
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −13.0384 −0.460116
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.7619 0.449240
\(808\) 0 0
\(809\) −2.05896 −0.0723891 −0.0361945 0.999345i \(-0.511524\pi\)
−0.0361945 + 0.999345i \(0.511524\pi\)
\(810\) 0 0
\(811\) 37.3792 1.31256 0.656281 0.754517i \(-0.272129\pi\)
0.656281 + 0.754517i \(0.272129\pi\)
\(812\) 0 0
\(813\) −28.0590 −0.984071
\(814\) 0 0
\(815\) −0.911749 −0.0319372
\(816\) 0 0
\(817\) −5.18828 −0.181515
\(818\) 0 0
\(819\) 4.87067 0.170195
\(820\) 0 0
\(821\) 18.3944 0.641971 0.320985 0.947084i \(-0.395986\pi\)
0.320985 + 0.947084i \(0.395986\pi\)
\(822\) 0 0
\(823\) −10.9064 −0.380174 −0.190087 0.981767i \(-0.560877\pi\)
−0.190087 + 0.981767i \(0.560877\pi\)
\(824\) 0 0
\(825\) −5.87067 −0.204391
\(826\) 0 0
\(827\) −30.1358 −1.04792 −0.523962 0.851742i \(-0.675547\pi\)
−0.523962 + 0.851742i \(0.675547\pi\)
\(828\) 0 0
\(829\) 12.9795 0.450795 0.225398 0.974267i \(-0.427632\pi\)
0.225398 + 0.974267i \(0.427632\pi\)
\(830\) 0 0
\(831\) 0.258652 0.00897253
\(832\) 0 0
\(833\) 0.426396 0.0147738
\(834\) 0 0
\(835\) 33.1061 1.14568
\(836\) 0 0
\(837\) −4.16774 −0.144058
\(838\) 0 0
\(839\) 3.25600 0.112409 0.0562047 0.998419i \(-0.482100\pi\)
0.0562047 + 0.998419i \(0.482100\pi\)
\(840\) 0 0
\(841\) −28.2419 −0.973860
\(842\) 0 0
\(843\) −26.3944 −0.909073
\(844\) 0 0
\(845\) 35.3560 1.21628
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 0 0
\(849\) −6.14986 −0.211063
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 8.47623 0.290221 0.145110 0.989415i \(-0.453646\pi\)
0.145110 + 0.989415i \(0.453646\pi\)
\(854\) 0 0
\(855\) −4.27653 −0.146254
\(856\) 0 0
\(857\) −24.5085 −0.837196 −0.418598 0.908172i \(-0.637478\pi\)
−0.418598 + 0.908172i \(0.637478\pi\)
\(858\) 0 0
\(859\) 20.3355 0.693838 0.346919 0.937895i \(-0.387228\pi\)
0.346919 + 0.937895i \(0.387228\pi\)
\(860\) 0 0
\(861\) 6.16774 0.210196
\(862\) 0 0
\(863\) 40.0000 1.36162 0.680808 0.732462i \(-0.261629\pi\)
0.680808 + 0.732462i \(0.261629\pi\)
\(864\) 0 0
\(865\) −58.6299 −1.99348
\(866\) 0 0
\(867\) −16.8182 −0.571176
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1.34690 −0.0456381
\(872\) 0 0
\(873\) −16.9296 −0.572981
\(874\) 0 0
\(875\) 2.87067 0.0970465
\(876\) 0 0
\(877\) −19.2240 −0.649150 −0.324575 0.945860i \(-0.605221\pi\)
−0.324575 + 0.945860i \(0.605221\pi\)
\(878\) 0 0
\(879\) −16.0768 −0.542258
\(880\) 0 0
\(881\) −29.4237 −0.991311 −0.495655 0.868519i \(-0.665072\pi\)
−0.495655 + 0.868519i \(0.665072\pi\)
\(882\) 0 0
\(883\) 24.9475 0.839551 0.419775 0.907628i \(-0.362109\pi\)
0.419775 + 0.907628i \(0.362109\pi\)
\(884\) 0 0
\(885\) 9.46482 0.318156
\(886\) 0 0
\(887\) 42.9296 1.44144 0.720718 0.693228i \(-0.243812\pi\)
0.720718 + 0.693228i \(0.243812\pi\)
\(888\) 0 0
\(889\) 18.9296 0.634879
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 10.2355 0.342517
\(894\) 0 0
\(895\) −65.9414 −2.20418
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.62875 0.121026
\(900\) 0 0
\(901\) −1.95893 −0.0652613
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) 16.4176 0.545741
\(906\) 0 0
\(907\) 36.6710 1.21764 0.608820 0.793308i \(-0.291643\pi\)
0.608820 + 0.793308i \(0.291643\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −21.7413 −0.720323 −0.360162 0.932890i \(-0.617278\pi\)
−0.360162 + 0.932890i \(0.617278\pi\)
\(912\) 0 0
\(913\) 8.16774 0.270313
\(914\) 0 0
\(915\) −34.0768 −1.12655
\(916\) 0 0
\(917\) 2.42640 0.0801267
\(918\) 0 0
\(919\) 28.0821 0.926345 0.463172 0.886268i \(-0.346711\pi\)
0.463172 + 0.886268i \(0.346711\pi\)
\(920\) 0 0
\(921\) 26.7619 0.881834
\(922\) 0 0
\(923\) 15.3290 0.504561
\(924\) 0 0
\(925\) −5.11144 −0.168063
\(926\) 0 0
\(927\) −9.02054 −0.296273
\(928\) 0 0
\(929\) 57.3241 1.88074 0.940371 0.340151i \(-0.110478\pi\)
0.940371 + 0.340151i \(0.110478\pi\)
\(930\) 0 0
\(931\) −1.29707 −0.0425098
\(932\) 0 0
\(933\) −29.0563 −0.951261
\(934\) 0 0
\(935\) −1.40586 −0.0459765
\(936\) 0 0
\(937\) 38.6211 1.26170 0.630849 0.775906i \(-0.282707\pi\)
0.630849 + 0.775906i \(0.282707\pi\)
\(938\) 0 0
\(939\) 2.33549 0.0762158
\(940\) 0 0
\(941\) 25.7003 0.837805 0.418902 0.908031i \(-0.362415\pi\)
0.418902 + 0.908031i \(0.362415\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 3.29707 0.107254
\(946\) 0 0
\(947\) −5.15252 −0.167434 −0.0837172 0.996490i \(-0.526679\pi\)
−0.0837172 + 0.996490i \(0.526679\pi\)
\(948\) 0 0
\(949\) 63.5059 2.06149
\(950\) 0 0
\(951\) −12.5941 −0.408393
\(952\) 0 0
\(953\) 13.9410 0.451595 0.225797 0.974174i \(-0.427501\pi\)
0.225797 + 0.974174i \(0.427501\pi\)
\(954\) 0 0
\(955\) 36.0358 1.16609
\(956\) 0 0
\(957\) 0.870674 0.0281449
\(958\) 0 0
\(959\) −9.14721 −0.295379
\(960\) 0 0
\(961\) −13.6299 −0.439674
\(962\) 0 0
\(963\) −10.3176 −0.332480
\(964\) 0 0
\(965\) 69.0065 2.22140
\(966\) 0 0
\(967\) −4.63522 −0.149058 −0.0745292 0.997219i \(-0.523745\pi\)
−0.0745292 + 0.997219i \(0.523745\pi\)
\(968\) 0 0
\(969\) −0.553066 −0.0177670
\(970\) 0 0
\(971\) 23.8414 0.765106 0.382553 0.923933i \(-0.375045\pi\)
0.382553 + 0.923933i \(0.375045\pi\)
\(972\) 0 0
\(973\) −2.42640 −0.0777867
\(974\) 0 0
\(975\) 28.5941 0.915745
\(976\) 0 0
\(977\) −6.55307 −0.209651 −0.104826 0.994491i \(-0.533428\pi\)
−0.104826 + 0.994491i \(0.533428\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) 6.00000 0.191565
\(982\) 0 0
\(983\) 55.4329 1.76803 0.884017 0.467455i \(-0.154829\pi\)
0.884017 + 0.467455i \(0.154829\pi\)
\(984\) 0 0
\(985\) −34.0768 −1.08578
\(986\) 0 0
\(987\) −7.89121 −0.251180
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −9.46482 −0.300660 −0.150330 0.988636i \(-0.548034\pi\)
−0.150330 + 0.988636i \(0.548034\pi\)
\(992\) 0 0
\(993\) −17.1883 −0.545454
\(994\) 0 0
\(995\) 49.7771 1.57804
\(996\) 0 0
\(997\) 18.5888 0.588714 0.294357 0.955696i \(-0.404895\pi\)
0.294357 + 0.955696i \(0.404895\pi\)
\(998\) 0 0
\(999\) −0.870674 −0.0275469
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1848.2.a.t.1.3 3
3.2 odd 2 5544.2.a.bl.1.1 3
4.3 odd 2 3696.2.a.bn.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1848.2.a.t.1.3 3 1.1 even 1 trivial
3696.2.a.bn.1.3 3 4.3 odd 2
5544.2.a.bl.1.1 3 3.2 odd 2