Properties

Label 1848.2.a
Level $1848$
Weight $2$
Character orbit 1848.a
Rep. character $\chi_{1848}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $21$
Sturm bound $768$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1848.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(768\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1848))\).

Total New Old
Modular forms 400 32 368
Cusp forms 369 32 337
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(20\)\(2\)\(18\)\(19\)\(2\)\(17\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(29\)\(2\)\(27\)\(27\)\(2\)\(25\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(27\)\(1\)\(26\)\(25\)\(1\)\(24\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(22\)\(2\)\(20\)\(20\)\(2\)\(18\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(30\)\(2\)\(28\)\(28\)\(2\)\(26\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(21\)\(1\)\(20\)\(19\)\(1\)\(18\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(23\)\(1\)\(22\)\(21\)\(1\)\(20\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(28\)\(3\)\(25\)\(26\)\(3\)\(23\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(24\)\(2\)\(22\)\(22\)\(2\)\(20\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(27\)\(2\)\(25\)\(25\)\(2\)\(23\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(29\)\(3\)\(26\)\(27\)\(3\)\(24\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(22\)\(2\)\(20\)\(20\)\(2\)\(18\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(26\)\(2\)\(24\)\(24\)\(2\)\(22\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(23\)\(3\)\(20\)\(21\)\(3\)\(18\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(21\)\(3\)\(18\)\(19\)\(3\)\(16\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(28\)\(1\)\(27\)\(26\)\(1\)\(25\)\(2\)\(0\)\(2\)
Plus space\(+\)\(196\)\(14\)\(182\)\(181\)\(14\)\(167\)\(15\)\(0\)\(15\)
Minus space\(-\)\(204\)\(18\)\(186\)\(188\)\(18\)\(170\)\(16\)\(0\)\(16\)

Trace form

\( 32 q - 8 q^{5} + 32 q^{9} - 8 q^{13} - 8 q^{17} + 8 q^{23} + 32 q^{25} + 8 q^{29} + 8 q^{31} + 24 q^{41} + 8 q^{43} - 8 q^{45} + 8 q^{47} + 32 q^{49} + 8 q^{51} + 8 q^{53} + 16 q^{59} + 8 q^{61} - 16 q^{65}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1848))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 11
1848.2.a.a 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.a \(0\) \(-1\) \(-3\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}+q^{7}+q^{9}+q^{11}-q^{13}+\cdots\)
1848.2.a.b 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.b \(0\) \(-1\) \(-1\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+q^{7}+q^{9}-q^{11}-3q^{13}+\cdots\)
1848.2.a.c 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.c \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-q^{11}+2q^{13}-8q^{17}+\cdots\)
1848.2.a.d 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.d \(0\) \(-1\) \(2\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+q^{7}+q^{9}+q^{11}-6q^{13}+\cdots\)
1848.2.a.e 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.e \(0\) \(1\) \(-4\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-4q^{5}-q^{7}+q^{9}-q^{11}-2q^{13}+\cdots\)
1848.2.a.f 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.f \(0\) \(1\) \(-3\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}+q^{7}+q^{9}+q^{11}-3q^{13}+\cdots\)
1848.2.a.g 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.g \(0\) \(1\) \(-2\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}-q^{7}+q^{9}-q^{11}-2q^{13}+\cdots\)
1848.2.a.h 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.h \(0\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}+q^{9}+q^{11}+q^{13}+\cdots\)
1848.2.a.i 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.i \(0\) \(1\) \(-1\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{7}+q^{9}-q^{11}-5q^{13}+\cdots\)
1848.2.a.j 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.j \(0\) \(1\) \(1\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}+q^{9}-q^{11}-5q^{13}+\cdots\)
1848.2.a.k 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.k \(0\) \(1\) \(1\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}+q^{9}-q^{11}+3q^{13}+\cdots\)
1848.2.a.l 1848.a 1.a $1$ $14.756$ \(\Q\) None 1848.2.a.l \(0\) \(1\) \(2\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}-q^{7}+q^{9}+q^{11}+6q^{13}+\cdots\)
1848.2.a.m 1848.a 1.a $2$ $14.756$ \(\Q(\sqrt{17}) \) None 1848.2.a.m \(0\) \(-2\) \(-3\) \(-2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta )q^{5}-q^{7}+q^{9}+q^{11}+\cdots\)
1848.2.a.n 1848.a 1.a $2$ $14.756$ \(\Q(\sqrt{17}) \) None 1848.2.a.n \(0\) \(-2\) \(-3\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta )q^{5}-q^{7}+q^{9}+q^{11}+\cdots\)
1848.2.a.o 1848.a 1.a $2$ $14.756$ \(\Q(\sqrt{33}) \) None 1848.2.a.o \(0\) \(-2\) \(-3\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta )q^{5}+q^{7}+q^{9}-q^{11}+\cdots\)
1848.2.a.p 1848.a 1.a $2$ $14.756$ \(\Q(\sqrt{17}) \) None 1848.2.a.p \(0\) \(-2\) \(1\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta q^{5}-q^{7}+q^{9}-q^{11}+(2+\cdots)q^{13}+\cdots\)
1848.2.a.q 1848.a 1.a $2$ $14.756$ \(\Q(\sqrt{17}) \) None 1848.2.a.q \(0\) \(-2\) \(3\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}-q^{7}+q^{9}-q^{11}+\cdots\)
1848.2.a.r 1848.a 1.a $2$ $14.756$ \(\Q(\sqrt{17}) \) None 1848.2.a.r \(0\) \(-2\) \(3\) \(2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}+q^{7}+q^{9}+q^{11}+\cdots\)
1848.2.a.s 1848.a 1.a $2$ $14.756$ \(\Q(\sqrt{41}) \) None 1848.2.a.s \(0\) \(2\) \(1\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta q^{5}-q^{7}+q^{9}+q^{11}-\beta q^{13}+\cdots\)
1848.2.a.t 1848.a 1.a $3$ $14.756$ 3.3.961.1 None 1848.2.a.t \(0\) \(3\) \(1\) \(3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta _{1}q^{5}+q^{7}+q^{9}-q^{11}+(1+\cdots)q^{13}+\cdots\)
1848.2.a.u 1848.a 1.a $3$ $14.756$ 3.3.568.1 None 1848.2.a.u \(0\) \(3\) \(1\) \(3\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{2}q^{5}+q^{7}+q^{9}+q^{11}+\beta _{1}q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1848))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1848)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(616))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(924))\)\(^{\oplus 2}\)