Defining parameters
Level: | \( N \) | \(=\) | \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1848.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1848))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 400 | 32 | 368 |
Cusp forms | 369 | 32 | 337 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(20\) | \(2\) | \(18\) | \(19\) | \(2\) | \(17\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(29\) | \(2\) | \(27\) | \(27\) | \(2\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(27\) | \(1\) | \(26\) | \(25\) | \(1\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(22\) | \(2\) | \(20\) | \(20\) | \(2\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(30\) | \(2\) | \(28\) | \(28\) | \(2\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(21\) | \(1\) | \(20\) | \(19\) | \(1\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(23\) | \(1\) | \(22\) | \(21\) | \(1\) | \(20\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(28\) | \(3\) | \(25\) | \(26\) | \(3\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(24\) | \(2\) | \(22\) | \(22\) | \(2\) | \(20\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(27\) | \(2\) | \(25\) | \(25\) | \(2\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(29\) | \(3\) | \(26\) | \(27\) | \(3\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(22\) | \(2\) | \(20\) | \(20\) | \(2\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(26\) | \(2\) | \(24\) | \(24\) | \(2\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(23\) | \(3\) | \(20\) | \(21\) | \(3\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(21\) | \(3\) | \(18\) | \(19\) | \(3\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(28\) | \(1\) | \(27\) | \(26\) | \(1\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(196\) | \(14\) | \(182\) | \(181\) | \(14\) | \(167\) | \(15\) | \(0\) | \(15\) | ||||||
Minus space | \(-\) | \(204\) | \(18\) | \(186\) | \(188\) | \(18\) | \(170\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1848))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1848))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1848)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(616))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(924))\)\(^{\oplus 2}\)