Properties

Label 184.4.h.b.91.2
Level $184$
Weight $4$
Character 184.91
Analytic conductor $10.856$
Analytic rank $0$
Dimension $4$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,4,Mod(91,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.91"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8563514411\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-23})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} - 6x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 91.2
Root \(2.32666 - 0.765945i\) of defining polynomial
Character \(\chi\) \(=\) 184.91
Dual form 184.4.h.b.91.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.82666 + 0.100080i) q^{2} -6.30662 q^{3} +(7.97997 - 0.565785i) q^{4} +(17.8267 - 0.631168i) q^{6} +(-22.5000 + 2.39792i) q^{8} +12.7735 q^{9} +(-50.3267 + 3.56819i) q^{12} +92.8609i q^{13} +(63.3598 - 9.02989i) q^{16} +(-36.1063 + 1.27838i) q^{18} -110.304i q^{23} +(141.899 - 15.1228i) q^{24} -125.000 q^{25} +(-9.29354 - 262.486i) q^{26} +89.7212 q^{27} -177.078i q^{29} -283.525i q^{31} +(-178.193 + 31.8654i) q^{32} +(101.932 - 7.22705i) q^{36} -585.639i q^{39} +478.812 q^{41} +(11.0393 + 311.792i) q^{46} -362.890i q^{47} +(-399.586 + 56.9481i) q^{48} -343.000 q^{49} +(353.332 - 12.5100i) q^{50} +(52.5393 + 741.027i) q^{52} +(-253.611 + 8.97931i) q^{54} +(17.7220 + 500.537i) q^{58} -396.000 q^{59} +(28.3753 + 801.428i) q^{62} +(500.500 - 107.906i) q^{64} +695.647i q^{69} -1128.75i q^{71} +(-287.404 + 30.6298i) q^{72} +413.641 q^{73} +788.328 q^{75} +(58.6108 + 1655.40i) q^{78} -910.722 q^{81} +(-1353.44 + 47.9196i) q^{82} +1116.76i q^{87} +(-62.4084 - 880.223i) q^{92} +1788.09i q^{93} +(36.3181 + 1025.76i) q^{94} +(1123.79 - 200.963i) q^{96} +(969.543 - 34.3275i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} + 8 q^{3} + 7 q^{4} + 63 q^{6} - 90 q^{8} + 184 q^{9} - 193 q^{12} + 79 q^{16} + 138 q^{18} - 180 q^{24} - 500 q^{25} - 195 q^{26} + 1256 q^{27} - 123 q^{32} - 506 q^{36} + 852 q^{41} - 529 q^{46}+ \cdots + 1029 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.82666 + 0.100080i −0.999374 + 0.0353837i
\(3\) −6.30662 −1.21371 −0.606855 0.794812i \(-0.707569\pi\)
−0.606855 + 0.794812i \(0.707569\pi\)
\(4\) 7.97997 0.565785i 0.997496 0.0707231i
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 17.8267 0.631168i 1.21295 0.0429456i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −22.5000 + 2.39792i −0.994369 + 0.105974i
\(9\) 12.7735 0.473093
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −50.3267 + 3.56819i −1.21067 + 0.0858373i
\(13\) 92.8609i 1.98115i 0.136966 + 0.990576i \(0.456265\pi\)
−0.136966 + 0.990576i \(0.543735\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 63.3598 9.02989i 0.989996 0.141092i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −36.1063 + 1.27838i −0.472797 + 0.0167398i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 110.304i 1.00000i
\(24\) 141.899 15.1228i 1.20688 0.128622i
\(25\) −125.000 −1.00000
\(26\) −9.29354 262.486i −0.0701005 1.97991i
\(27\) 89.7212 0.639513
\(28\) 0 0
\(29\) 177.078i 1.13388i −0.823760 0.566939i \(-0.808127\pi\)
0.823760 0.566939i \(-0.191873\pi\)
\(30\) 0 0
\(31\) 283.525i 1.64267i −0.570449 0.821333i \(-0.693231\pi\)
0.570449 0.821333i \(-0.306769\pi\)
\(32\) −178.193 + 31.8654i −0.984384 + 0.176033i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 101.932 7.22705i 0.471908 0.0334586i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 585.639i 2.40454i
\(40\) 0 0
\(41\) 478.812 1.82385 0.911925 0.410356i \(-0.134596\pi\)
0.911925 + 0.410356i \(0.134596\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 11.0393 + 311.792i 0.0353837 + 0.999374i
\(47\) 362.890i 1.12623i −0.826378 0.563116i \(-0.809602\pi\)
0.826378 0.563116i \(-0.190398\pi\)
\(48\) −399.586 + 56.9481i −1.20157 + 0.171245i
\(49\) −343.000 −1.00000
\(50\) 353.332 12.5100i 0.999374 0.0353837i
\(51\) 0 0
\(52\) 52.5393 + 741.027i 0.140113 + 1.97619i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −253.611 + 8.97931i −0.639112 + 0.0226283i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 17.7220 + 500.537i 0.0401208 + 1.13317i
\(59\) −396.000 −0.873810 −0.436905 0.899508i \(-0.643925\pi\)
−0.436905 + 0.899508i \(0.643925\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 28.3753 + 801.428i 0.0581236 + 1.64164i
\(63\) 0 0
\(64\) 500.500 107.906i 0.977539 0.210754i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 695.647i 1.21371i
\(70\) 0 0
\(71\) 1128.75i 1.88673i −0.331754 0.943366i \(-0.607640\pi\)
0.331754 0.943366i \(-0.392360\pi\)
\(72\) −287.404 + 30.6298i −0.470429 + 0.0501355i
\(73\) 413.641 0.663192 0.331596 0.943421i \(-0.392413\pi\)
0.331596 + 0.943421i \(0.392413\pi\)
\(74\) 0 0
\(75\) 788.328 1.21371
\(76\) 0 0
\(77\) 0 0
\(78\) 58.6108 + 1655.40i 0.0850817 + 2.40304i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −910.722 −1.24928
\(82\) −1353.44 + 47.9196i −1.82271 + 0.0645346i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1116.76i 1.37620i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −62.4084 880.223i −0.0707231 0.997496i
\(93\) 1788.09i 1.99372i
\(94\) 36.3181 + 1025.76i 0.0398503 + 1.12553i
\(95\) 0 0
\(96\) 1123.79 200.963i 1.19476 0.213654i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 969.543 34.3275i 0.999374 0.0353837i
\(99\) 0 0
\(100\) −997.496 + 70.7231i −0.997496 + 0.0707231i
\(101\) 1246.92i 1.22844i −0.789133 0.614222i \(-0.789470\pi\)
0.789133 0.614222i \(-0.210530\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −222.673 2089.37i −0.209950 1.97000i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 715.972 50.7629i 0.637911 0.0452283i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −100.188 1413.07i −0.0801914 1.13104i
\(117\) 1186.16i 0.937268i
\(118\) 1119.36 39.6318i 0.873263 0.0309186i
\(119\) 0 0
\(120\) 0 0
\(121\) 1331.00 1.00000
\(122\) 0 0
\(123\) −3019.69 −2.21363
\(124\) −160.414 2262.52i −0.116174 1.63855i
\(125\) 0 0
\(126\) 0 0
\(127\) 1668.71i 1.16594i 0.812495 + 0.582968i \(0.198109\pi\)
−0.812495 + 0.582968i \(0.801891\pi\)
\(128\) −1403.94 + 355.104i −0.969470 + 0.245211i
\(129\) 0 0
\(130\) 0 0
\(131\) −459.352 −0.306364 −0.153182 0.988198i \(-0.548952\pi\)
−0.153182 + 0.988198i \(0.548952\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) −69.6205 1966.35i −0.0429456 1.21295i
\(139\) 3021.95 1.84401 0.922007 0.387172i \(-0.126548\pi\)
0.922007 + 0.387172i \(0.126548\pi\)
\(140\) 0 0
\(141\) 2288.61i 1.36692i
\(142\) 112.966 + 3190.59i 0.0667596 + 1.88555i
\(143\) 0 0
\(144\) 809.326 115.343i 0.468360 0.0667496i
\(145\) 0 0
\(146\) −1169.22 + 41.3973i −0.662777 + 0.0234662i
\(147\) 2163.17 1.21371
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) −2228.33 + 78.8960i −1.21295 + 0.0429456i
\(151\) 2714.31i 1.46283i −0.681932 0.731415i \(-0.738860\pi\)
0.681932 0.731415i \(-0.261140\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −331.345 4673.38i −0.170057 2.39852i
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 2574.30 91.1453i 1.24849 0.0442040i
\(163\) −2496.34 −1.19956 −0.599781 0.800164i \(-0.704746\pi\)
−0.599781 + 0.800164i \(0.704746\pi\)
\(164\) 3820.90 270.904i 1.81928 0.128988i
\(165\) 0 0
\(166\) 0 0
\(167\) 3922.99i 1.81778i −0.417030 0.908892i \(-0.636929\pi\)
0.417030 0.908892i \(-0.363071\pi\)
\(168\) 0 0
\(169\) −6426.14 −2.92496
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2896.68i 1.27301i −0.771273 0.636505i \(-0.780380\pi\)
0.771273 0.636505i \(-0.219620\pi\)
\(174\) −111.766 3156.70i −0.0486950 1.37534i
\(175\) 0 0
\(176\) 0 0
\(177\) 2497.42 1.06055
\(178\) 0 0
\(179\) 2023.41 0.844898 0.422449 0.906387i \(-0.361171\pi\)
0.422449 + 0.906387i \(0.361171\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 264.500 + 2481.84i 0.105974 + 0.994369i
\(185\) 0 0
\(186\) −178.952 5054.31i −0.0705452 1.99247i
\(187\) 0 0
\(188\) −205.318 2895.85i −0.0796507 1.12341i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −3156.47 + 680.524i −1.18645 + 0.255795i
\(193\) 4934.03 1.84020 0.920101 0.391681i \(-0.128106\pi\)
0.920101 + 0.391681i \(0.128106\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2737.13 + 194.064i −0.997496 + 0.0707231i
\(197\) 5043.03i 1.82386i 0.410342 + 0.911931i \(0.365409\pi\)
−0.410342 + 0.911931i \(0.634591\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 2812.50 299.739i 0.994369 0.105974i
\(201\) 0 0
\(202\) 124.792 + 3524.60i 0.0434669 + 1.22767i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1408.97i 0.473093i
\(208\) 838.523 + 5883.64i 0.279525 + 1.96133i
\(209\) 0 0
\(210\) 0 0
\(211\) −2468.00 −0.805233 −0.402616 0.915369i \(-0.631899\pi\)
−0.402616 + 0.915369i \(0.631899\pi\)
\(212\) 0 0
\(213\) 7118.60i 2.28995i
\(214\) 0 0
\(215\) 0 0
\(216\) −2018.73 + 215.144i −0.635912 + 0.0677717i
\(217\) 0 0
\(218\) 0 0
\(219\) −2608.68 −0.804923
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4575.22i 1.37390i 0.726705 + 0.686950i \(0.241051\pi\)
−0.726705 + 0.686950i \(0.758949\pi\)
\(224\) 0 0
\(225\) −1596.69 −0.473093
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 424.617 + 3984.24i 0.120162 + 1.12749i
\(233\) 744.688 0.209383 0.104691 0.994505i \(-0.466615\pi\)
0.104691 + 0.994505i \(0.466615\pi\)
\(234\) −118.711 3352.86i −0.0331640 0.936682i
\(235\) 0 0
\(236\) −3160.07 + 224.051i −0.871622 + 0.0617986i
\(237\) 0 0
\(238\) 0 0
\(239\) 6663.83i 1.80355i 0.432211 + 0.901773i \(0.357734\pi\)
−0.432211 + 0.901773i \(0.642266\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −3762.28 + 133.207i −0.999374 + 0.0353837i
\(243\) 3321.11 0.876746
\(244\) 0 0
\(245\) 0 0
\(246\) 8535.62 302.211i 2.21224 0.0783263i
\(247\) 0 0
\(248\) 679.870 + 6379.32i 0.174080 + 1.63342i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −167.005 4716.86i −0.0412551 1.16521i
\(255\) 0 0
\(256\) 3932.92 1144.26i 0.960186 0.279361i
\(257\) −4904.62 −1.19043 −0.595217 0.803565i \(-0.702934\pi\)
−0.595217 + 0.803565i \(0.702934\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2261.90i 0.536430i
\(262\) 1298.43 45.9720i 0.306172 0.0108403i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3515.63i 0.796847i −0.917202 0.398424i \(-0.869557\pi\)
0.917202 0.398424i \(-0.130443\pi\)
\(270\) 0 0
\(271\) 431.625i 0.0967503i −0.998829 0.0483752i \(-0.984596\pi\)
0.998829 0.0483752i \(-0.0154043\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 393.586 + 5551.24i 0.0858373 + 1.21067i
\(277\) 6109.43i 1.32520i −0.748974 0.662599i \(-0.769453\pi\)
0.748974 0.662599i \(-0.230547\pi\)
\(278\) −8542.00 + 302.437i −1.84286 + 0.0652481i
\(279\) 3621.61i 0.777133i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −229.045 6469.11i −0.0483667 1.36606i
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) −638.630 9007.39i −0.133436 1.88201i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2276.14 + 407.033i −0.465705 + 0.0832801i
\(289\) 4913.00 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 3300.84 234.032i 0.661531 0.0469030i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −6114.54 + 216.491i −1.21295 + 0.0429456i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10242.9 1.98115
\(300\) 6290.83 446.024i 1.21067 0.0858373i
\(301\) 0 0
\(302\) 271.649 + 7672.42i 0.0517604 + 1.46191i
\(303\) 7863.83i 1.49097i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −10420.0 −1.93714 −0.968568 0.248749i \(-0.919981\pi\)
−0.968568 + 0.248749i \(0.919981\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 433.876i 0.0791088i −0.999217 0.0395544i \(-0.987406\pi\)
0.999217 0.0395544i \(-0.0125938\pi\)
\(312\) 1404.31 + 13176.9i 0.254819 + 2.39100i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11183.9i 1.98154i −0.135542 0.990772i \(-0.543277\pi\)
0.135542 0.990772i \(-0.456723\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −7267.53 + 515.273i −1.24615 + 0.0883527i
\(325\) 11607.6i 1.98115i
\(326\) 7056.30 249.835i 1.19881 0.0424450i
\(327\) 0 0
\(328\) −10773.3 + 1148.15i −1.81358 + 0.193281i
\(329\) 0 0
\(330\) 0 0
\(331\) 6046.92 1.00414 0.502068 0.864828i \(-0.332573\pi\)
0.502068 + 0.864828i \(0.332573\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 392.614 + 11088.9i 0.0643200 + 1.81665i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 18164.5 643.130i 2.92313 0.103496i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 289.901 + 8187.92i 0.0450438 + 1.27221i
\(347\) −9180.00 −1.42020 −0.710098 0.704103i \(-0.751350\pi\)
−0.710098 + 0.704103i \(0.751350\pi\)
\(348\) 631.847 + 8911.72i 0.0973291 + 1.37275i
\(349\) 12764.5i 1.95779i −0.204360 0.978896i \(-0.565511\pi\)
0.204360 0.978896i \(-0.434489\pi\)
\(350\) 0 0
\(351\) 8331.58i 1.26697i
\(352\) 0 0
\(353\) −12810.6 −1.93156 −0.965782 0.259355i \(-0.916490\pi\)
−0.965782 + 0.259355i \(0.916490\pi\)
\(354\) −7059.36 + 249.943i −1.05989 + 0.0375263i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −5719.48 + 202.503i −0.844369 + 0.0298956i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6859.00 1.00000
\(362\) 0 0
\(363\) −8394.12 −1.21371
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −996.034 6988.84i −0.141092 0.989996i
\(369\) 6116.11 0.862850
\(370\) 0 0
\(371\) 0 0
\(372\) 1011.67 + 14268.9i 0.141002 + 1.98873i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 870.179 + 8165.02i 0.119351 + 1.11989i
\(377\) 16443.6 2.24638
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 10523.9i 1.41511i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 8854.13 2239.51i 1.17666 0.297615i
\(385\) 0 0
\(386\) −13946.8 + 493.798i −1.83905 + 0.0651132i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7717.50 822.485i 0.994369 0.105974i
\(393\) 2896.96 0.371838
\(394\) −504.708 14254.9i −0.0645350 1.82272i
\(395\) 0 0
\(396\) 0 0
\(397\) 15449.7i 1.95315i −0.215185 0.976573i \(-0.569035\pi\)
0.215185 0.976573i \(-0.430965\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −7919.97 + 1128.74i −0.989996 + 0.141092i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 26328.4 3.25437
\(404\) −705.486 9950.35i −0.0868793 1.22537i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −16157.1 −1.95334 −0.976671 0.214742i \(-0.931109\pi\)
−0.976671 + 0.214742i \(0.931109\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 141.010 + 3982.67i 0.0167398 + 0.472797i
\(415\) 0 0
\(416\) −2959.05 16547.1i −0.348749 1.95021i
\(417\) −19058.3 −2.23810
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 6976.19 246.998i 0.804729 0.0284921i
\(423\) 4635.38i 0.532813i
\(424\) 0 0
\(425\) 0 0
\(426\) −712.431 20121.8i −0.0810268 2.28851i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 5684.71 810.172i 0.633115 0.0902301i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 7373.84 261.077i 0.804419 0.0284812i
\(439\) 2133.87i 0.231991i 0.993250 + 0.115995i \(0.0370058\pi\)
−0.993250 + 0.115995i \(0.962994\pi\)
\(440\) 0 0
\(441\) −4381.31 −0.473093
\(442\) 0 0
\(443\) −13724.1 −1.47191 −0.735953 0.677033i \(-0.763265\pi\)
−0.735953 + 0.677033i \(0.763265\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −457.889 12932.6i −0.0486137 1.37304i
\(447\) 0 0
\(448\) 0 0
\(449\) 18414.0 1.93544 0.967718 0.252037i \(-0.0811005\pi\)
0.967718 + 0.252037i \(0.0811005\pi\)
\(450\) 4513.29 159.797i 0.472797 0.0167398i
\(451\) 0 0
\(452\) 0 0
\(453\) 17118.1i 1.77545i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12481.1i 1.26096i 0.776205 + 0.630480i \(0.217142\pi\)
−0.776205 + 0.630480i \(0.782858\pi\)
\(462\) 0 0
\(463\) 16142.8i 1.62034i 0.586194 + 0.810171i \(0.300626\pi\)
−0.586194 + 0.810171i \(0.699374\pi\)
\(464\) −1598.99 11219.6i −0.159981 1.12254i
\(465\) 0 0
\(466\) −2104.98 + 74.5285i −0.209251 + 0.00740873i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 671.110 + 9465.51i 0.0662865 + 0.934922i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 8910.00 949.575i 0.868890 0.0926011i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −666.918 18836.4i −0.0638161 1.80242i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 10621.3 753.059i 0.997496 0.0707231i
\(485\) 0 0
\(486\) −9387.64 + 332.378i −0.876197 + 0.0310225i
\(487\) 21367.1i 1.98816i −0.108639 0.994081i \(-0.534649\pi\)
0.108639 0.994081i \(-0.465351\pi\)
\(488\) 0 0
\(489\) 15743.5 1.45592
\(490\) 0 0
\(491\) −16210.8 −1.48998 −0.744992 0.667073i \(-0.767547\pi\)
−0.744992 + 0.667073i \(0.767547\pi\)
\(492\) −24097.0 + 1708.49i −2.20808 + 0.156554i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −2560.20 17964.1i −0.231767 1.62623i
\(497\) 0 0
\(498\) 0 0
\(499\) −21525.2 −1.93106 −0.965530 0.260292i \(-0.916181\pi\)
−0.965530 + 0.260292i \(0.916181\pi\)
\(500\) 0 0
\(501\) 24740.8i 2.20626i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 40527.3 3.55006
\(508\) 944.129 + 13316.2i 0.0824586 + 1.16302i
\(509\) 17666.7i 1.53844i 0.638986 + 0.769218i \(0.279354\pi\)
−0.638986 + 0.769218i \(0.720646\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11002.5 + 3628.05i −0.949700 + 0.313161i
\(513\) 0 0
\(514\) 13863.7 490.855i 1.18969 0.0421220i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 18268.3i 1.54506i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 226.372 + 6393.61i 0.0189809 + 0.536094i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −3665.61 + 259.894i −0.305597 + 0.0216670i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) −5058.31 −0.413393
\(532\) 0 0
\(533\) 44462.9i 3.61332i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −12760.9 −1.02546
\(538\) 351.845 + 9937.48i 0.0281954 + 0.796348i
\(539\) 0 0
\(540\) 0 0
\(541\) 13383.5i 1.06359i 0.846873 + 0.531796i \(0.178483\pi\)
−0.846873 + 0.531796i \(0.821517\pi\)
\(542\) 43.1971 + 1220.05i 0.00342339 + 0.0966898i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1569.66 −0.122694 −0.0613471 0.998116i \(-0.519540\pi\)
−0.0613471 + 0.998116i \(0.519540\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) −1668.10 15652.0i −0.128622 1.20688i
\(553\) 0 0
\(554\) 611.433 + 17269.3i 0.0468904 + 1.32437i
\(555\) 0 0
\(556\) 24115.0 1709.77i 1.83940 0.130414i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 362.452 + 10237.0i 0.0274979 + 0.776647i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 1294.86 + 18263.0i 0.0966728 + 1.36350i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 2706.65 + 25396.9i 0.199944 + 1.87611i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13788.0i 1.00000i
\(576\) 6393.14 1378.34i 0.462467 0.0997063i
\(577\) 25741.2 1.85723 0.928615 0.371044i \(-0.121000\pi\)
0.928615 + 0.371044i \(0.121000\pi\)
\(578\) −13887.4 + 491.694i −0.999374 + 0.0353837i
\(579\) −31117.0 −2.23347
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −9306.92 + 991.876i −0.659458 + 0.0702811i
\(585\) 0 0
\(586\) 0 0
\(587\) 23488.7 1.65159 0.825794 0.563972i \(-0.190728\pi\)
0.825794 + 0.563972i \(0.190728\pi\)
\(588\) 17262.0 1223.89i 1.21067 0.0858373i
\(589\) 0 0
\(590\) 0 0
\(591\) 31804.5i 2.21364i
\(592\) 0 0
\(593\) −26370.0 −1.82611 −0.913057 0.407831i \(-0.866285\pi\)
−0.913057 + 0.407831i \(0.866285\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −28953.3 + 1025.12i −1.97991 + 0.0701005i
\(599\) 16353.8i 1.11552i 0.830002 + 0.557761i \(0.188339\pi\)
−0.830002 + 0.557761i \(0.811661\pi\)
\(600\) −17737.4 + 1890.34i −1.20688 + 0.128622i
\(601\) −25680.9 −1.74301 −0.871504 0.490388i \(-0.836855\pi\)
−0.871504 + 0.490388i \(0.836855\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1535.72 21660.1i −0.103456 1.45917i
\(605\) 0 0
\(606\) −787.014 22228.3i −0.0527562 1.49004i
\(607\) 28573.6i 1.91065i −0.295556 0.955326i \(-0.595505\pi\)
0.295556 0.955326i \(-0.404495\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 33698.3 2.23124
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 29453.8 1042.84i 1.93592 0.0685431i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 9896.61i 0.639513i
\(622\) 43.4224 + 1226.42i 0.00279916 + 0.0790592i
\(623\) 0 0
\(624\) −5288.25 37105.9i −0.339262 2.38049i
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 15564.7 0.977319
\(634\) 1119.29 + 31613.0i 0.0701143 + 1.98030i
\(635\) 0 0
\(636\) 0 0
\(637\) 31851.3i 1.98115i
\(638\) 0 0
\(639\) 14418.1i 0.892599i
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32913.8i 1.99996i −0.00630906 0.999980i \(-0.502008\pi\)
0.00630906 0.999980i \(-0.497992\pi\)
\(648\) 20491.2 2183.84i 1.24224 0.132391i
\(649\) 0 0
\(650\) 1161.69 + 32810.7i 0.0701005 + 1.97991i
\(651\) 0 0
\(652\) −19920.7 + 1412.39i −1.19656 + 0.0848368i
\(653\) 31611.4i 1.89441i 0.320631 + 0.947204i \(0.396105\pi\)
−0.320631 + 0.947204i \(0.603895\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 30337.4 4323.62i 1.80561 0.257331i
\(657\) 5283.65 0.313751
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −17092.6 + 605.177i −1.00351 + 0.0355300i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −19532.4 −1.13388
\(668\) −2219.57 31305.3i −0.128559 1.81323i
\(669\) 28854.2i 1.66752i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 25066.4 1.43572 0.717859 0.696188i \(-0.245122\pi\)
0.717859 + 0.696188i \(0.245122\pi\)
\(674\) 0 0
\(675\) −11215.1 −0.639513
\(676\) −51280.4 + 3635.81i −2.91764 + 0.206862i
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21910.1 −1.22748 −0.613738 0.789510i \(-0.710335\pi\)
−0.613738 + 0.789510i \(0.710335\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6028.00 0.331861 0.165930 0.986137i \(-0.446937\pi\)
0.165930 + 0.986137i \(0.446937\pi\)
\(692\) −1638.90 23115.4i −0.0900312 1.26982i
\(693\) 0 0
\(694\) 25948.7 918.736i 1.41931 0.0502518i
\(695\) 0 0
\(696\) −2677.90 25127.1i −0.145841 1.36845i
\(697\) 0 0
\(698\) 1277.48 + 36080.9i 0.0692739 + 1.95657i
\(699\) −4696.47 −0.254130
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −833.827 23550.5i −0.0448302 1.26618i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 36211.3 1282.09i 1.93035 0.0683459i
\(707\) 0 0
\(708\) 19929.4 1413.00i 1.05790 0.0750056i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31274.0 −1.64267
\(714\) 0 0
\(715\) 0 0
\(716\) 16146.7 1144.81i 0.842782 0.0597538i
\(717\) 42026.3i 2.18898i
\(718\) 0 0
\(719\) 6858.04i 0.355719i −0.984056 0.177859i \(-0.943083\pi\)
0.984056 0.177859i \(-0.0569172\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −19388.0 + 686.450i −0.999374 + 0.0353837i
\(723\) 0 0
\(724\) 0 0
\(725\) 22134.7i 1.13388i
\(726\) 23727.3 840.085i 1.21295 0.0429456i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 3644.50 0.185160
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 3514.89 + 19655.4i 0.176033 + 0.984384i
\(737\) 0 0
\(738\) −17288.1 + 612.101i −0.862310 + 0.0305308i
\(739\) 37876.3 1.88539 0.942695 0.333656i \(-0.108282\pi\)
0.942695 + 0.333656i \(0.108282\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) −4287.68 40232.0i −0.211282 1.98249i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) −3276.86 22992.6i −0.158902 1.11497i
\(753\) 0 0
\(754\) −46480.3 + 1645.68i −2.24498 + 0.0794854i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6372.08 0.303532 0.151766 0.988416i \(-0.451504\pi\)
0.151766 + 0.988416i \(0.451504\pi\)
\(762\) 1053.24 + 29747.5i 0.0500718 + 1.41422i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36772.9i 1.73115i
\(768\) −24803.5 + 7216.44i −1.16539 + 0.339064i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 30931.6 1.44484
\(772\) 39373.4 2791.60i 1.83559 0.130145i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 35440.7i 1.64267i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 15887.6i 0.725130i
\(784\) −21732.4 + 3097.25i −0.989996 + 0.141092i
\(785\) 0 0
\(786\) −8188.70 + 289.928i −0.371605 + 0.0131570i
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 2853.27 + 40243.2i 0.128989 + 1.81930i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 1546.21 + 43671.0i 0.0691096 + 1.95192i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 22274.1 3983.18i 0.984384 0.176033i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −74421.3 + 2634.95i −3.25233 + 0.115152i
\(807\) 22171.8i 0.967142i
\(808\) 2990.00 + 28055.6i 0.130183 + 1.22153i
\(809\) −27846.0 −1.21015 −0.605076 0.796168i \(-0.706857\pi\)
−0.605076 + 0.796168i \(0.706857\pi\)
\(810\) 0 0
\(811\) −41578.7 −1.80028 −0.900139 0.435602i \(-0.856536\pi\)
−0.900139 + 0.435602i \(0.856536\pi\)
\(812\) 0 0
\(813\) 2722.10i 0.117427i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 45670.5 1617.01i 1.95212 0.0691165i
\(819\) 0 0
\(820\) 0 0
\(821\) 40189.1i 1.70841i 0.519933 + 0.854207i \(0.325957\pi\)
−0.519933 + 0.854207i \(0.674043\pi\)
\(822\) 0 0
\(823\) 6683.96i 0.283096i −0.989931 0.141548i \(-0.954792\pi\)
0.989931 0.141548i \(-0.0452080\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −797.174 11243.5i −0.0334586 0.471908i
\(829\) 47478.7i 1.98915i −0.104027 0.994575i \(-0.533173\pi\)
0.104027 0.994575i \(-0.466827\pi\)
\(830\) 0 0
\(831\) 38529.9i 1.60841i
\(832\) 10020.3 + 46476.9i 0.417536 + 1.93665i
\(833\) 0 0
\(834\) 53871.2 1907.36i 2.23670 0.0791923i
\(835\) 0 0
\(836\) 0 0
\(837\) 25438.2i 1.05051i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −6967.45 −0.285680
\(842\) 0 0
\(843\) 0 0
\(844\) −19694.6 + 1396.36i −0.803217 + 0.0569486i
\(845\) 0 0
\(846\) 463.909 + 13102.6i 0.0188529 + 0.532479i
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 4027.60 + 56806.2i 0.161952 + 2.28421i
\(853\) 43335.1i 1.73947i 0.493520 + 0.869734i \(0.335710\pi\)
−0.493520 + 0.869734i \(0.664290\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 50108.5 1.99728 0.998642 0.0520955i \(-0.0165900\pi\)
0.998642 + 0.0520955i \(0.0165900\pi\)
\(858\) 0 0
\(859\) 24600.8 0.977148 0.488574 0.872523i \(-0.337517\pi\)
0.488574 + 0.872523i \(0.337517\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 50434.3i 1.98935i −0.103084 0.994673i \(-0.532871\pi\)
0.103084 0.994673i \(-0.467129\pi\)
\(864\) −15987.6 + 2859.00i −0.629526 + 0.112576i
\(865\) 0 0
\(866\) 0 0
\(867\) −30984.4 −1.21371
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −20817.2 + 1475.95i −0.802908 + 0.0569266i
\(877\) 39191.5i 1.50901i −0.656293 0.754506i \(-0.727876\pi\)
0.656293 0.754506i \(-0.272124\pi\)
\(878\) −213.558 6031.71i −0.00820869 0.231845i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 12384.5 438.483i 0.472797 0.0167398i
\(883\) 2860.00 0.109000 0.0544998 0.998514i \(-0.482644\pi\)
0.0544998 + 0.998514i \(0.482644\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 38793.4 1373.52i 1.47098 0.0520815i
\(887\) 24375.4i 0.922711i −0.887215 0.461355i \(-0.847363\pi\)
0.887215 0.461355i \(-0.152637\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 2588.59 + 36510.1i 0.0971664 + 1.37046i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −64598.4 −2.40454
\(898\) −52050.0 + 1842.88i −1.93422 + 0.0684829i
\(899\) −50205.9 −1.86258
\(900\) −12741.5 + 903.382i −0.471908 + 0.0334586i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −1713.19 48387.1i −0.0628221 1.77434i
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 15927.5i 0.581168i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 65715.0 2.35112
\(922\) −1249.11 35279.8i −0.0446175 1.26017i
\(923\) 104817. 3.73790
\(924\) 0 0
\(925\) 0 0
\(926\) −1615.57 45630.1i −0.0573337 1.61933i
\(927\) 0 0
\(928\) 5642.65 + 31553.9i 0.199600 + 1.11617i
\(929\) 48618.9 1.71704 0.858521 0.512778i \(-0.171384\pi\)
0.858521 + 0.512778i \(0.171384\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5942.59 421.333i 0.208858 0.0148082i
\(933\) 2736.29i 0.0960152i
\(934\) 0 0
\(935\) 0 0
\(936\) −2844.31 26688.6i −0.0993260 0.931991i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 52814.9i 1.82385i
\(944\) −25090.5 + 3575.84i −0.865069 + 0.123288i
\(945\) 0 0
\(946\) 0 0
\(947\) −57261.1 −1.96487 −0.982437 0.186594i \(-0.940255\pi\)
−0.982437 + 0.186594i \(0.940255\pi\)
\(948\) 0 0
\(949\) 38411.1i 1.31388i
\(950\) 0 0
\(951\) 70532.5i 2.40502i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3770.29 + 53177.1i 0.127552 + 1.79903i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −50595.6 −1.69835
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 22396.1i 0.744789i 0.928075 + 0.372394i \(0.121463\pi\)
−0.928075 + 0.372394i \(0.878537\pi\)
\(968\) −29947.5 + 3191.63i −0.994369 + 0.105974i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 26502.4 1879.03i 0.874551 0.0620062i
\(973\) 0 0
\(974\) 2138.42 + 60397.4i 0.0703486 + 1.98692i
\(975\) 73204.8i 2.40454i
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) −44501.4 + 1575.61i −1.45501 + 0.0515159i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 45822.3 1622.38i 1.48905 0.0527212i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 67943.0 7240.95i 2.20116 0.234587i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 61722.4i 1.97848i −0.146297 0.989241i \(-0.546735\pi\)
0.146297 0.989241i \(-0.453265\pi\)
\(992\) 9034.66 + 50522.1i 0.289164 + 1.61701i
\(993\) −38135.6 −1.21873
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 18473.5i 0.586823i 0.955986 + 0.293412i \(0.0947907\pi\)
−0.955986 + 0.293412i \(0.905209\pi\)
\(998\) 60844.2 2154.24i 1.92985 0.0683281i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.4.h.b.91.2 yes 4
4.3 odd 2 736.4.h.b.367.4 4
8.3 odd 2 inner 184.4.h.b.91.1 4
8.5 even 2 736.4.h.b.367.3 4
23.22 odd 2 CM 184.4.h.b.91.2 yes 4
92.91 even 2 736.4.h.b.367.4 4
184.45 odd 2 736.4.h.b.367.3 4
184.91 even 2 inner 184.4.h.b.91.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.h.b.91.1 4 8.3 odd 2 inner
184.4.h.b.91.1 4 184.91 even 2 inner
184.4.h.b.91.2 yes 4 1.1 even 1 trivial
184.4.h.b.91.2 yes 4 23.22 odd 2 CM
736.4.h.b.367.3 4 8.5 even 2
736.4.h.b.367.3 4 184.45 odd 2
736.4.h.b.367.4 4 4.3 odd 2
736.4.h.b.367.4 4 92.91 even 2