Properties

Label 184.4.h.b
Level $184$
Weight $4$
Character orbit 184.h
Analytic conductor $10.856$
Analytic rank $0$
Dimension $4$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,4,Mod(91,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.91"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8563514411\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-23})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} - 6x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_{2} - 1) q^{2} + ( - 2 \beta_{3} - \beta_{2} - 2 \beta_1 + 2) q^{3} + ( - \beta_{2} + 3 \beta_1 + 1) q^{4} + ( - 5 \beta_{3} - 7 \beta_{2} + \cdots + 13) q^{6} + (\beta_{3} - \beta_1 - 22) q^{8}+ \cdots + (343 \beta_{3} + 343 \beta_{2} + 343) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} + 8 q^{3} + 7 q^{4} + 63 q^{6} - 90 q^{8} + 184 q^{9} - 193 q^{12} + 79 q^{16} + 138 q^{18} - 180 q^{24} - 500 q^{25} - 195 q^{26} + 1256 q^{27} - 123 q^{32} - 506 q^{36} + 852 q^{41} - 529 q^{46}+ \cdots + 1029 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} - 6x + 36 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu^{2} - 5\nu - 21 ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 5\nu + 6 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -5\beta_{3} + 5\beta _1 + 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
2.32666 + 0.765945i
2.32666 0.765945i
−1.82666 1.63197i
−1.82666 + 1.63197i
−2.82666 0.100080i −6.30662 7.97997 + 0.565785i 0 17.8267 + 0.631168i 0 −22.5000 2.39792i 12.7735 0
91.2 −2.82666 + 0.100080i −6.30662 7.97997 0.565785i 0 17.8267 0.631168i 0 −22.5000 + 2.39792i 12.7735 0
91.3 1.32666 2.49800i 10.3066 −4.47997 6.62796i 0 13.6733 25.7459i 0 −22.5000 + 2.39792i 79.2265 0
91.4 1.32666 + 2.49800i 10.3066 −4.47997 + 6.62796i 0 13.6733 + 25.7459i 0 −22.5000 2.39792i 79.2265 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
8.d odd 2 1 inner
184.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 184.4.h.b 4
4.b odd 2 1 736.4.h.b 4
8.b even 2 1 736.4.h.b 4
8.d odd 2 1 inner 184.4.h.b 4
23.b odd 2 1 CM 184.4.h.b 4
92.b even 2 1 736.4.h.b 4
184.e odd 2 1 736.4.h.b 4
184.h even 2 1 inner 184.4.h.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.4.h.b 4 1.a even 1 1 trivial
184.4.h.b 4 8.d odd 2 1 inner
184.4.h.b 4 23.b odd 2 1 CM
184.4.h.b 4 184.h even 2 1 inner
736.4.h.b 4 4.b odd 2 1
736.4.h.b 4 8.b even 2 1
736.4.h.b 4 92.b even 2 1
736.4.h.b 4 184.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 4T_{3} - 65 \) acting on \(S_{4}^{\mathrm{new}}(184, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$3$ \( (T^{2} - 4 T - 65)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 9870 T^{2} + 10751841 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 12167)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 3039868225 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 7840217025 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 426 T - 25287)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 10306107361 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T + 396)^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 1050758254225 \) Copy content Toggle raw display
$73$ \( (T^{2} - 1226 T + 336025)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less