Properties

Label 1824.2.k.b.607.5
Level $1824$
Weight $2$
Character 1824.607
Analytic conductor $14.565$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(607,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.607"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 52 x^{18} + 986 x^{16} + 8824 x^{14} + 42757 x^{12} + 118964 x^{10} + 190576 x^{8} + 166880 x^{6} + \cdots + 784 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 607.5
Root \(1.45345i\) of defining polynomial
Character \(\chi\) \(=\) 1824.607
Dual form 1824.2.k.b.607.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.69641 q^{5} -3.75190i q^{7} +1.00000 q^{9} -1.14256i q^{11} +3.38630i q^{13} -1.69641 q^{15} +4.59679 q^{17} +(3.11731 + 3.04670i) q^{19} -3.75190i q^{21} -5.01159i q^{23} -2.12219 q^{25} +1.00000 q^{27} -1.50164i q^{29} -2.60304 q^{31} -1.14256i q^{33} +6.36477i q^{35} -1.50425i q^{37} +3.38630i q^{39} -9.19750i q^{41} -7.26752i q^{43} -1.69641 q^{45} -9.56310i q^{47} -7.07677 q^{49} +4.59679 q^{51} -9.19750i q^{53} +1.93826i q^{55} +(3.11731 + 3.04670i) q^{57} -4.71047 q^{59} -13.0242 q^{61} -3.75190i q^{63} -5.74456i q^{65} +13.5100 q^{67} -5.01159i q^{69} +5.90096 q^{71} -13.7286 q^{73} -2.12219 q^{75} -4.28679 q^{77} -11.3085 q^{79} +1.00000 q^{81} -5.07385i q^{83} -7.79805 q^{85} -1.50164i q^{87} -4.42244i q^{89} +12.7051 q^{91} -2.60304 q^{93} +(-5.28825 - 5.16845i) q^{95} +4.74665i q^{97} -1.14256i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} + 20 q^{9} + 4 q^{19} + 20 q^{25} + 20 q^{27} - 8 q^{31} - 44 q^{49} + 4 q^{57} - 8 q^{61} + 8 q^{67} + 64 q^{71} + 8 q^{73} + 20 q^{75} + 40 q^{77} - 16 q^{79} + 20 q^{81} + 40 q^{85} - 8 q^{93}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.69641 −0.758658 −0.379329 0.925262i \(-0.623845\pi\)
−0.379329 + 0.925262i \(0.623845\pi\)
\(6\) 0 0
\(7\) 3.75190i 1.41809i −0.705165 0.709043i \(-0.749127\pi\)
0.705165 0.709043i \(-0.250873\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.14256i 0.344496i −0.985054 0.172248i \(-0.944897\pi\)
0.985054 0.172248i \(-0.0551031\pi\)
\(12\) 0 0
\(13\) 3.38630i 0.939190i 0.882882 + 0.469595i \(0.155600\pi\)
−0.882882 + 0.469595i \(0.844400\pi\)
\(14\) 0 0
\(15\) −1.69641 −0.438012
\(16\) 0 0
\(17\) 4.59679 1.11489 0.557443 0.830215i \(-0.311783\pi\)
0.557443 + 0.830215i \(0.311783\pi\)
\(18\) 0 0
\(19\) 3.11731 + 3.04670i 0.715161 + 0.698960i
\(20\) 0 0
\(21\) 3.75190i 0.818732i
\(22\) 0 0
\(23\) 5.01159i 1.04499i −0.852643 0.522494i \(-0.825002\pi\)
0.852643 0.522494i \(-0.174998\pi\)
\(24\) 0 0
\(25\) −2.12219 −0.424438
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 1.50164i 0.278848i −0.990233 0.139424i \(-0.955475\pi\)
0.990233 0.139424i \(-0.0445251\pi\)
\(30\) 0 0
\(31\) −2.60304 −0.467520 −0.233760 0.972294i \(-0.575103\pi\)
−0.233760 + 0.972294i \(0.575103\pi\)
\(32\) 0 0
\(33\) 1.14256i 0.198895i
\(34\) 0 0
\(35\) 6.36477i 1.07584i
\(36\) 0 0
\(37\) 1.50425i 0.247297i −0.992326 0.123649i \(-0.960540\pi\)
0.992326 0.123649i \(-0.0394596\pi\)
\(38\) 0 0
\(39\) 3.38630i 0.542242i
\(40\) 0 0
\(41\) 9.19750i 1.43641i −0.695833 0.718204i \(-0.744965\pi\)
0.695833 0.718204i \(-0.255035\pi\)
\(42\) 0 0
\(43\) 7.26752i 1.10829i −0.832421 0.554144i \(-0.813046\pi\)
0.832421 0.554144i \(-0.186954\pi\)
\(44\) 0 0
\(45\) −1.69641 −0.252886
\(46\) 0 0
\(47\) 9.56310i 1.39492i −0.716623 0.697461i \(-0.754313\pi\)
0.716623 0.697461i \(-0.245687\pi\)
\(48\) 0 0
\(49\) −7.07677 −1.01097
\(50\) 0 0
\(51\) 4.59679 0.643679
\(52\) 0 0
\(53\) 9.19750i 1.26337i −0.775224 0.631687i \(-0.782363\pi\)
0.775224 0.631687i \(-0.217637\pi\)
\(54\) 0 0
\(55\) 1.93826i 0.261355i
\(56\) 0 0
\(57\) 3.11731 + 3.04670i 0.412898 + 0.403545i
\(58\) 0 0
\(59\) −4.71047 −0.613252 −0.306626 0.951830i \(-0.599200\pi\)
−0.306626 + 0.951830i \(0.599200\pi\)
\(60\) 0 0
\(61\) −13.0242 −1.66757 −0.833787 0.552086i \(-0.813832\pi\)
−0.833787 + 0.552086i \(0.813832\pi\)
\(62\) 0 0
\(63\) 3.75190i 0.472695i
\(64\) 0 0
\(65\) 5.74456i 0.712525i
\(66\) 0 0
\(67\) 13.5100 1.65051 0.825253 0.564763i \(-0.191032\pi\)
0.825253 + 0.564763i \(0.191032\pi\)
\(68\) 0 0
\(69\) 5.01159i 0.603324i
\(70\) 0 0
\(71\) 5.90096 0.700315 0.350158 0.936691i \(-0.386128\pi\)
0.350158 + 0.936691i \(0.386128\pi\)
\(72\) 0 0
\(73\) −13.7286 −1.60681 −0.803407 0.595430i \(-0.796982\pi\)
−0.803407 + 0.595430i \(0.796982\pi\)
\(74\) 0 0
\(75\) −2.12219 −0.245049
\(76\) 0 0
\(77\) −4.28679 −0.488525
\(78\) 0 0
\(79\) −11.3085 −1.27231 −0.636154 0.771562i \(-0.719476\pi\)
−0.636154 + 0.771562i \(0.719476\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.07385i 0.556928i −0.960447 0.278464i \(-0.910175\pi\)
0.960447 0.278464i \(-0.0898252\pi\)
\(84\) 0 0
\(85\) −7.79805 −0.845817
\(86\) 0 0
\(87\) 1.50164i 0.160993i
\(88\) 0 0
\(89\) 4.42244i 0.468778i −0.972143 0.234389i \(-0.924691\pi\)
0.972143 0.234389i \(-0.0753090\pi\)
\(90\) 0 0
\(91\) 12.7051 1.33185
\(92\) 0 0
\(93\) −2.60304 −0.269923
\(94\) 0 0
\(95\) −5.28825 5.16845i −0.542563 0.530272i
\(96\) 0 0
\(97\) 4.74665i 0.481949i 0.970531 + 0.240975i \(0.0774670\pi\)
−0.970531 + 0.240975i \(0.922533\pi\)
\(98\) 0 0
\(99\) 1.14256i 0.114832i
\(100\) 0 0
\(101\) 6.74733 0.671384 0.335692 0.941972i \(-0.391030\pi\)
0.335692 + 0.941972i \(0.391030\pi\)
\(102\) 0 0
\(103\) 12.0610 1.18841 0.594205 0.804314i \(-0.297467\pi\)
0.594205 + 0.804314i \(0.297467\pi\)
\(104\) 0 0
\(105\) 6.36477i 0.621138i
\(106\) 0 0
\(107\) 15.9929 1.54609 0.773047 0.634349i \(-0.218732\pi\)
0.773047 + 0.634349i \(0.218732\pi\)
\(108\) 0 0
\(109\) 2.41446i 0.231263i −0.993292 0.115632i \(-0.963111\pi\)
0.993292 0.115632i \(-0.0368892\pi\)
\(110\) 0 0
\(111\) 1.50425i 0.142777i
\(112\) 0 0
\(113\) 10.9278i 1.02800i 0.857790 + 0.514001i \(0.171837\pi\)
−0.857790 + 0.514001i \(0.828163\pi\)
\(114\) 0 0
\(115\) 8.50171i 0.792789i
\(116\) 0 0
\(117\) 3.38630i 0.313063i
\(118\) 0 0
\(119\) 17.2467i 1.58100i
\(120\) 0 0
\(121\) 9.69455 0.881322
\(122\) 0 0
\(123\) 9.19750i 0.829310i
\(124\) 0 0
\(125\) 12.0822 1.08066
\(126\) 0 0
\(127\) 9.92662 0.880845 0.440422 0.897791i \(-0.354829\pi\)
0.440422 + 0.897791i \(0.354829\pi\)
\(128\) 0 0
\(129\) 7.26752i 0.639870i
\(130\) 0 0
\(131\) 4.67124i 0.408128i 0.978958 + 0.204064i \(0.0654151\pi\)
−0.978958 + 0.204064i \(0.934585\pi\)
\(132\) 0 0
\(133\) 11.4309 11.6959i 0.991185 1.01416i
\(134\) 0 0
\(135\) −1.69641 −0.146004
\(136\) 0 0
\(137\) −16.0194 −1.36863 −0.684317 0.729185i \(-0.739900\pi\)
−0.684317 + 0.729185i \(0.739900\pi\)
\(138\) 0 0
\(139\) 11.8297i 1.00339i 0.865046 + 0.501693i \(0.167289\pi\)
−0.865046 + 0.501693i \(0.832711\pi\)
\(140\) 0 0
\(141\) 9.56310i 0.805358i
\(142\) 0 0
\(143\) 3.86906 0.323547
\(144\) 0 0
\(145\) 2.54740i 0.211550i
\(146\) 0 0
\(147\) −7.07677 −0.583682
\(148\) 0 0
\(149\) −8.91978 −0.730737 −0.365369 0.930863i \(-0.619057\pi\)
−0.365369 + 0.930863i \(0.619057\pi\)
\(150\) 0 0
\(151\) 13.2770 1.08047 0.540233 0.841516i \(-0.318336\pi\)
0.540233 + 0.841516i \(0.318336\pi\)
\(152\) 0 0
\(153\) 4.59679 0.371628
\(154\) 0 0
\(155\) 4.41583 0.354688
\(156\) 0 0
\(157\) −4.39158 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(158\) 0 0
\(159\) 9.19750i 0.729409i
\(160\) 0 0
\(161\) −18.8030 −1.48188
\(162\) 0 0
\(163\) 12.9407i 1.01360i 0.862065 + 0.506798i \(0.169171\pi\)
−0.862065 + 0.506798i \(0.830829\pi\)
\(164\) 0 0
\(165\) 1.93826i 0.150893i
\(166\) 0 0
\(167\) −16.6261 −1.28657 −0.643283 0.765628i \(-0.722428\pi\)
−0.643283 + 0.765628i \(0.722428\pi\)
\(168\) 0 0
\(169\) 1.53298 0.117922
\(170\) 0 0
\(171\) 3.11731 + 3.04670i 0.238387 + 0.232987i
\(172\) 0 0
\(173\) 7.63053i 0.580138i 0.957006 + 0.290069i \(0.0936783\pi\)
−0.957006 + 0.290069i \(0.906322\pi\)
\(174\) 0 0
\(175\) 7.96224i 0.601889i
\(176\) 0 0
\(177\) −4.71047 −0.354061
\(178\) 0 0
\(179\) −1.31105 −0.0979925 −0.0489962 0.998799i \(-0.515602\pi\)
−0.0489962 + 0.998799i \(0.515602\pi\)
\(180\) 0 0
\(181\) 12.8711i 0.956700i 0.878169 + 0.478350i \(0.158765\pi\)
−0.878169 + 0.478350i \(0.841235\pi\)
\(182\) 0 0
\(183\) −13.0242 −0.962774
\(184\) 0 0
\(185\) 2.55183i 0.187614i
\(186\) 0 0
\(187\) 5.25213i 0.384074i
\(188\) 0 0
\(189\) 3.75190i 0.272911i
\(190\) 0 0
\(191\) 2.99551i 0.216747i 0.994110 + 0.108374i \(0.0345643\pi\)
−0.994110 + 0.108374i \(0.965436\pi\)
\(192\) 0 0
\(193\) 3.76959i 0.271341i 0.990754 + 0.135671i \(0.0433189\pi\)
−0.990754 + 0.135671i \(0.956681\pi\)
\(194\) 0 0
\(195\) 5.74456i 0.411376i
\(196\) 0 0
\(197\) 13.6614 0.973336 0.486668 0.873587i \(-0.338212\pi\)
0.486668 + 0.873587i \(0.338212\pi\)
\(198\) 0 0
\(199\) 3.75712i 0.266335i −0.991094 0.133168i \(-0.957485\pi\)
0.991094 0.133168i \(-0.0425148\pi\)
\(200\) 0 0
\(201\) 13.5100 0.952920
\(202\) 0 0
\(203\) −5.63402 −0.395431
\(204\) 0 0
\(205\) 15.6027i 1.08974i
\(206\) 0 0
\(207\) 5.01159i 0.348329i
\(208\) 0 0
\(209\) 3.48105 3.56173i 0.240789 0.246370i
\(210\) 0 0
\(211\) 17.0469 1.17356 0.586779 0.809747i \(-0.300396\pi\)
0.586779 + 0.809747i \(0.300396\pi\)
\(212\) 0 0
\(213\) 5.90096 0.404327
\(214\) 0 0
\(215\) 12.3287i 0.840811i
\(216\) 0 0
\(217\) 9.76635i 0.662983i
\(218\) 0 0
\(219\) −13.7286 −0.927695
\(220\) 0 0
\(221\) 15.5661i 1.04709i
\(222\) 0 0
\(223\) −10.5808 −0.708542 −0.354271 0.935143i \(-0.615271\pi\)
−0.354271 + 0.935143i \(0.615271\pi\)
\(224\) 0 0
\(225\) −2.12219 −0.141479
\(226\) 0 0
\(227\) −9.97902 −0.662331 −0.331165 0.943573i \(-0.607442\pi\)
−0.331165 + 0.943573i \(0.607442\pi\)
\(228\) 0 0
\(229\) −11.9053 −0.786724 −0.393362 0.919384i \(-0.628688\pi\)
−0.393362 + 0.919384i \(0.628688\pi\)
\(230\) 0 0
\(231\) −4.28679 −0.282050
\(232\) 0 0
\(233\) 5.86245 0.384062 0.192031 0.981389i \(-0.438493\pi\)
0.192031 + 0.981389i \(0.438493\pi\)
\(234\) 0 0
\(235\) 16.2230i 1.05827i
\(236\) 0 0
\(237\) −11.3085 −0.734567
\(238\) 0 0
\(239\) 15.6175i 1.01021i 0.863057 + 0.505107i \(0.168547\pi\)
−0.863057 + 0.505107i \(0.831453\pi\)
\(240\) 0 0
\(241\) 19.2781i 1.24181i −0.783886 0.620905i \(-0.786765\pi\)
0.783886 0.620905i \(-0.213235\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 12.0051 0.766979
\(246\) 0 0
\(247\) −10.3170 + 10.5562i −0.656457 + 0.671672i
\(248\) 0 0
\(249\) 5.07385i 0.321542i
\(250\) 0 0
\(251\) 0.633320i 0.0399748i 0.999800 + 0.0199874i \(0.00636261\pi\)
−0.999800 + 0.0199874i \(0.993637\pi\)
\(252\) 0 0
\(253\) −5.72606 −0.359994
\(254\) 0 0
\(255\) −7.79805 −0.488333
\(256\) 0 0
\(257\) 27.6282i 1.72340i −0.507417 0.861701i \(-0.669400\pi\)
0.507417 0.861701i \(-0.330600\pi\)
\(258\) 0 0
\(259\) −5.64381 −0.350689
\(260\) 0 0
\(261\) 1.50164i 0.0929494i
\(262\) 0 0
\(263\) 5.27755i 0.325428i −0.986673 0.162714i \(-0.947975\pi\)
0.986673 0.162714i \(-0.0520247\pi\)
\(264\) 0 0
\(265\) 15.6027i 0.958469i
\(266\) 0 0
\(267\) 4.42244i 0.270649i
\(268\) 0 0
\(269\) 2.43012i 0.148167i 0.997252 + 0.0740834i \(0.0236031\pi\)
−0.997252 + 0.0740834i \(0.976397\pi\)
\(270\) 0 0
\(271\) 18.1691i 1.10369i −0.833945 0.551847i \(-0.813923\pi\)
0.833945 0.551847i \(-0.186077\pi\)
\(272\) 0 0
\(273\) 12.7051 0.768945
\(274\) 0 0
\(275\) 2.42474i 0.146217i
\(276\) 0 0
\(277\) 22.6189 1.35904 0.679519 0.733658i \(-0.262188\pi\)
0.679519 + 0.733658i \(0.262188\pi\)
\(278\) 0 0
\(279\) −2.60304 −0.155840
\(280\) 0 0
\(281\) 20.2656i 1.20894i −0.796626 0.604472i \(-0.793384\pi\)
0.796626 0.604472i \(-0.206616\pi\)
\(282\) 0 0
\(283\) 13.6187i 0.809546i 0.914417 + 0.404773i \(0.132649\pi\)
−0.914417 + 0.404773i \(0.867351\pi\)
\(284\) 0 0
\(285\) −5.28825 5.16845i −0.313249 0.306153i
\(286\) 0 0
\(287\) −34.5081 −2.03695
\(288\) 0 0
\(289\) 4.13048 0.242969
\(290\) 0 0
\(291\) 4.74665i 0.278253i
\(292\) 0 0
\(293\) 4.61940i 0.269868i −0.990855 0.134934i \(-0.956918\pi\)
0.990855 0.134934i \(-0.0430822\pi\)
\(294\) 0 0
\(295\) 7.99090 0.465248
\(296\) 0 0
\(297\) 1.14256i 0.0662983i
\(298\) 0 0
\(299\) 16.9707 0.981443
\(300\) 0 0
\(301\) −27.2670 −1.57165
\(302\) 0 0
\(303\) 6.74733 0.387624
\(304\) 0 0
\(305\) 22.0944 1.26512
\(306\) 0 0
\(307\) −3.37396 −0.192562 −0.0962811 0.995354i \(-0.530695\pi\)
−0.0962811 + 0.995354i \(0.530695\pi\)
\(308\) 0 0
\(309\) 12.0610 0.686128
\(310\) 0 0
\(311\) 27.0077i 1.53147i −0.643158 0.765734i \(-0.722376\pi\)
0.643158 0.765734i \(-0.277624\pi\)
\(312\) 0 0
\(313\) −4.86622 −0.275055 −0.137527 0.990498i \(-0.543916\pi\)
−0.137527 + 0.990498i \(0.543916\pi\)
\(314\) 0 0
\(315\) 6.36477i 0.358614i
\(316\) 0 0
\(317\) 27.1413i 1.52441i 0.647336 + 0.762205i \(0.275883\pi\)
−0.647336 + 0.762205i \(0.724117\pi\)
\(318\) 0 0
\(319\) −1.71572 −0.0960621
\(320\) 0 0
\(321\) 15.9929 0.892638
\(322\) 0 0
\(323\) 14.3296 + 14.0050i 0.797322 + 0.779260i
\(324\) 0 0
\(325\) 7.18636i 0.398628i
\(326\) 0 0
\(327\) 2.41446i 0.133520i
\(328\) 0 0
\(329\) −35.8798 −1.97812
\(330\) 0 0
\(331\) 24.3832 1.34022 0.670111 0.742261i \(-0.266246\pi\)
0.670111 + 0.742261i \(0.266246\pi\)
\(332\) 0 0
\(333\) 1.50425i 0.0824325i
\(334\) 0 0
\(335\) −22.9185 −1.25217
\(336\) 0 0
\(337\) 6.27799i 0.341984i −0.985272 0.170992i \(-0.945303\pi\)
0.985272 0.170992i \(-0.0546972\pi\)
\(338\) 0 0
\(339\) 10.9278i 0.593517i
\(340\) 0 0
\(341\) 2.97414i 0.161059i
\(342\) 0 0
\(343\) 0.288034i 0.0155524i
\(344\) 0 0
\(345\) 8.50171i 0.457717i
\(346\) 0 0
\(347\) 33.0018i 1.77163i −0.464038 0.885816i \(-0.653600\pi\)
0.464038 0.885816i \(-0.346400\pi\)
\(348\) 0 0
\(349\) −7.40263 −0.396254 −0.198127 0.980176i \(-0.563486\pi\)
−0.198127 + 0.980176i \(0.563486\pi\)
\(350\) 0 0
\(351\) 3.38630i 0.180747i
\(352\) 0 0
\(353\) 23.6333 1.25787 0.628937 0.777457i \(-0.283491\pi\)
0.628937 + 0.777457i \(0.283491\pi\)
\(354\) 0 0
\(355\) −10.0105 −0.531300
\(356\) 0 0
\(357\) 17.2467i 0.912793i
\(358\) 0 0
\(359\) 17.3533i 0.915875i 0.888984 + 0.457937i \(0.151412\pi\)
−0.888984 + 0.457937i \(0.848588\pi\)
\(360\) 0 0
\(361\) 0.435277 + 18.9950i 0.0229093 + 0.999738i
\(362\) 0 0
\(363\) 9.69455 0.508832
\(364\) 0 0
\(365\) 23.2894 1.21902
\(366\) 0 0
\(367\) 14.0084i 0.731233i 0.930766 + 0.365617i \(0.119142\pi\)
−0.930766 + 0.365617i \(0.880858\pi\)
\(368\) 0 0
\(369\) 9.19750i 0.478803i
\(370\) 0 0
\(371\) −34.5081 −1.79157
\(372\) 0 0
\(373\) 18.1502i 0.939784i 0.882724 + 0.469892i \(0.155707\pi\)
−0.882724 + 0.469892i \(0.844293\pi\)
\(374\) 0 0
\(375\) 12.0822 0.623920
\(376\) 0 0
\(377\) 5.08501 0.261891
\(378\) 0 0
\(379\) −31.5940 −1.62288 −0.811438 0.584439i \(-0.801315\pi\)
−0.811438 + 0.584439i \(0.801315\pi\)
\(380\) 0 0
\(381\) 9.92662 0.508556
\(382\) 0 0
\(383\) 10.9392 0.558969 0.279485 0.960150i \(-0.409836\pi\)
0.279485 + 0.960150i \(0.409836\pi\)
\(384\) 0 0
\(385\) 7.27216 0.370624
\(386\) 0 0
\(387\) 7.26752i 0.369429i
\(388\) 0 0
\(389\) 13.6666 0.692923 0.346462 0.938064i \(-0.387383\pi\)
0.346462 + 0.938064i \(0.387383\pi\)
\(390\) 0 0
\(391\) 23.0372i 1.16504i
\(392\) 0 0
\(393\) 4.67124i 0.235633i
\(394\) 0 0
\(395\) 19.1839 0.965247
\(396\) 0 0
\(397\) 4.75975 0.238885 0.119443 0.992841i \(-0.461889\pi\)
0.119443 + 0.992841i \(0.461889\pi\)
\(398\) 0 0
\(399\) 11.4309 11.6959i 0.572261 0.585525i
\(400\) 0 0
\(401\) 28.8543i 1.44092i 0.693499 + 0.720458i \(0.256068\pi\)
−0.693499 + 0.720458i \(0.743932\pi\)
\(402\) 0 0
\(403\) 8.81467i 0.439090i
\(404\) 0 0
\(405\) −1.69641 −0.0842954
\(406\) 0 0
\(407\) −1.71870 −0.0851930
\(408\) 0 0
\(409\) 31.6463i 1.56481i 0.622771 + 0.782404i \(0.286007\pi\)
−0.622771 + 0.782404i \(0.713993\pi\)
\(410\) 0 0
\(411\) −16.0194 −0.790181
\(412\) 0 0
\(413\) 17.6732i 0.869643i
\(414\) 0 0
\(415\) 8.60734i 0.422518i
\(416\) 0 0
\(417\) 11.8297i 0.579305i
\(418\) 0 0
\(419\) 15.4272i 0.753667i 0.926281 + 0.376833i \(0.122987\pi\)
−0.926281 + 0.376833i \(0.877013\pi\)
\(420\) 0 0
\(421\) 33.1566i 1.61596i 0.589213 + 0.807978i \(0.299438\pi\)
−0.589213 + 0.807978i \(0.700562\pi\)
\(422\) 0 0
\(423\) 9.56310i 0.464974i
\(424\) 0 0
\(425\) −9.75525 −0.473199
\(426\) 0 0
\(427\) 48.8654i 2.36476i
\(428\) 0 0
\(429\) 3.86906 0.186800
\(430\) 0 0
\(431\) 34.3209 1.65318 0.826591 0.562803i \(-0.190277\pi\)
0.826591 + 0.562803i \(0.190277\pi\)
\(432\) 0 0
\(433\) 28.2056i 1.35547i 0.735305 + 0.677737i \(0.237039\pi\)
−0.735305 + 0.677737i \(0.762961\pi\)
\(434\) 0 0
\(435\) 2.54740i 0.122139i
\(436\) 0 0
\(437\) 15.2688 15.6227i 0.730405 0.747334i
\(438\) 0 0
\(439\) −25.8050 −1.23161 −0.615804 0.787899i \(-0.711169\pi\)
−0.615804 + 0.787899i \(0.711169\pi\)
\(440\) 0 0
\(441\) −7.07677 −0.336989
\(442\) 0 0
\(443\) 0.824311i 0.0391642i −0.999808 0.0195821i \(-0.993766\pi\)
0.999808 0.0195821i \(-0.00623357\pi\)
\(444\) 0 0
\(445\) 7.50229i 0.355642i
\(446\) 0 0
\(447\) −8.91978 −0.421891
\(448\) 0 0
\(449\) 36.3663i 1.71623i −0.513457 0.858115i \(-0.671636\pi\)
0.513457 0.858115i \(-0.328364\pi\)
\(450\) 0 0
\(451\) −10.5087 −0.494837
\(452\) 0 0
\(453\) 13.2770 0.623807
\(454\) 0 0
\(455\) −21.5530 −1.01042
\(456\) 0 0
\(457\) 2.74881 0.128584 0.0642921 0.997931i \(-0.479521\pi\)
0.0642921 + 0.997931i \(0.479521\pi\)
\(458\) 0 0
\(459\) 4.59679 0.214560
\(460\) 0 0
\(461\) 30.2335 1.40812 0.704058 0.710142i \(-0.251369\pi\)
0.704058 + 0.710142i \(0.251369\pi\)
\(462\) 0 0
\(463\) 6.38444i 0.296710i 0.988934 + 0.148355i \(0.0473979\pi\)
−0.988934 + 0.148355i \(0.952602\pi\)
\(464\) 0 0
\(465\) 4.41583 0.204779
\(466\) 0 0
\(467\) 13.1338i 0.607762i −0.952710 0.303881i \(-0.901718\pi\)
0.952710 0.303881i \(-0.0982825\pi\)
\(468\) 0 0
\(469\) 50.6881i 2.34056i
\(470\) 0 0
\(471\) −4.39158 −0.202353
\(472\) 0 0
\(473\) −8.30361 −0.381801
\(474\) 0 0
\(475\) −6.61552 6.46566i −0.303541 0.296665i
\(476\) 0 0
\(477\) 9.19750i 0.421124i
\(478\) 0 0
\(479\) 20.3564i 0.930108i 0.885282 + 0.465054i \(0.153965\pi\)
−0.885282 + 0.465054i \(0.846035\pi\)
\(480\) 0 0
\(481\) 5.09385 0.232259
\(482\) 0 0
\(483\) −18.8030 −0.855565
\(484\) 0 0
\(485\) 8.05227i 0.365635i
\(486\) 0 0
\(487\) 22.2061 1.00626 0.503128 0.864212i \(-0.332182\pi\)
0.503128 + 0.864212i \(0.332182\pi\)
\(488\) 0 0
\(489\) 12.9407i 0.585200i
\(490\) 0 0
\(491\) 14.9595i 0.675114i 0.941305 + 0.337557i \(0.109600\pi\)
−0.941305 + 0.337557i \(0.890400\pi\)
\(492\) 0 0
\(493\) 6.90274i 0.310884i
\(494\) 0 0
\(495\) 1.93826i 0.0871183i
\(496\) 0 0
\(497\) 22.1398i 0.993107i
\(498\) 0 0
\(499\) 38.5856i 1.72733i −0.504069 0.863663i \(-0.668164\pi\)
0.504069 0.863663i \(-0.331836\pi\)
\(500\) 0 0
\(501\) −16.6261 −0.742800
\(502\) 0 0
\(503\) 22.1268i 0.986586i 0.869863 + 0.493293i \(0.164207\pi\)
−0.869863 + 0.493293i \(0.835793\pi\)
\(504\) 0 0
\(505\) −11.4462 −0.509351
\(506\) 0 0
\(507\) 1.53298 0.0680820
\(508\) 0 0
\(509\) 44.6469i 1.97894i 0.144738 + 0.989470i \(0.453766\pi\)
−0.144738 + 0.989470i \(0.546234\pi\)
\(510\) 0 0
\(511\) 51.5085i 2.27860i
\(512\) 0 0
\(513\) 3.11731 + 3.04670i 0.137633 + 0.134515i
\(514\) 0 0
\(515\) −20.4605 −0.901597
\(516\) 0 0
\(517\) −10.9265 −0.480545
\(518\) 0 0
\(519\) 7.63053i 0.334943i
\(520\) 0 0
\(521\) 11.4136i 0.500040i 0.968241 + 0.250020i \(0.0804372\pi\)
−0.968241 + 0.250020i \(0.919563\pi\)
\(522\) 0 0
\(523\) −12.7208 −0.556241 −0.278120 0.960546i \(-0.589711\pi\)
−0.278120 + 0.960546i \(0.589711\pi\)
\(524\) 0 0
\(525\) 7.96224i 0.347501i
\(526\) 0 0
\(527\) −11.9656 −0.521231
\(528\) 0 0
\(529\) −2.11600 −0.0919999
\(530\) 0 0
\(531\) −4.71047 −0.204417
\(532\) 0 0
\(533\) 31.1455 1.34906
\(534\) 0 0
\(535\) −27.1306 −1.17296
\(536\) 0 0
\(537\) −1.31105 −0.0565760
\(538\) 0 0
\(539\) 8.08566i 0.348274i
\(540\) 0 0
\(541\) −35.1306 −1.51038 −0.755192 0.655504i \(-0.772456\pi\)
−0.755192 + 0.655504i \(0.772456\pi\)
\(542\) 0 0
\(543\) 12.8711i 0.552351i
\(544\) 0 0
\(545\) 4.09591i 0.175450i
\(546\) 0 0
\(547\) 29.4541 1.25937 0.629684 0.776852i \(-0.283184\pi\)
0.629684 + 0.776852i \(0.283184\pi\)
\(548\) 0 0
\(549\) −13.0242 −0.555858
\(550\) 0 0
\(551\) 4.57505 4.68109i 0.194904 0.199421i
\(552\) 0 0
\(553\) 42.4285i 1.80424i
\(554\) 0 0
\(555\) 2.55183i 0.108319i
\(556\) 0 0
\(557\) −10.6241 −0.450157 −0.225079 0.974341i \(-0.572264\pi\)
−0.225079 + 0.974341i \(0.572264\pi\)
\(558\) 0 0
\(559\) 24.6100 1.04089
\(560\) 0 0
\(561\) 5.25213i 0.221745i
\(562\) 0 0
\(563\) −16.8954 −0.712056 −0.356028 0.934475i \(-0.615869\pi\)
−0.356028 + 0.934475i \(0.615869\pi\)
\(564\) 0 0
\(565\) 18.5381i 0.779902i
\(566\) 0 0
\(567\) 3.75190i 0.157565i
\(568\) 0 0
\(569\) 11.6671i 0.489109i −0.969636 0.244555i \(-0.921358\pi\)
0.969636 0.244555i \(-0.0786417\pi\)
\(570\) 0 0
\(571\) 23.6655i 0.990370i −0.868787 0.495185i \(-0.835100\pi\)
0.868787 0.495185i \(-0.164900\pi\)
\(572\) 0 0
\(573\) 2.99551i 0.125139i
\(574\) 0 0
\(575\) 10.6355i 0.443532i
\(576\) 0 0
\(577\) 43.8578 1.82583 0.912913 0.408155i \(-0.133828\pi\)
0.912913 + 0.408155i \(0.133828\pi\)
\(578\) 0 0
\(579\) 3.76959i 0.156659i
\(580\) 0 0
\(581\) −19.0366 −0.789771
\(582\) 0 0
\(583\) −10.5087 −0.435227
\(584\) 0 0
\(585\) 5.74456i 0.237508i
\(586\) 0 0
\(587\) 3.86984i 0.159725i −0.996806 0.0798627i \(-0.974552\pi\)
0.996806 0.0798627i \(-0.0254482\pi\)
\(588\) 0 0
\(589\) −8.11449 7.93067i −0.334352 0.326778i
\(590\) 0 0
\(591\) 13.6614 0.561956
\(592\) 0 0
\(593\) 3.15728 0.129654 0.0648270 0.997897i \(-0.479350\pi\)
0.0648270 + 0.997897i \(0.479350\pi\)
\(594\) 0 0
\(595\) 29.2575i 1.19944i
\(596\) 0 0
\(597\) 3.75712i 0.153769i
\(598\) 0 0
\(599\) 17.6525 0.721261 0.360631 0.932709i \(-0.382561\pi\)
0.360631 + 0.932709i \(0.382561\pi\)
\(600\) 0 0
\(601\) 23.3358i 0.951887i 0.879476 + 0.475944i \(0.157893\pi\)
−0.879476 + 0.475944i \(0.842107\pi\)
\(602\) 0 0
\(603\) 13.5100 0.550169
\(604\) 0 0
\(605\) −16.4459 −0.668623
\(606\) 0 0
\(607\) 23.1559 0.939870 0.469935 0.882701i \(-0.344277\pi\)
0.469935 + 0.882701i \(0.344277\pi\)
\(608\) 0 0
\(609\) −5.63402 −0.228302
\(610\) 0 0
\(611\) 32.3835 1.31010
\(612\) 0 0
\(613\) 26.3611 1.06471 0.532357 0.846520i \(-0.321307\pi\)
0.532357 + 0.846520i \(0.321307\pi\)
\(614\) 0 0
\(615\) 15.6027i 0.629163i
\(616\) 0 0
\(617\) −38.3002 −1.54191 −0.770954 0.636891i \(-0.780220\pi\)
−0.770954 + 0.636891i \(0.780220\pi\)
\(618\) 0 0
\(619\) 3.61343i 0.145236i 0.997360 + 0.0726181i \(0.0231354\pi\)
−0.997360 + 0.0726181i \(0.976865\pi\)
\(620\) 0 0
\(621\) 5.01159i 0.201108i
\(622\) 0 0
\(623\) −16.5926 −0.664768
\(624\) 0 0
\(625\) −9.88538 −0.395415
\(626\) 0 0
\(627\) 3.48105 3.56173i 0.139020 0.142242i
\(628\) 0 0
\(629\) 6.91473i 0.275708i
\(630\) 0 0
\(631\) 13.5482i 0.539347i 0.962952 + 0.269673i \(0.0869157\pi\)
−0.962952 + 0.269673i \(0.913084\pi\)
\(632\) 0 0
\(633\) 17.0469 0.677555
\(634\) 0 0
\(635\) −16.8396 −0.668260
\(636\) 0 0
\(637\) 23.9641i 0.949491i
\(638\) 0 0
\(639\) 5.90096 0.233438
\(640\) 0 0
\(641\) 25.0663i 0.990058i −0.868877 0.495029i \(-0.835158\pi\)
0.868877 0.495029i \(-0.164842\pi\)
\(642\) 0 0
\(643\) 10.6706i 0.420809i 0.977614 + 0.210405i \(0.0674781\pi\)
−0.977614 + 0.210405i \(0.932522\pi\)
\(644\) 0 0
\(645\) 12.3287i 0.485443i
\(646\) 0 0
\(647\) 17.5261i 0.689022i −0.938782 0.344511i \(-0.888045\pi\)
0.938782 0.344511i \(-0.111955\pi\)
\(648\) 0 0
\(649\) 5.38202i 0.211263i
\(650\) 0 0
\(651\) 9.76635i 0.382774i
\(652\) 0 0
\(653\) 32.3872 1.26741 0.633704 0.773576i \(-0.281534\pi\)
0.633704 + 0.773576i \(0.281534\pi\)
\(654\) 0 0
\(655\) 7.92435i 0.309630i
\(656\) 0 0
\(657\) −13.7286 −0.535605
\(658\) 0 0
\(659\) −26.9073 −1.04816 −0.524080 0.851669i \(-0.675591\pi\)
−0.524080 + 0.851669i \(0.675591\pi\)
\(660\) 0 0
\(661\) 0.0716909i 0.00278845i −0.999999 0.00139423i \(-0.999556\pi\)
0.999999 0.00139423i \(-0.000443796\pi\)
\(662\) 0 0
\(663\) 15.5661i 0.604537i
\(664\) 0 0
\(665\) −19.3915 + 19.8410i −0.751971 + 0.769400i
\(666\) 0 0
\(667\) −7.52561 −0.291393
\(668\) 0 0
\(669\) −10.5808 −0.409077
\(670\) 0 0
\(671\) 14.8809i 0.574473i
\(672\) 0 0
\(673\) 21.6090i 0.832967i 0.909143 + 0.416483i \(0.136738\pi\)
−0.909143 + 0.416483i \(0.863262\pi\)
\(674\) 0 0
\(675\) −2.12219 −0.0816830
\(676\) 0 0
\(677\) 9.37382i 0.360265i 0.983642 + 0.180133i \(0.0576527\pi\)
−0.983642 + 0.180133i \(0.942347\pi\)
\(678\) 0 0
\(679\) 17.8090 0.683445
\(680\) 0 0
\(681\) −9.97902 −0.382397
\(682\) 0 0
\(683\) −34.3840 −1.31567 −0.657834 0.753163i \(-0.728527\pi\)
−0.657834 + 0.753163i \(0.728527\pi\)
\(684\) 0 0
\(685\) 27.1756 1.03833
\(686\) 0 0
\(687\) −11.9053 −0.454215
\(688\) 0 0
\(689\) 31.1455 1.18655
\(690\) 0 0
\(691\) 46.8495i 1.78224i −0.453767 0.891120i \(-0.649920\pi\)
0.453767 0.891120i \(-0.350080\pi\)
\(692\) 0 0
\(693\) −4.28679 −0.162842
\(694\) 0 0
\(695\) 20.0681i 0.761227i
\(696\) 0 0
\(697\) 42.2790i 1.60143i
\(698\) 0 0
\(699\) 5.86245 0.221738
\(700\) 0 0
\(701\) −45.8273 −1.73087 −0.865436 0.501019i \(-0.832959\pi\)
−0.865436 + 0.501019i \(0.832959\pi\)
\(702\) 0 0
\(703\) 4.58300 4.68922i 0.172851 0.176857i
\(704\) 0 0
\(705\) 16.2230i 0.610992i
\(706\) 0 0
\(707\) 25.3153i 0.952080i
\(708\) 0 0
\(709\) −37.3018 −1.40090 −0.700449 0.713702i \(-0.747017\pi\)
−0.700449 + 0.713702i \(0.747017\pi\)
\(710\) 0 0
\(711\) −11.3085 −0.424103
\(712\) 0 0
\(713\) 13.0454i 0.488553i
\(714\) 0 0
\(715\) −6.56352 −0.245462
\(716\) 0 0
\(717\) 15.6175i 0.583248i
\(718\) 0 0
\(719\) 5.85053i 0.218188i 0.994031 + 0.109094i \(0.0347949\pi\)
−0.994031 + 0.109094i \(0.965205\pi\)
\(720\) 0 0
\(721\) 45.2518i 1.68527i
\(722\) 0 0
\(723\) 19.2781i 0.716960i
\(724\) 0 0
\(725\) 3.18677i 0.118354i
\(726\) 0 0
\(727\) 25.6941i 0.952941i 0.879190 + 0.476471i \(0.158084\pi\)
−0.879190 + 0.476471i \(0.841916\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 33.4073i 1.23561i
\(732\) 0 0
\(733\) −20.2806 −0.749081 −0.374541 0.927210i \(-0.622200\pi\)
−0.374541 + 0.927210i \(0.622200\pi\)
\(734\) 0 0
\(735\) 12.0051 0.442815
\(736\) 0 0
\(737\) 15.4360i 0.568593i
\(738\) 0 0
\(739\) 35.8855i 1.32007i −0.751235 0.660035i \(-0.770542\pi\)
0.751235 0.660035i \(-0.229458\pi\)
\(740\) 0 0
\(741\) −10.3170 + 10.5562i −0.379005 + 0.387790i
\(742\) 0 0
\(743\) 43.0655 1.57992 0.789960 0.613159i \(-0.210101\pi\)
0.789960 + 0.613159i \(0.210101\pi\)
\(744\) 0 0
\(745\) 15.1316 0.554380
\(746\) 0 0
\(747\) 5.07385i 0.185643i
\(748\) 0 0
\(749\) 60.0039i 2.19249i
\(750\) 0 0
\(751\) 54.5587 1.99088 0.995439 0.0954054i \(-0.0304147\pi\)
0.995439 + 0.0954054i \(0.0304147\pi\)
\(752\) 0 0
\(753\) 0.633320i 0.0230795i
\(754\) 0 0
\(755\) −22.5232 −0.819704
\(756\) 0 0
\(757\) −7.92358 −0.287987 −0.143994 0.989579i \(-0.545995\pi\)
−0.143994 + 0.989579i \(0.545995\pi\)
\(758\) 0 0
\(759\) −5.72606 −0.207843
\(760\) 0 0
\(761\) −1.46075 −0.0529520 −0.0264760 0.999649i \(-0.508429\pi\)
−0.0264760 + 0.999649i \(0.508429\pi\)
\(762\) 0 0
\(763\) −9.05881 −0.327951
\(764\) 0 0
\(765\) −7.79805 −0.281939
\(766\) 0 0
\(767\) 15.9511i 0.575960i
\(768\) 0 0
\(769\) 44.8348 1.61678 0.808392 0.588644i \(-0.200338\pi\)
0.808392 + 0.588644i \(0.200338\pi\)
\(770\) 0 0
\(771\) 27.6282i 0.995006i
\(772\) 0 0
\(773\) 24.5407i 0.882668i 0.897343 + 0.441334i \(0.145495\pi\)
−0.897343 + 0.441334i \(0.854505\pi\)
\(774\) 0 0
\(775\) 5.52414 0.198433
\(776\) 0 0
\(777\) −5.64381 −0.202470
\(778\) 0 0
\(779\) 28.0220 28.6715i 1.00399 1.02726i
\(780\) 0 0
\(781\) 6.74223i 0.241256i
\(782\) 0 0
\(783\) 1.50164i 0.0536644i
\(784\) 0 0
\(785\) 7.44992 0.265899
\(786\) 0 0
\(787\) 8.16670 0.291111 0.145556 0.989350i \(-0.453503\pi\)
0.145556 + 0.989350i \(0.453503\pi\)
\(788\) 0 0
\(789\) 5.27755i 0.187886i
\(790\) 0 0
\(791\) 41.0001 1.45779
\(792\) 0 0
\(793\) 44.1037i 1.56617i
\(794\) 0 0
\(795\) 15.6027i 0.553372i
\(796\) 0 0
\(797\) 49.7979i 1.76393i 0.471313 + 0.881966i \(0.343780\pi\)
−0.471313 + 0.881966i \(0.656220\pi\)
\(798\) 0 0
\(799\) 43.9596i 1.55518i
\(800\) 0 0
\(801\) 4.42244i 0.156259i
\(802\) 0 0
\(803\) 15.6858i 0.553541i
\(804\) 0 0
\(805\) 31.8976 1.12424
\(806\) 0 0
\(807\) 2.43012i 0.0855441i
\(808\) 0 0
\(809\) −5.26349 −0.185055 −0.0925273 0.995710i \(-0.529495\pi\)
−0.0925273 + 0.995710i \(0.529495\pi\)
\(810\) 0 0
\(811\) −13.0982 −0.459941 −0.229970 0.973198i \(-0.573863\pi\)
−0.229970 + 0.973198i \(0.573863\pi\)
\(812\) 0 0
\(813\) 18.1691i 0.637218i
\(814\) 0 0
\(815\) 21.9528i 0.768974i
\(816\) 0 0
\(817\) 22.1419 22.6551i 0.774649 0.792603i
\(818\) 0 0
\(819\) 12.7051 0.443951
\(820\) 0 0
\(821\) −11.1354 −0.388629 −0.194315 0.980939i \(-0.562248\pi\)
−0.194315 + 0.980939i \(0.562248\pi\)
\(822\) 0 0
\(823\) 44.3375i 1.54551i 0.634706 + 0.772754i \(0.281121\pi\)
−0.634706 + 0.772754i \(0.718879\pi\)
\(824\) 0 0
\(825\) 2.42474i 0.0844185i
\(826\) 0 0
\(827\) 0.746039 0.0259423 0.0129712 0.999916i \(-0.495871\pi\)
0.0129712 + 0.999916i \(0.495871\pi\)
\(828\) 0 0
\(829\) 49.3157i 1.71281i 0.516307 + 0.856403i \(0.327306\pi\)
−0.516307 + 0.856403i \(0.672694\pi\)
\(830\) 0 0
\(831\) 22.6189 0.784641
\(832\) 0 0
\(833\) −32.5304 −1.12711
\(834\) 0 0
\(835\) 28.2047 0.976065
\(836\) 0 0
\(837\) −2.60304 −0.0899742
\(838\) 0 0
\(839\) 27.3775 0.945175 0.472587 0.881284i \(-0.343320\pi\)
0.472587 + 0.881284i \(0.343320\pi\)
\(840\) 0 0
\(841\) 26.7451 0.922244
\(842\) 0 0
\(843\) 20.2656i 0.697985i
\(844\) 0 0
\(845\) −2.60057 −0.0894622
\(846\) 0 0
\(847\) 36.3730i 1.24979i
\(848\) 0 0
\(849\) 13.6187i 0.467392i
\(850\) 0 0
\(851\) −7.53869 −0.258423
\(852\) 0 0
\(853\) −23.1550 −0.792813 −0.396406 0.918075i \(-0.629743\pi\)
−0.396406 + 0.918075i \(0.629743\pi\)
\(854\) 0 0
\(855\) −5.28825 5.16845i −0.180854 0.176757i
\(856\) 0 0
\(857\) 9.01757i 0.308034i 0.988068 + 0.154017i \(0.0492211\pi\)
−0.988068 + 0.154017i \(0.950779\pi\)
\(858\) 0 0
\(859\) 17.1798i 0.586169i −0.956087 0.293084i \(-0.905318\pi\)
0.956087 0.293084i \(-0.0946817\pi\)
\(860\) 0 0
\(861\) −34.5081 −1.17603
\(862\) 0 0
\(863\) 21.7095 0.739000 0.369500 0.929231i \(-0.379529\pi\)
0.369500 + 0.929231i \(0.379529\pi\)
\(864\) 0 0
\(865\) 12.9445i 0.440127i
\(866\) 0 0
\(867\) 4.13048 0.140278
\(868\) 0 0
\(869\) 12.9207i 0.438305i
\(870\) 0 0
\(871\) 45.7488i 1.55014i
\(872\) 0 0
\(873\) 4.74665i 0.160650i
\(874\) 0 0
\(875\) 45.3311i 1.53247i
\(876\) 0 0
\(877\) 38.2240i 1.29073i −0.763873 0.645367i \(-0.776704\pi\)
0.763873 0.645367i \(-0.223296\pi\)
\(878\) 0 0
\(879\) 4.61940i 0.155808i
\(880\) 0 0
\(881\) −33.3148 −1.12241 −0.561203 0.827678i \(-0.689661\pi\)
−0.561203 + 0.827678i \(0.689661\pi\)
\(882\) 0 0
\(883\) 13.9552i 0.469630i −0.972040 0.234815i \(-0.924552\pi\)
0.972040 0.234815i \(-0.0754484\pi\)
\(884\) 0 0
\(885\) 7.99090 0.268611
\(886\) 0 0
\(887\) 39.5218 1.32701 0.663507 0.748170i \(-0.269067\pi\)
0.663507 + 0.748170i \(0.269067\pi\)
\(888\) 0 0
\(889\) 37.2437i 1.24911i
\(890\) 0 0
\(891\) 1.14256i 0.0382773i
\(892\) 0 0
\(893\) 29.1359 29.8112i 0.974994 0.997593i
\(894\) 0 0
\(895\) 2.22408 0.0743428
\(896\) 0 0
\(897\) 16.9707 0.566636
\(898\) 0 0
\(899\) 3.90884i 0.130367i
\(900\) 0 0
\(901\) 42.2790i 1.40852i
\(902\) 0 0
\(903\) −27.2670 −0.907390
\(904\) 0 0
\(905\) 21.8347i 0.725809i
\(906\) 0 0
\(907\) −22.8201 −0.757730 −0.378865 0.925452i \(-0.623686\pi\)
−0.378865 + 0.925452i \(0.623686\pi\)
\(908\) 0 0
\(909\) 6.74733 0.223795
\(910\) 0 0
\(911\) 15.6901 0.519837 0.259918 0.965631i \(-0.416304\pi\)
0.259918 + 0.965631i \(0.416304\pi\)
\(912\) 0 0
\(913\) −5.79720 −0.191859
\(914\) 0 0
\(915\) 22.0944 0.730417
\(916\) 0 0
\(917\) 17.5260 0.578761
\(918\) 0 0
\(919\) 39.6439i 1.30773i −0.756611 0.653865i \(-0.773146\pi\)
0.756611 0.653865i \(-0.226854\pi\)
\(920\) 0 0
\(921\) −3.37396 −0.111176
\(922\) 0 0
\(923\) 19.9824i 0.657729i
\(924\) 0 0
\(925\) 3.19230i 0.104962i
\(926\) 0 0
\(927\) 12.0610 0.396136
\(928\) 0 0
\(929\) −48.5092 −1.59154 −0.795768 0.605602i \(-0.792933\pi\)
−0.795768 + 0.605602i \(0.792933\pi\)
\(930\) 0 0
\(931\) −22.0605 21.5608i −0.723004 0.706626i
\(932\) 0 0
\(933\) 27.0077i 0.884193i
\(934\) 0 0
\(935\) 8.90977i 0.291381i
\(936\) 0 0
\(937\) −25.3446 −0.827971 −0.413986 0.910283i \(-0.635864\pi\)
−0.413986 + 0.910283i \(0.635864\pi\)
\(938\) 0 0
\(939\) −4.86622 −0.158803
\(940\) 0 0
\(941\) 5.02120i 0.163686i 0.996645 + 0.0818432i \(0.0260807\pi\)
−0.996645 + 0.0818432i \(0.973919\pi\)
\(942\) 0 0
\(943\) −46.0940 −1.50103
\(944\) 0 0
\(945\) 6.36477i 0.207046i
\(946\) 0 0
\(947\) 50.5868i 1.64385i 0.569595 + 0.821926i \(0.307100\pi\)
−0.569595 + 0.821926i \(0.692900\pi\)
\(948\) 0 0
\(949\) 46.4893i 1.50910i
\(950\) 0 0
\(951\) 27.1413i 0.880118i
\(952\) 0 0
\(953\) 36.2995i 1.17586i 0.808913 + 0.587928i \(0.200056\pi\)
−0.808913 + 0.587928i \(0.799944\pi\)
\(954\) 0 0
\(955\) 5.08161i 0.164437i
\(956\) 0 0
\(957\) −1.71572 −0.0554615
\(958\) 0 0
\(959\) 60.1034i 1.94084i
\(960\) 0 0
\(961\) −24.2242 −0.781425
\(962\) 0 0
\(963\) 15.9929 0.515365
\(964\) 0 0
\(965\) 6.39478i 0.205855i
\(966\) 0 0
\(967\) 16.5835i 0.533291i −0.963795 0.266645i \(-0.914085\pi\)
0.963795 0.266645i \(-0.0859153\pi\)
\(968\) 0 0
\(969\) 14.3296 + 14.0050i 0.460334 + 0.449906i
\(970\) 0 0
\(971\) −20.4937 −0.657675 −0.328838 0.944386i \(-0.606657\pi\)
−0.328838 + 0.944386i \(0.606657\pi\)
\(972\) 0 0
\(973\) 44.3840 1.42289
\(974\) 0 0
\(975\) 7.18636i 0.230148i
\(976\) 0 0
\(977\) 56.4051i 1.80456i −0.431152 0.902279i \(-0.641893\pi\)
0.431152 0.902279i \(-0.358107\pi\)
\(978\) 0 0
\(979\) −5.05293 −0.161492
\(980\) 0 0
\(981\) 2.41446i 0.0770877i
\(982\) 0 0
\(983\) −24.2710 −0.774124 −0.387062 0.922054i \(-0.626510\pi\)
−0.387062 + 0.922054i \(0.626510\pi\)
\(984\) 0 0
\(985\) −23.1754 −0.738429
\(986\) 0 0
\(987\) −35.8798 −1.14207
\(988\) 0 0
\(989\) −36.4218 −1.15815
\(990\) 0 0
\(991\) −53.9141 −1.71264 −0.856319 0.516447i \(-0.827254\pi\)
−0.856319 + 0.516447i \(0.827254\pi\)
\(992\) 0 0
\(993\) 24.3832 0.773778
\(994\) 0 0
\(995\) 6.37362i 0.202057i
\(996\) 0 0
\(997\) 19.3244 0.612010 0.306005 0.952030i \(-0.401008\pi\)
0.306005 + 0.952030i \(0.401008\pi\)
\(998\) 0 0
\(999\) 1.50425i 0.0475924i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.k.b.607.5 yes 20
3.2 odd 2 5472.2.k.b.2431.15 20
4.3 odd 2 1824.2.k.a.607.6 yes 20
8.3 odd 2 3648.2.k.l.2431.16 20
8.5 even 2 3648.2.k.k.2431.15 20
12.11 even 2 5472.2.k.a.2431.16 20
19.18 odd 2 1824.2.k.a.607.5 20
57.56 even 2 5472.2.k.a.2431.15 20
76.75 even 2 inner 1824.2.k.b.607.6 yes 20
152.37 odd 2 3648.2.k.l.2431.15 20
152.75 even 2 3648.2.k.k.2431.16 20
228.227 odd 2 5472.2.k.b.2431.16 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.k.a.607.5 20 19.18 odd 2
1824.2.k.a.607.6 yes 20 4.3 odd 2
1824.2.k.b.607.5 yes 20 1.1 even 1 trivial
1824.2.k.b.607.6 yes 20 76.75 even 2 inner
3648.2.k.k.2431.15 20 8.5 even 2
3648.2.k.k.2431.16 20 152.75 even 2
3648.2.k.l.2431.15 20 152.37 odd 2
3648.2.k.l.2431.16 20 8.3 odd 2
5472.2.k.a.2431.15 20 57.56 even 2
5472.2.k.a.2431.16 20 12.11 even 2
5472.2.k.b.2431.15 20 3.2 odd 2
5472.2.k.b.2431.16 20 228.227 odd 2