Properties

Label 1824.2.k.b.607.1
Level $1824$
Weight $2$
Character 1824.607
Analytic conductor $14.565$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(607,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.607"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 52 x^{18} + 986 x^{16} + 8824 x^{14} + 42757 x^{12} + 118964 x^{10} + 190576 x^{8} + 166880 x^{6} + \cdots + 784 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 607.1
Root \(0.709059i\) of defining polynomial
Character \(\chi\) \(=\) 1824.607
Dual form 1824.2.k.b.607.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -4.06455 q^{5} -3.06179i q^{7} +1.00000 q^{9} +2.03439i q^{11} -4.86979i q^{13} -4.06455 q^{15} -7.51623 q^{17} +(4.01890 + 1.68773i) q^{19} -3.06179i q^{21} +3.92817i q^{23} +11.5206 q^{25} +1.00000 q^{27} +7.10170i q^{29} -3.75541 q^{31} +2.03439i q^{33} +12.4448i q^{35} +10.3386i q^{37} -4.86979i q^{39} -1.20334i q^{41} +9.25741i q^{43} -4.06455 q^{45} -9.13493i q^{47} -2.37457 q^{49} -7.51623 q^{51} -1.20334i q^{53} -8.26888i q^{55} +(4.01890 + 1.68773i) q^{57} -2.64038 q^{59} -0.164898 q^{61} -3.06179i q^{63} +19.7935i q^{65} -5.34581 q^{67} +3.92817i q^{69} +5.59793 q^{71} -3.78023 q^{73} +11.5206 q^{75} +6.22888 q^{77} -16.4583 q^{79} +1.00000 q^{81} +10.8400i q^{83} +30.5501 q^{85} +7.10170i q^{87} +13.6422i q^{89} -14.9103 q^{91} -3.75541 q^{93} +(-16.3350 - 6.85987i) q^{95} +2.29631i q^{97} +2.03439i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} + 20 q^{9} + 4 q^{19} + 20 q^{25} + 20 q^{27} - 8 q^{31} - 44 q^{49} + 4 q^{57} - 8 q^{61} + 8 q^{67} + 64 q^{71} + 8 q^{73} + 20 q^{75} + 40 q^{77} - 16 q^{79} + 20 q^{81} + 40 q^{85} - 8 q^{93}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −4.06455 −1.81772 −0.908862 0.417098i \(-0.863047\pi\)
−0.908862 + 0.417098i \(0.863047\pi\)
\(6\) 0 0
\(7\) 3.06179i 1.15725i −0.815594 0.578624i \(-0.803590\pi\)
0.815594 0.578624i \(-0.196410\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.03439i 0.613391i 0.951808 + 0.306696i \(0.0992234\pi\)
−0.951808 + 0.306696i \(0.900777\pi\)
\(12\) 0 0
\(13\) 4.86979i 1.35064i −0.737526 0.675319i \(-0.764006\pi\)
0.737526 0.675319i \(-0.235994\pi\)
\(14\) 0 0
\(15\) −4.06455 −1.04946
\(16\) 0 0
\(17\) −7.51623 −1.82295 −0.911476 0.411352i \(-0.865057\pi\)
−0.911476 + 0.411352i \(0.865057\pi\)
\(18\) 0 0
\(19\) 4.01890 + 1.68773i 0.921999 + 0.387192i
\(20\) 0 0
\(21\) 3.06179i 0.668138i
\(22\) 0 0
\(23\) 3.92817i 0.819080i 0.912292 + 0.409540i \(0.134311\pi\)
−0.912292 + 0.409540i \(0.865689\pi\)
\(24\) 0 0
\(25\) 11.5206 2.30412
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 7.10170i 1.31875i 0.751813 + 0.659377i \(0.229180\pi\)
−0.751813 + 0.659377i \(0.770820\pi\)
\(30\) 0 0
\(31\) −3.75541 −0.674492 −0.337246 0.941416i \(-0.609495\pi\)
−0.337246 + 0.941416i \(0.609495\pi\)
\(32\) 0 0
\(33\) 2.03439i 0.354142i
\(34\) 0 0
\(35\) 12.4448i 2.10356i
\(36\) 0 0
\(37\) 10.3386i 1.69966i 0.527061 + 0.849828i \(0.323294\pi\)
−0.527061 + 0.849828i \(0.676706\pi\)
\(38\) 0 0
\(39\) 4.86979i 0.779791i
\(40\) 0 0
\(41\) 1.20334i 0.187930i −0.995575 0.0939651i \(-0.970046\pi\)
0.995575 0.0939651i \(-0.0299542\pi\)
\(42\) 0 0
\(43\) 9.25741i 1.41174i 0.708341 + 0.705871i \(0.249444\pi\)
−0.708341 + 0.705871i \(0.750556\pi\)
\(44\) 0 0
\(45\) −4.06455 −0.605908
\(46\) 0 0
\(47\) 9.13493i 1.33247i −0.745744 0.666233i \(-0.767906\pi\)
0.745744 0.666233i \(-0.232094\pi\)
\(48\) 0 0
\(49\) −2.37457 −0.339225
\(50\) 0 0
\(51\) −7.51623 −1.05248
\(52\) 0 0
\(53\) 1.20334i 0.165292i −0.996579 0.0826458i \(-0.973663\pi\)
0.996579 0.0826458i \(-0.0263370\pi\)
\(54\) 0 0
\(55\) 8.26888i 1.11498i
\(56\) 0 0
\(57\) 4.01890 + 1.68773i 0.532317 + 0.223545i
\(58\) 0 0
\(59\) −2.64038 −0.343748 −0.171874 0.985119i \(-0.554982\pi\)
−0.171874 + 0.985119i \(0.554982\pi\)
\(60\) 0 0
\(61\) −0.164898 −0.0211130 −0.0105565 0.999944i \(-0.503360\pi\)
−0.0105565 + 0.999944i \(0.503360\pi\)
\(62\) 0 0
\(63\) 3.06179i 0.385750i
\(64\) 0 0
\(65\) 19.7935i 2.45508i
\(66\) 0 0
\(67\) −5.34581 −0.653095 −0.326547 0.945181i \(-0.605885\pi\)
−0.326547 + 0.945181i \(0.605885\pi\)
\(68\) 0 0
\(69\) 3.92817i 0.472896i
\(70\) 0 0
\(71\) 5.59793 0.664352 0.332176 0.943217i \(-0.392217\pi\)
0.332176 + 0.943217i \(0.392217\pi\)
\(72\) 0 0
\(73\) −3.78023 −0.442443 −0.221221 0.975224i \(-0.571004\pi\)
−0.221221 + 0.975224i \(0.571004\pi\)
\(74\) 0 0
\(75\) 11.5206 1.33028
\(76\) 0 0
\(77\) 6.22888 0.709846
\(78\) 0 0
\(79\) −16.4583 −1.85170 −0.925852 0.377886i \(-0.876651\pi\)
−0.925852 + 0.377886i \(0.876651\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.8400i 1.18984i 0.803784 + 0.594921i \(0.202817\pi\)
−0.803784 + 0.594921i \(0.797183\pi\)
\(84\) 0 0
\(85\) 30.5501 3.31362
\(86\) 0 0
\(87\) 7.10170i 0.761382i
\(88\) 0 0
\(89\) 13.6422i 1.44607i 0.690810 + 0.723037i \(0.257254\pi\)
−0.690810 + 0.723037i \(0.742746\pi\)
\(90\) 0 0
\(91\) −14.9103 −1.56302
\(92\) 0 0
\(93\) −3.75541 −0.389418
\(94\) 0 0
\(95\) −16.3350 6.85987i −1.67594 0.703807i
\(96\) 0 0
\(97\) 2.29631i 0.233155i 0.993182 + 0.116578i \(0.0371924\pi\)
−0.993182 + 0.116578i \(0.962808\pi\)
\(98\) 0 0
\(99\) 2.03439i 0.204464i
\(100\) 0 0
\(101\) 2.19966 0.218874 0.109437 0.993994i \(-0.465095\pi\)
0.109437 + 0.993994i \(0.465095\pi\)
\(102\) 0 0
\(103\) −15.1140 −1.48923 −0.744616 0.667493i \(-0.767367\pi\)
−0.744616 + 0.667493i \(0.767367\pi\)
\(104\) 0 0
\(105\) 12.4448i 1.21449i
\(106\) 0 0
\(107\) −12.5242 −1.21076 −0.605380 0.795936i \(-0.706979\pi\)
−0.605380 + 0.795936i \(0.706979\pi\)
\(108\) 0 0
\(109\) 18.2918i 1.75203i 0.482280 + 0.876017i \(0.339809\pi\)
−0.482280 + 0.876017i \(0.660191\pi\)
\(110\) 0 0
\(111\) 10.3386i 0.981297i
\(112\) 0 0
\(113\) 8.29474i 0.780303i −0.920751 0.390152i \(-0.872423\pi\)
0.920751 0.390152i \(-0.127577\pi\)
\(114\) 0 0
\(115\) 15.9663i 1.48886i
\(116\) 0 0
\(117\) 4.86979i 0.450212i
\(118\) 0 0
\(119\) 23.0131i 2.10961i
\(120\) 0 0
\(121\) 6.86126 0.623751
\(122\) 0 0
\(123\) 1.20334i 0.108502i
\(124\) 0 0
\(125\) −26.5033 −2.37053
\(126\) 0 0
\(127\) 9.60764 0.852540 0.426270 0.904596i \(-0.359827\pi\)
0.426270 + 0.904596i \(0.359827\pi\)
\(128\) 0 0
\(129\) 9.25741i 0.815069i
\(130\) 0 0
\(131\) 4.87062i 0.425548i 0.977101 + 0.212774i \(0.0682499\pi\)
−0.977101 + 0.212774i \(0.931750\pi\)
\(132\) 0 0
\(133\) 5.16748 12.3050i 0.448077 1.06698i
\(134\) 0 0
\(135\) −4.06455 −0.349821
\(136\) 0 0
\(137\) 5.12929 0.438225 0.219113 0.975700i \(-0.429684\pi\)
0.219113 + 0.975700i \(0.429684\pi\)
\(138\) 0 0
\(139\) 7.88793i 0.669046i −0.942388 0.334523i \(-0.891425\pi\)
0.942388 0.334523i \(-0.108575\pi\)
\(140\) 0 0
\(141\) 9.13493i 0.769299i
\(142\) 0 0
\(143\) 9.90705 0.828469
\(144\) 0 0
\(145\) 28.8652i 2.39713i
\(146\) 0 0
\(147\) −2.37457 −0.195852
\(148\) 0 0
\(149\) 18.8427 1.54366 0.771828 0.635832i \(-0.219343\pi\)
0.771828 + 0.635832i \(0.219343\pi\)
\(150\) 0 0
\(151\) 9.56271 0.778203 0.389101 0.921195i \(-0.372786\pi\)
0.389101 + 0.921195i \(0.372786\pi\)
\(152\) 0 0
\(153\) −7.51623 −0.607651
\(154\) 0 0
\(155\) 15.2641 1.22604
\(156\) 0 0
\(157\) −14.5309 −1.15969 −0.579846 0.814726i \(-0.696887\pi\)
−0.579846 + 0.814726i \(0.696887\pi\)
\(158\) 0 0
\(159\) 1.20334i 0.0954311i
\(160\) 0 0
\(161\) 12.0272 0.947880
\(162\) 0 0
\(163\) 0.676154i 0.0529605i 0.999649 + 0.0264802i \(0.00842990\pi\)
−0.999649 + 0.0264802i \(0.991570\pi\)
\(164\) 0 0
\(165\) 8.26888i 0.643732i
\(166\) 0 0
\(167\) −4.52041 −0.349800 −0.174900 0.984586i \(-0.555960\pi\)
−0.174900 + 0.984586i \(0.555960\pi\)
\(168\) 0 0
\(169\) −10.7149 −0.824221
\(170\) 0 0
\(171\) 4.01890 + 1.68773i 0.307333 + 0.129064i
\(172\) 0 0
\(173\) 4.86251i 0.369690i −0.982768 0.184845i \(-0.940822\pi\)
0.982768 0.184845i \(-0.0591783\pi\)
\(174\) 0 0
\(175\) 35.2737i 2.66644i
\(176\) 0 0
\(177\) −2.64038 −0.198463
\(178\) 0 0
\(179\) −2.48026 −0.185384 −0.0926918 0.995695i \(-0.529547\pi\)
−0.0926918 + 0.995695i \(0.529547\pi\)
\(180\) 0 0
\(181\) 2.50994i 0.186562i −0.995640 0.0932812i \(-0.970264\pi\)
0.995640 0.0932812i \(-0.0297356\pi\)
\(182\) 0 0
\(183\) −0.164898 −0.0121896
\(184\) 0 0
\(185\) 42.0218i 3.08950i
\(186\) 0 0
\(187\) 15.2909i 1.11818i
\(188\) 0 0
\(189\) 3.06179i 0.222713i
\(190\) 0 0
\(191\) 0.120985i 0.00875419i −0.999990 0.00437709i \(-0.998607\pi\)
0.999990 0.00437709i \(-0.00139328\pi\)
\(192\) 0 0
\(193\) 4.65187i 0.334849i −0.985885 0.167424i \(-0.946455\pi\)
0.985885 0.167424i \(-0.0535450\pi\)
\(194\) 0 0
\(195\) 19.7935i 1.41744i
\(196\) 0 0
\(197\) 0.540217 0.0384889 0.0192444 0.999815i \(-0.493874\pi\)
0.0192444 + 0.999815i \(0.493874\pi\)
\(198\) 0 0
\(199\) 3.41200i 0.241870i 0.992660 + 0.120935i \(0.0385893\pi\)
−0.992660 + 0.120935i \(0.961411\pi\)
\(200\) 0 0
\(201\) −5.34581 −0.377064
\(202\) 0 0
\(203\) 21.7439 1.52613
\(204\) 0 0
\(205\) 4.89104i 0.341605i
\(206\) 0 0
\(207\) 3.92817i 0.273027i
\(208\) 0 0
\(209\) −3.43350 + 8.17601i −0.237500 + 0.565546i
\(210\) 0 0
\(211\) 9.72198 0.669289 0.334644 0.942344i \(-0.391384\pi\)
0.334644 + 0.942344i \(0.391384\pi\)
\(212\) 0 0
\(213\) 5.59793 0.383564
\(214\) 0 0
\(215\) 37.6272i 2.56615i
\(216\) 0 0
\(217\) 11.4983i 0.780556i
\(218\) 0 0
\(219\) −3.78023 −0.255445
\(220\) 0 0
\(221\) 36.6025i 2.46215i
\(222\) 0 0
\(223\) −14.2911 −0.957004 −0.478502 0.878086i \(-0.658820\pi\)
−0.478502 + 0.878086i \(0.658820\pi\)
\(224\) 0 0
\(225\) 11.5206 0.768039
\(226\) 0 0
\(227\) −15.0916 −1.00166 −0.500832 0.865544i \(-0.666973\pi\)
−0.500832 + 0.865544i \(0.666973\pi\)
\(228\) 0 0
\(229\) 7.95563 0.525723 0.262862 0.964834i \(-0.415334\pi\)
0.262862 + 0.964834i \(0.415334\pi\)
\(230\) 0 0
\(231\) 6.22888 0.409830
\(232\) 0 0
\(233\) −15.7550 −1.03215 −0.516073 0.856545i \(-0.672607\pi\)
−0.516073 + 0.856545i \(0.672607\pi\)
\(234\) 0 0
\(235\) 37.1294i 2.42205i
\(236\) 0 0
\(237\) −16.4583 −1.06908
\(238\) 0 0
\(239\) 9.52997i 0.616442i 0.951315 + 0.308221i \(0.0997337\pi\)
−0.951315 + 0.308221i \(0.900266\pi\)
\(240\) 0 0
\(241\) 19.8680i 1.27981i 0.768454 + 0.639906i \(0.221027\pi\)
−0.768454 + 0.639906i \(0.778973\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 9.65158 0.616617
\(246\) 0 0
\(247\) 8.21889 19.5712i 0.522956 1.24529i
\(248\) 0 0
\(249\) 10.8400i 0.686956i
\(250\) 0 0
\(251\) 29.9086i 1.88781i −0.330211 0.943907i \(-0.607120\pi\)
0.330211 0.943907i \(-0.392880\pi\)
\(252\) 0 0
\(253\) −7.99143 −0.502417
\(254\) 0 0
\(255\) 30.5501 1.91312
\(256\) 0 0
\(257\) 24.3801i 1.52079i −0.649461 0.760395i \(-0.725005\pi\)
0.649461 0.760395i \(-0.274995\pi\)
\(258\) 0 0
\(259\) 31.6547 1.96692
\(260\) 0 0
\(261\) 7.10170i 0.439584i
\(262\) 0 0
\(263\) 15.0267i 0.926583i −0.886206 0.463292i \(-0.846668\pi\)
0.886206 0.463292i \(-0.153332\pi\)
\(264\) 0 0
\(265\) 4.89104i 0.300454i
\(266\) 0 0
\(267\) 13.6422i 0.834891i
\(268\) 0 0
\(269\) 4.46913i 0.272488i 0.990675 + 0.136244i \(0.0435030\pi\)
−0.990675 + 0.136244i \(0.956497\pi\)
\(270\) 0 0
\(271\) 23.0905i 1.40265i 0.712843 + 0.701323i \(0.247407\pi\)
−0.712843 + 0.701323i \(0.752593\pi\)
\(272\) 0 0
\(273\) −14.9103 −0.902412
\(274\) 0 0
\(275\) 23.4374i 1.41333i
\(276\) 0 0
\(277\) −20.9212 −1.25703 −0.628517 0.777796i \(-0.716338\pi\)
−0.628517 + 0.777796i \(0.716338\pi\)
\(278\) 0 0
\(279\) −3.75541 −0.224831
\(280\) 0 0
\(281\) 30.7862i 1.83655i −0.395940 0.918277i \(-0.629581\pi\)
0.395940 0.918277i \(-0.370419\pi\)
\(282\) 0 0
\(283\) 13.8331i 0.822294i −0.911569 0.411147i \(-0.865128\pi\)
0.911569 0.411147i \(-0.134872\pi\)
\(284\) 0 0
\(285\) −16.3350 6.85987i −0.967604 0.406343i
\(286\) 0 0
\(287\) −3.68438 −0.217482
\(288\) 0 0
\(289\) 39.4937 2.32316
\(290\) 0 0
\(291\) 2.29631i 0.134612i
\(292\) 0 0
\(293\) 9.58353i 0.559876i 0.960018 + 0.279938i \(0.0903138\pi\)
−0.960018 + 0.279938i \(0.909686\pi\)
\(294\) 0 0
\(295\) 10.7320 0.624839
\(296\) 0 0
\(297\) 2.03439i 0.118047i
\(298\) 0 0
\(299\) 19.1294 1.10628
\(300\) 0 0
\(301\) 28.3443 1.63374
\(302\) 0 0
\(303\) 2.19966 0.126367
\(304\) 0 0
\(305\) 0.670235 0.0383775
\(306\) 0 0
\(307\) 21.5591 1.23044 0.615221 0.788354i \(-0.289067\pi\)
0.615221 + 0.788354i \(0.289067\pi\)
\(308\) 0 0
\(309\) −15.1140 −0.859808
\(310\) 0 0
\(311\) 20.8245i 1.18085i 0.807092 + 0.590426i \(0.201040\pi\)
−0.807092 + 0.590426i \(0.798960\pi\)
\(312\) 0 0
\(313\) 9.85255 0.556899 0.278450 0.960451i \(-0.410179\pi\)
0.278450 + 0.960451i \(0.410179\pi\)
\(314\) 0 0
\(315\) 12.4448i 0.701186i
\(316\) 0 0
\(317\) 7.93043i 0.445417i 0.974885 + 0.222709i \(0.0714899\pi\)
−0.974885 + 0.222709i \(0.928510\pi\)
\(318\) 0 0
\(319\) −14.4476 −0.808912
\(320\) 0 0
\(321\) −12.5242 −0.699033
\(322\) 0 0
\(323\) −30.2070 12.6854i −1.68076 0.705832i
\(324\) 0 0
\(325\) 56.1029i 3.11203i
\(326\) 0 0
\(327\) 18.2918i 1.01154i
\(328\) 0 0
\(329\) −27.9692 −1.54199
\(330\) 0 0
\(331\) −33.1163 −1.82024 −0.910118 0.414348i \(-0.864010\pi\)
−0.910118 + 0.414348i \(0.864010\pi\)
\(332\) 0 0
\(333\) 10.3386i 0.566552i
\(334\) 0 0
\(335\) 21.7283 1.18715
\(336\) 0 0
\(337\) 8.19214i 0.446254i 0.974789 + 0.223127i \(0.0716265\pi\)
−0.974789 + 0.223127i \(0.928373\pi\)
\(338\) 0 0
\(339\) 8.29474i 0.450508i
\(340\) 0 0
\(341\) 7.63997i 0.413728i
\(342\) 0 0
\(343\) 14.1621i 0.764681i
\(344\) 0 0
\(345\) 15.9663i 0.859594i
\(346\) 0 0
\(347\) 22.3320i 1.19884i 0.800434 + 0.599421i \(0.204602\pi\)
−0.800434 + 0.599421i \(0.795398\pi\)
\(348\) 0 0
\(349\) −15.7367 −0.842365 −0.421182 0.906976i \(-0.638385\pi\)
−0.421182 + 0.906976i \(0.638385\pi\)
\(350\) 0 0
\(351\) 4.86979i 0.259930i
\(352\) 0 0
\(353\) 4.19003 0.223013 0.111506 0.993764i \(-0.464432\pi\)
0.111506 + 0.993764i \(0.464432\pi\)
\(354\) 0 0
\(355\) −22.7531 −1.20761
\(356\) 0 0
\(357\) 23.0131i 1.21798i
\(358\) 0 0
\(359\) 15.5576i 0.821098i −0.911838 0.410549i \(-0.865337\pi\)
0.911838 0.410549i \(-0.134663\pi\)
\(360\) 0 0
\(361\) 13.3031 + 13.5656i 0.700165 + 0.713981i
\(362\) 0 0
\(363\) 6.86126 0.360123
\(364\) 0 0
\(365\) 15.3650 0.804239
\(366\) 0 0
\(367\) 30.1542i 1.57404i 0.616930 + 0.787018i \(0.288376\pi\)
−0.616930 + 0.787018i \(0.711624\pi\)
\(368\) 0 0
\(369\) 1.20334i 0.0626434i
\(370\) 0 0
\(371\) −3.68438 −0.191283
\(372\) 0 0
\(373\) 24.9916i 1.29401i −0.762484 0.647007i \(-0.776020\pi\)
0.762484 0.647007i \(-0.223980\pi\)
\(374\) 0 0
\(375\) −26.5033 −1.36862
\(376\) 0 0
\(377\) 34.5838 1.78116
\(378\) 0 0
\(379\) −9.34382 −0.479960 −0.239980 0.970778i \(-0.577141\pi\)
−0.239980 + 0.970778i \(0.577141\pi\)
\(380\) 0 0
\(381\) 9.60764 0.492214
\(382\) 0 0
\(383\) −31.2055 −1.59453 −0.797263 0.603632i \(-0.793720\pi\)
−0.797263 + 0.603632i \(0.793720\pi\)
\(384\) 0 0
\(385\) −25.3176 −1.29030
\(386\) 0 0
\(387\) 9.25741i 0.470580i
\(388\) 0 0
\(389\) 2.27513 0.115354 0.0576768 0.998335i \(-0.481631\pi\)
0.0576768 + 0.998335i \(0.481631\pi\)
\(390\) 0 0
\(391\) 29.5250i 1.49314i
\(392\) 0 0
\(393\) 4.87062i 0.245690i
\(394\) 0 0
\(395\) 66.8957 3.36589
\(396\) 0 0
\(397\) −3.99809 −0.200659 −0.100329 0.994954i \(-0.531990\pi\)
−0.100329 + 0.994954i \(0.531990\pi\)
\(398\) 0 0
\(399\) 5.16748 12.3050i 0.258697 0.616023i
\(400\) 0 0
\(401\) 13.9342i 0.695843i 0.937524 + 0.347921i \(0.113112\pi\)
−0.937524 + 0.347921i \(0.886888\pi\)
\(402\) 0 0
\(403\) 18.2881i 0.910995i
\(404\) 0 0
\(405\) −4.06455 −0.201969
\(406\) 0 0
\(407\) −21.0327 −1.04255
\(408\) 0 0
\(409\) 13.3747i 0.661335i −0.943747 0.330668i \(-0.892726\pi\)
0.943747 0.330668i \(-0.107274\pi\)
\(410\) 0 0
\(411\) 5.12929 0.253009
\(412\) 0 0
\(413\) 8.08430i 0.397802i
\(414\) 0 0
\(415\) 44.0597i 2.16280i
\(416\) 0 0
\(417\) 7.88793i 0.386274i
\(418\) 0 0
\(419\) 14.1805i 0.692764i −0.938094 0.346382i \(-0.887410\pi\)
0.938094 0.346382i \(-0.112590\pi\)
\(420\) 0 0
\(421\) 7.59833i 0.370320i 0.982708 + 0.185160i \(0.0592803\pi\)
−0.982708 + 0.185160i \(0.940720\pi\)
\(422\) 0 0
\(423\) 9.13493i 0.444155i
\(424\) 0 0
\(425\) −86.5914 −4.20030
\(426\) 0 0
\(427\) 0.504882i 0.0244330i
\(428\) 0 0
\(429\) 9.90705 0.478317
\(430\) 0 0
\(431\) −30.0511 −1.44751 −0.723756 0.690056i \(-0.757586\pi\)
−0.723756 + 0.690056i \(0.757586\pi\)
\(432\) 0 0
\(433\) 17.8938i 0.859921i −0.902848 0.429960i \(-0.858528\pi\)
0.902848 0.429960i \(-0.141472\pi\)
\(434\) 0 0
\(435\) 28.8652i 1.38398i
\(436\) 0 0
\(437\) −6.62969 + 15.7869i −0.317141 + 0.755191i
\(438\) 0 0
\(439\) 10.0092 0.477713 0.238857 0.971055i \(-0.423227\pi\)
0.238857 + 0.971055i \(0.423227\pi\)
\(440\) 0 0
\(441\) −2.37457 −0.113075
\(442\) 0 0
\(443\) 29.3957i 1.39663i 0.715790 + 0.698315i \(0.246067\pi\)
−0.715790 + 0.698315i \(0.753933\pi\)
\(444\) 0 0
\(445\) 55.4496i 2.62856i
\(446\) 0 0
\(447\) 18.8427 0.891230
\(448\) 0 0
\(449\) 11.4726i 0.541426i −0.962660 0.270713i \(-0.912741\pi\)
0.962660 0.270713i \(-0.0872595\pi\)
\(450\) 0 0
\(451\) 2.44806 0.115275
\(452\) 0 0
\(453\) 9.56271 0.449295
\(454\) 0 0
\(455\) 60.6037 2.84114
\(456\) 0 0
\(457\) −13.6106 −0.636679 −0.318339 0.947977i \(-0.603125\pi\)
−0.318339 + 0.947977i \(0.603125\pi\)
\(458\) 0 0
\(459\) −7.51623 −0.350827
\(460\) 0 0
\(461\) −28.0238 −1.30520 −0.652599 0.757704i \(-0.726321\pi\)
−0.652599 + 0.757704i \(0.726321\pi\)
\(462\) 0 0
\(463\) 6.24370i 0.290169i 0.989419 + 0.145085i \(0.0463455\pi\)
−0.989419 + 0.145085i \(0.953655\pi\)
\(464\) 0 0
\(465\) 15.2641 0.707855
\(466\) 0 0
\(467\) 1.58161i 0.0731882i 0.999330 + 0.0365941i \(0.0116509\pi\)
−0.999330 + 0.0365941i \(0.988349\pi\)
\(468\) 0 0
\(469\) 16.3678i 0.755793i
\(470\) 0 0
\(471\) −14.5309 −0.669548
\(472\) 0 0
\(473\) −18.8332 −0.865950
\(474\) 0 0
\(475\) 46.3001 + 19.4436i 2.12440 + 0.892135i
\(476\) 0 0
\(477\) 1.20334i 0.0550972i
\(478\) 0 0
\(479\) 21.4085i 0.978179i 0.872234 + 0.489089i \(0.162671\pi\)
−0.872234 + 0.489089i \(0.837329\pi\)
\(480\) 0 0
\(481\) 50.3468 2.29562
\(482\) 0 0
\(483\) 12.0272 0.547259
\(484\) 0 0
\(485\) 9.33349i 0.423812i
\(486\) 0 0
\(487\) −1.63273 −0.0739862 −0.0369931 0.999316i \(-0.511778\pi\)
−0.0369931 + 0.999316i \(0.511778\pi\)
\(488\) 0 0
\(489\) 0.676154i 0.0305767i
\(490\) 0 0
\(491\) 13.6535i 0.616173i −0.951358 0.308086i \(-0.900311\pi\)
0.951358 0.308086i \(-0.0996886\pi\)
\(492\) 0 0
\(493\) 53.3780i 2.40402i
\(494\) 0 0
\(495\) 8.26888i 0.371659i
\(496\) 0 0
\(497\) 17.1397i 0.768821i
\(498\) 0 0
\(499\) 13.8795i 0.621330i −0.950519 0.310665i \(-0.899448\pi\)
0.950519 0.310665i \(-0.100552\pi\)
\(500\) 0 0
\(501\) −4.52041 −0.201957
\(502\) 0 0
\(503\) 14.5055i 0.646770i −0.946267 0.323385i \(-0.895179\pi\)
0.946267 0.323385i \(-0.104821\pi\)
\(504\) 0 0
\(505\) −8.94063 −0.397853
\(506\) 0 0
\(507\) −10.7149 −0.475864
\(508\) 0 0
\(509\) 29.5849i 1.31133i 0.755053 + 0.655664i \(0.227611\pi\)
−0.755053 + 0.655664i \(0.772389\pi\)
\(510\) 0 0
\(511\) 11.5743i 0.512017i
\(512\) 0 0
\(513\) 4.01890 + 1.68773i 0.177439 + 0.0745151i
\(514\) 0 0
\(515\) 61.4319 2.70701
\(516\) 0 0
\(517\) 18.5840 0.817323
\(518\) 0 0
\(519\) 4.86251i 0.213440i
\(520\) 0 0
\(521\) 6.48642i 0.284175i 0.989854 + 0.142088i \(0.0453815\pi\)
−0.989854 + 0.142088i \(0.954619\pi\)
\(522\) 0 0
\(523\) −29.1143 −1.27308 −0.636540 0.771244i \(-0.719635\pi\)
−0.636540 + 0.771244i \(0.719635\pi\)
\(524\) 0 0
\(525\) 35.2737i 1.53947i
\(526\) 0 0
\(527\) 28.2266 1.22957
\(528\) 0 0
\(529\) 7.56948 0.329108
\(530\) 0 0
\(531\) −2.64038 −0.114583
\(532\) 0 0
\(533\) −5.86002 −0.253826
\(534\) 0 0
\(535\) 50.9053 2.20083
\(536\) 0 0
\(537\) −2.48026 −0.107031
\(538\) 0 0
\(539\) 4.83081i 0.208078i
\(540\) 0 0
\(541\) −3.32843 −0.143100 −0.0715501 0.997437i \(-0.522795\pi\)
−0.0715501 + 0.997437i \(0.522795\pi\)
\(542\) 0 0
\(543\) 2.50994i 0.107712i
\(544\) 0 0
\(545\) 74.3479i 3.18471i
\(546\) 0 0
\(547\) −3.13876 −0.134203 −0.0671017 0.997746i \(-0.521375\pi\)
−0.0671017 + 0.997746i \(0.521375\pi\)
\(548\) 0 0
\(549\) −0.164898 −0.00703766
\(550\) 0 0
\(551\) −11.9858 + 28.5410i −0.510610 + 1.21589i
\(552\) 0 0
\(553\) 50.3919i 2.14288i
\(554\) 0 0
\(555\) 42.0218i 1.78373i
\(556\) 0 0
\(557\) 33.1616 1.40510 0.702552 0.711633i \(-0.252044\pi\)
0.702552 + 0.711633i \(0.252044\pi\)
\(558\) 0 0
\(559\) 45.0816 1.90675
\(560\) 0 0
\(561\) 15.2909i 0.645584i
\(562\) 0 0
\(563\) 5.77422 0.243354 0.121677 0.992570i \(-0.461173\pi\)
0.121677 + 0.992570i \(0.461173\pi\)
\(564\) 0 0
\(565\) 33.7144i 1.41838i
\(566\) 0 0
\(567\) 3.06179i 0.128583i
\(568\) 0 0
\(569\) 15.4858i 0.649197i 0.945852 + 0.324599i \(0.105229\pi\)
−0.945852 + 0.324599i \(0.894771\pi\)
\(570\) 0 0
\(571\) 46.1672i 1.93204i −0.258476 0.966018i \(-0.583220\pi\)
0.258476 0.966018i \(-0.416780\pi\)
\(572\) 0 0
\(573\) 0.120985i 0.00505423i
\(574\) 0 0
\(575\) 45.2548i 1.88726i
\(576\) 0 0
\(577\) 0.208981 0.00870000 0.00435000 0.999991i \(-0.498615\pi\)
0.00435000 + 0.999991i \(0.498615\pi\)
\(578\) 0 0
\(579\) 4.65187i 0.193325i
\(580\) 0 0
\(581\) 33.1898 1.37694
\(582\) 0 0
\(583\) 2.44806 0.101388
\(584\) 0 0
\(585\) 19.7935i 0.818362i
\(586\) 0 0
\(587\) 1.63072i 0.0673069i −0.999434 0.0336534i \(-0.989286\pi\)
0.999434 0.0336534i \(-0.0107142\pi\)
\(588\) 0 0
\(589\) −15.0926 6.33812i −0.621881 0.261158i
\(590\) 0 0
\(591\) 0.540217 0.0222216
\(592\) 0 0
\(593\) 0.819037 0.0336338 0.0168169 0.999859i \(-0.494647\pi\)
0.0168169 + 0.999859i \(0.494647\pi\)
\(594\) 0 0
\(595\) 93.5381i 3.83469i
\(596\) 0 0
\(597\) 3.41200i 0.139644i
\(598\) 0 0
\(599\) 7.49935 0.306415 0.153208 0.988194i \(-0.451040\pi\)
0.153208 + 0.988194i \(0.451040\pi\)
\(600\) 0 0
\(601\) 8.60924i 0.351178i 0.984464 + 0.175589i \(0.0561830\pi\)
−0.984464 + 0.175589i \(0.943817\pi\)
\(602\) 0 0
\(603\) −5.34581 −0.217698
\(604\) 0 0
\(605\) −27.8880 −1.13381
\(606\) 0 0
\(607\) −41.4380 −1.68192 −0.840959 0.541099i \(-0.818008\pi\)
−0.840959 + 0.541099i \(0.818008\pi\)
\(608\) 0 0
\(609\) 21.7439 0.881109
\(610\) 0 0
\(611\) −44.4852 −1.79968
\(612\) 0 0
\(613\) −0.281050 −0.0113515 −0.00567575 0.999984i \(-0.501807\pi\)
−0.00567575 + 0.999984i \(0.501807\pi\)
\(614\) 0 0
\(615\) 4.89104i 0.197226i
\(616\) 0 0
\(617\) −3.55763 −0.143225 −0.0716123 0.997433i \(-0.522814\pi\)
−0.0716123 + 0.997433i \(0.522814\pi\)
\(618\) 0 0
\(619\) 2.43426i 0.0978411i 0.998803 + 0.0489205i \(0.0155781\pi\)
−0.998803 + 0.0489205i \(0.984422\pi\)
\(620\) 0 0
\(621\) 3.92817i 0.157632i
\(622\) 0 0
\(623\) 41.7697 1.67347
\(624\) 0 0
\(625\) 50.1211 2.00484
\(626\) 0 0
\(627\) −3.43350 + 8.17601i −0.137121 + 0.326518i
\(628\) 0 0
\(629\) 77.7073i 3.09839i
\(630\) 0 0
\(631\) 15.6441i 0.622781i 0.950282 + 0.311390i \(0.100795\pi\)
−0.950282 + 0.311390i \(0.899205\pi\)
\(632\) 0 0
\(633\) 9.72198 0.386414
\(634\) 0 0
\(635\) −39.0508 −1.54968
\(636\) 0 0
\(637\) 11.5637i 0.458170i
\(638\) 0 0
\(639\) 5.59793 0.221451
\(640\) 0 0
\(641\) 11.3500i 0.448299i −0.974555 0.224150i \(-0.928040\pi\)
0.974555 0.224150i \(-0.0719605\pi\)
\(642\) 0 0
\(643\) 25.8299i 1.01863i −0.860579 0.509316i \(-0.829898\pi\)
0.860579 0.509316i \(-0.170102\pi\)
\(644\) 0 0
\(645\) 37.6272i 1.48157i
\(646\) 0 0
\(647\) 4.77393i 0.187683i −0.995587 0.0938414i \(-0.970085\pi\)
0.995587 0.0938414i \(-0.0299147\pi\)
\(648\) 0 0
\(649\) 5.37156i 0.210852i
\(650\) 0 0
\(651\) 11.4983i 0.450654i
\(652\) 0 0
\(653\) −3.24096 −0.126829 −0.0634143 0.997987i \(-0.520199\pi\)
−0.0634143 + 0.997987i \(0.520199\pi\)
\(654\) 0 0
\(655\) 19.7969i 0.773529i
\(656\) 0 0
\(657\) −3.78023 −0.147481
\(658\) 0 0
\(659\) −25.4491 −0.991357 −0.495679 0.868506i \(-0.665081\pi\)
−0.495679 + 0.868506i \(0.665081\pi\)
\(660\) 0 0
\(661\) 11.3163i 0.440153i −0.975483 0.220076i \(-0.929369\pi\)
0.975483 0.220076i \(-0.0706307\pi\)
\(662\) 0 0
\(663\) 36.6025i 1.42152i
\(664\) 0 0
\(665\) −21.0035 + 50.0145i −0.814480 + 1.93948i
\(666\) 0 0
\(667\) −27.8967 −1.08016
\(668\) 0 0
\(669\) −14.2911 −0.552526
\(670\) 0 0
\(671\) 0.335466i 0.0129505i
\(672\) 0 0
\(673\) 14.4001i 0.555082i −0.960714 0.277541i \(-0.910481\pi\)
0.960714 0.277541i \(-0.0895195\pi\)
\(674\) 0 0
\(675\) 11.5206 0.443428
\(676\) 0 0
\(677\) 48.6759i 1.87077i 0.353636 + 0.935383i \(0.384945\pi\)
−0.353636 + 0.935383i \(0.615055\pi\)
\(678\) 0 0
\(679\) 7.03084 0.269819
\(680\) 0 0
\(681\) −15.0916 −0.578311
\(682\) 0 0
\(683\) −20.4458 −0.782338 −0.391169 0.920319i \(-0.627929\pi\)
−0.391169 + 0.920319i \(0.627929\pi\)
\(684\) 0 0
\(685\) −20.8483 −0.796572
\(686\) 0 0
\(687\) 7.95563 0.303526
\(688\) 0 0
\(689\) −5.86002 −0.223249
\(690\) 0 0
\(691\) 40.2948i 1.53289i 0.642311 + 0.766444i \(0.277976\pi\)
−0.642311 + 0.766444i \(0.722024\pi\)
\(692\) 0 0
\(693\) 6.22888 0.236615
\(694\) 0 0
\(695\) 32.0609i 1.21614i
\(696\) 0 0
\(697\) 9.04458i 0.342588i
\(698\) 0 0
\(699\) −15.7550 −0.595910
\(700\) 0 0
\(701\) −2.34913 −0.0887255 −0.0443628 0.999015i \(-0.514126\pi\)
−0.0443628 + 0.999015i \(0.514126\pi\)
\(702\) 0 0
\(703\) −17.4488 + 41.5498i −0.658092 + 1.56708i
\(704\) 0 0
\(705\) 37.1294i 1.39837i
\(706\) 0 0
\(707\) 6.73490i 0.253292i
\(708\) 0 0
\(709\) 8.24257 0.309556 0.154778 0.987949i \(-0.450534\pi\)
0.154778 + 0.987949i \(0.450534\pi\)
\(710\) 0 0
\(711\) −16.4583 −0.617235
\(712\) 0 0
\(713\) 14.7519i 0.552463i
\(714\) 0 0
\(715\) −40.2677 −1.50593
\(716\) 0 0
\(717\) 9.52997i 0.355903i
\(718\) 0 0
\(719\) 23.9958i 0.894892i −0.894311 0.447446i \(-0.852334\pi\)
0.894311 0.447446i \(-0.147666\pi\)
\(720\) 0 0
\(721\) 46.2761i 1.72341i
\(722\) 0 0
\(723\) 19.8680i 0.738899i
\(724\) 0 0
\(725\) 81.8158i 3.03856i
\(726\) 0 0
\(727\) 42.3423i 1.57039i 0.619249 + 0.785195i \(0.287437\pi\)
−0.619249 + 0.785195i \(0.712563\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 69.5808i 2.57354i
\(732\) 0 0
\(733\) −1.52984 −0.0565059 −0.0282529 0.999601i \(-0.508994\pi\)
−0.0282529 + 0.999601i \(0.508994\pi\)
\(734\) 0 0
\(735\) 9.65158 0.356004
\(736\) 0 0
\(737\) 10.8755i 0.400603i
\(738\) 0 0
\(739\) 13.3504i 0.491104i 0.969383 + 0.245552i \(0.0789692\pi\)
−0.969383 + 0.245552i \(0.921031\pi\)
\(740\) 0 0
\(741\) 8.21889 19.5712i 0.301929 0.718967i
\(742\) 0 0
\(743\) 15.5603 0.570851 0.285426 0.958401i \(-0.407865\pi\)
0.285426 + 0.958401i \(0.407865\pi\)
\(744\) 0 0
\(745\) −76.5872 −2.80594
\(746\) 0 0
\(747\) 10.8400i 0.396614i
\(748\) 0 0
\(749\) 38.3465i 1.40115i
\(750\) 0 0
\(751\) −30.4073 −1.10958 −0.554788 0.831991i \(-0.687201\pi\)
−0.554788 + 0.831991i \(0.687201\pi\)
\(752\) 0 0
\(753\) 29.9086i 1.08993i
\(754\) 0 0
\(755\) −38.8682 −1.41456
\(756\) 0 0
\(757\) −3.49290 −0.126952 −0.0634758 0.997983i \(-0.520219\pi\)
−0.0634758 + 0.997983i \(0.520219\pi\)
\(758\) 0 0
\(759\) −7.99143 −0.290070
\(760\) 0 0
\(761\) 17.3773 0.629928 0.314964 0.949104i \(-0.398008\pi\)
0.314964 + 0.949104i \(0.398008\pi\)
\(762\) 0 0
\(763\) 56.0056 2.02754
\(764\) 0 0
\(765\) 30.5501 1.10454
\(766\) 0 0
\(767\) 12.8581i 0.464279i
\(768\) 0 0
\(769\) 18.7505 0.676159 0.338079 0.941118i \(-0.390223\pi\)
0.338079 + 0.941118i \(0.390223\pi\)
\(770\) 0 0
\(771\) 24.3801i 0.878029i
\(772\) 0 0
\(773\) 16.7315i 0.601790i 0.953657 + 0.300895i \(0.0972854\pi\)
−0.953657 + 0.300895i \(0.902715\pi\)
\(774\) 0 0
\(775\) −43.2646 −1.55411
\(776\) 0 0
\(777\) 31.6547 1.13560
\(778\) 0 0
\(779\) 2.03091 4.83611i 0.0727650 0.173272i
\(780\) 0 0
\(781\) 11.3884i 0.407508i
\(782\) 0 0
\(783\) 7.10170i 0.253794i
\(784\) 0 0
\(785\) 59.0616 2.10800
\(786\) 0 0
\(787\) 13.9538 0.497398 0.248699 0.968581i \(-0.419997\pi\)
0.248699 + 0.968581i \(0.419997\pi\)
\(788\) 0 0
\(789\) 15.0267i 0.534963i
\(790\) 0 0
\(791\) −25.3968 −0.903005
\(792\) 0 0
\(793\) 0.803017i 0.0285160i
\(794\) 0 0
\(795\) 4.89104i 0.173467i
\(796\) 0 0
\(797\) 21.2604i 0.753083i −0.926400 0.376541i \(-0.877113\pi\)
0.926400 0.376541i \(-0.122887\pi\)
\(798\) 0 0
\(799\) 68.6602i 2.42902i
\(800\) 0 0
\(801\) 13.6422i 0.482024i
\(802\) 0 0
\(803\) 7.69047i 0.271391i
\(804\) 0 0
\(805\) −48.8854 −1.72298
\(806\) 0 0
\(807\) 4.46913i 0.157321i
\(808\) 0 0
\(809\) 5.95675 0.209428 0.104714 0.994502i \(-0.466607\pi\)
0.104714 + 0.994502i \(0.466607\pi\)
\(810\) 0 0
\(811\) −22.8854 −0.803617 −0.401808 0.915724i \(-0.631618\pi\)
−0.401808 + 0.915724i \(0.631618\pi\)
\(812\) 0 0
\(813\) 23.0905i 0.809818i
\(814\) 0 0
\(815\) 2.74826i 0.0962675i
\(816\) 0 0
\(817\) −15.6240 + 37.2046i −0.546614 + 1.30162i
\(818\) 0 0
\(819\) −14.9103 −0.521008
\(820\) 0 0
\(821\) −48.7037 −1.69977 −0.849885 0.526969i \(-0.823328\pi\)
−0.849885 + 0.526969i \(0.823328\pi\)
\(822\) 0 0
\(823\) 21.0140i 0.732501i 0.930516 + 0.366251i \(0.119359\pi\)
−0.930516 + 0.366251i \(0.880641\pi\)
\(824\) 0 0
\(825\) 23.4374i 0.815984i
\(826\) 0 0
\(827\) −1.42632 −0.0495978 −0.0247989 0.999692i \(-0.507895\pi\)
−0.0247989 + 0.999692i \(0.507895\pi\)
\(828\) 0 0
\(829\) 10.5557i 0.366616i −0.983056 0.183308i \(-0.941319\pi\)
0.983056 0.183308i \(-0.0586806\pi\)
\(830\) 0 0
\(831\) −20.9212 −0.725749
\(832\) 0 0
\(833\) 17.8478 0.618391
\(834\) 0 0
\(835\) 18.3735 0.635840
\(836\) 0 0
\(837\) −3.75541 −0.129806
\(838\) 0 0
\(839\) −45.4094 −1.56771 −0.783853 0.620947i \(-0.786748\pi\)
−0.783853 + 0.620947i \(0.786748\pi\)
\(840\) 0 0
\(841\) −21.4342 −0.739110
\(842\) 0 0
\(843\) 30.7862i 1.06033i
\(844\) 0 0
\(845\) 43.5512 1.49821
\(846\) 0 0
\(847\) 21.0078i 0.721835i
\(848\) 0 0
\(849\) 13.8331i 0.474752i
\(850\) 0 0
\(851\) −40.6118 −1.39215
\(852\) 0 0
\(853\) 40.2287 1.37741 0.688703 0.725044i \(-0.258181\pi\)
0.688703 + 0.725044i \(0.258181\pi\)
\(854\) 0 0
\(855\) −16.3350 6.85987i −0.558647 0.234602i
\(856\) 0 0
\(857\) 25.6521i 0.876260i −0.898912 0.438130i \(-0.855641\pi\)
0.898912 0.438130i \(-0.144359\pi\)
\(858\) 0 0
\(859\) 45.1176i 1.53939i 0.638410 + 0.769697i \(0.279593\pi\)
−0.638410 + 0.769697i \(0.720407\pi\)
\(860\) 0 0
\(861\) −3.68438 −0.125563
\(862\) 0 0
\(863\) 19.7164 0.671155 0.335577 0.942013i \(-0.391069\pi\)
0.335577 + 0.942013i \(0.391069\pi\)
\(864\) 0 0
\(865\) 19.7639i 0.671994i
\(866\) 0 0
\(867\) 39.4937 1.34128
\(868\) 0 0
\(869\) 33.4826i 1.13582i
\(870\) 0 0
\(871\) 26.0330i 0.882094i
\(872\) 0 0
\(873\) 2.29631i 0.0777185i
\(874\) 0 0
\(875\) 81.1476i 2.74329i
\(876\) 0 0
\(877\) 7.09803i 0.239683i −0.992793 0.119842i \(-0.961761\pi\)
0.992793 0.119842i \(-0.0382387\pi\)
\(878\) 0 0
\(879\) 9.58353i 0.323244i
\(880\) 0 0
\(881\) 45.5558 1.53481 0.767406 0.641161i \(-0.221547\pi\)
0.767406 + 0.641161i \(0.221547\pi\)
\(882\) 0 0
\(883\) 46.1330i 1.55250i −0.630425 0.776250i \(-0.717120\pi\)
0.630425 0.776250i \(-0.282880\pi\)
\(884\) 0 0
\(885\) 10.7320 0.360751
\(886\) 0 0
\(887\) 5.04155 0.169279 0.0846394 0.996412i \(-0.473026\pi\)
0.0846394 + 0.996412i \(0.473026\pi\)
\(888\) 0 0
\(889\) 29.4166i 0.986601i
\(890\) 0 0
\(891\) 2.03439i 0.0681546i
\(892\) 0 0
\(893\) 15.4173 36.7124i 0.515920 1.22853i
\(894\) 0 0
\(895\) 10.0812 0.336976
\(896\) 0 0
\(897\) 19.1294 0.638711
\(898\) 0 0
\(899\) 26.6698i 0.889489i
\(900\) 0 0
\(901\) 9.04458i 0.301319i
\(902\) 0 0
\(903\) 28.3443 0.943238
\(904\) 0 0
\(905\) 10.2018i 0.339119i
\(906\) 0 0
\(907\) −26.0588 −0.865269 −0.432635 0.901569i \(-0.642416\pi\)
−0.432635 + 0.901569i \(0.642416\pi\)
\(908\) 0 0
\(909\) 2.19966 0.0729581
\(910\) 0 0
\(911\) −6.15929 −0.204066 −0.102033 0.994781i \(-0.532535\pi\)
−0.102033 + 0.994781i \(0.532535\pi\)
\(912\) 0 0
\(913\) −22.0527 −0.729839
\(914\) 0 0
\(915\) 0.670235 0.0221573
\(916\) 0 0
\(917\) 14.9128 0.492465
\(918\) 0 0
\(919\) 8.25239i 0.272221i 0.990694 + 0.136111i \(0.0434603\pi\)
−0.990694 + 0.136111i \(0.956540\pi\)
\(920\) 0 0
\(921\) 21.5591 0.710396
\(922\) 0 0
\(923\) 27.2608i 0.897299i
\(924\) 0 0
\(925\) 119.107i 3.91621i
\(926\) 0 0
\(927\) −15.1140 −0.496411
\(928\) 0 0
\(929\) 40.7458 1.33683 0.668414 0.743790i \(-0.266974\pi\)
0.668414 + 0.743790i \(0.266974\pi\)
\(930\) 0 0
\(931\) −9.54318 4.00764i −0.312765 0.131345i
\(932\) 0 0
\(933\) 20.8245i 0.681765i
\(934\) 0 0
\(935\) 62.1508i 2.03255i
\(936\) 0 0
\(937\) −43.2705 −1.41359 −0.706793 0.707421i \(-0.749859\pi\)
−0.706793 + 0.707421i \(0.749859\pi\)
\(938\) 0 0
\(939\) 9.85255 0.321526
\(940\) 0 0
\(941\) 46.4011i 1.51263i 0.654207 + 0.756316i \(0.273003\pi\)
−0.654207 + 0.756316i \(0.726997\pi\)
\(942\) 0 0
\(943\) 4.72693 0.153930
\(944\) 0 0
\(945\) 12.4448i 0.404830i
\(946\) 0 0
\(947\) 13.5395i 0.439975i 0.975503 + 0.219988i \(0.0706017\pi\)
−0.975503 + 0.219988i \(0.929398\pi\)
\(948\) 0 0
\(949\) 18.4090i 0.597580i
\(950\) 0 0
\(951\) 7.93043i 0.257162i
\(952\) 0 0
\(953\) 33.4928i 1.08494i 0.840075 + 0.542470i \(0.182511\pi\)
−0.840075 + 0.542470i \(0.817489\pi\)
\(954\) 0 0
\(955\) 0.491751i 0.0159127i
\(956\) 0 0
\(957\) −14.4476 −0.467025
\(958\) 0 0
\(959\) 15.7048i 0.507135i
\(960\) 0 0
\(961\) −16.8969 −0.545060
\(962\) 0 0
\(963\) −12.5242 −0.403587
\(964\) 0 0
\(965\) 18.9078i 0.608662i
\(966\) 0 0
\(967\) 13.2882i 0.427321i 0.976908 + 0.213660i \(0.0685386\pi\)
−0.976908 + 0.213660i \(0.931461\pi\)
\(968\) 0 0
\(969\) −30.2070 12.6854i −0.970388 0.407512i
\(970\) 0 0
\(971\) −4.34514 −0.139442 −0.0697211 0.997567i \(-0.522211\pi\)
−0.0697211 + 0.997567i \(0.522211\pi\)
\(972\) 0 0
\(973\) −24.1512 −0.774252
\(974\) 0 0
\(975\) 56.1029i 1.79673i
\(976\) 0 0
\(977\) 56.0805i 1.79418i 0.441853 + 0.897088i \(0.354321\pi\)
−0.441853 + 0.897088i \(0.645679\pi\)
\(978\) 0 0
\(979\) −27.7536 −0.887009
\(980\) 0 0
\(981\) 18.2918i 0.584011i
\(982\) 0 0
\(983\) 20.8251 0.664217 0.332109 0.943241i \(-0.392240\pi\)
0.332109 + 0.943241i \(0.392240\pi\)
\(984\) 0 0
\(985\) −2.19574 −0.0699621
\(986\) 0 0
\(987\) −27.9692 −0.890271
\(988\) 0 0
\(989\) −36.3647 −1.15633
\(990\) 0 0
\(991\) 56.0593 1.78078 0.890392 0.455195i \(-0.150431\pi\)
0.890392 + 0.455195i \(0.150431\pi\)
\(992\) 0 0
\(993\) −33.1163 −1.05091
\(994\) 0 0
\(995\) 13.8683i 0.439654i
\(996\) 0 0
\(997\) −31.7496 −1.00552 −0.502760 0.864426i \(-0.667682\pi\)
−0.502760 + 0.864426i \(0.667682\pi\)
\(998\) 0 0
\(999\) 10.3386i 0.327099i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.k.b.607.1 yes 20
3.2 odd 2 5472.2.k.b.2431.19 20
4.3 odd 2 1824.2.k.a.607.2 yes 20
8.3 odd 2 3648.2.k.l.2431.20 20
8.5 even 2 3648.2.k.k.2431.19 20
12.11 even 2 5472.2.k.a.2431.20 20
19.18 odd 2 1824.2.k.a.607.1 20
57.56 even 2 5472.2.k.a.2431.19 20
76.75 even 2 inner 1824.2.k.b.607.2 yes 20
152.37 odd 2 3648.2.k.l.2431.19 20
152.75 even 2 3648.2.k.k.2431.20 20
228.227 odd 2 5472.2.k.b.2431.20 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.k.a.607.1 20 19.18 odd 2
1824.2.k.a.607.2 yes 20 4.3 odd 2
1824.2.k.b.607.1 yes 20 1.1 even 1 trivial
1824.2.k.b.607.2 yes 20 76.75 even 2 inner
3648.2.k.k.2431.19 20 8.5 even 2
3648.2.k.k.2431.20 20 152.75 even 2
3648.2.k.l.2431.19 20 152.37 odd 2
3648.2.k.l.2431.20 20 8.3 odd 2
5472.2.k.a.2431.19 20 57.56 even 2
5472.2.k.a.2431.20 20 12.11 even 2
5472.2.k.b.2431.19 20 3.2 odd 2
5472.2.k.b.2431.20 20 228.227 odd 2