Properties

Label 1824.2.d.g.191.23
Level $1824$
Weight $2$
Character 1824.191
Analytic conductor $14.565$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(191,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.23
Character \(\chi\) \(=\) 1824.191
Dual form 1824.2.d.g.191.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.911570 - 1.47277i) q^{3} -1.56046i q^{5} -5.19774i q^{7} +(-1.33808 - 2.68506i) q^{9} +3.94998 q^{11} -4.57497 q^{13} +(-2.29820 - 1.42247i) q^{15} +0.943764i q^{17} +1.00000i q^{19} +(-7.65505 - 4.73810i) q^{21} -0.478311 q^{23} +2.56496 q^{25} +(-5.17422 - 0.476937i) q^{27} -9.53573i q^{29} +2.67282i q^{31} +(3.60068 - 5.81740i) q^{33} -8.11087 q^{35} +6.67282 q^{37} +(-4.17040 + 6.73786i) q^{39} +0.718550i q^{41} +4.49735i q^{43} +(-4.18993 + 2.08802i) q^{45} +8.30239 q^{47} -20.0165 q^{49} +(1.38994 + 0.860307i) q^{51} +13.4492i q^{53} -6.16379i q^{55} +(1.47277 + 0.911570i) q^{57} +6.71376 q^{59} +9.09618 q^{61} +(-13.9562 + 6.95499i) q^{63} +7.13906i q^{65} +11.9465i q^{67} +(-0.436014 + 0.704441i) q^{69} -16.1835 q^{71} -2.58862 q^{73} +(2.33814 - 3.77759i) q^{75} -20.5309i q^{77} +9.22393i q^{79} +(-5.41908 + 7.18565i) q^{81} +4.07767 q^{83} +1.47271 q^{85} +(-14.0439 - 8.69248i) q^{87} -15.6078i q^{89} +23.7795i q^{91} +(3.93644 + 2.43646i) q^{93} +1.56046 q^{95} +1.01988 q^{97} +(-5.28539 - 10.6059i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{9} - 8 q^{13} + 12 q^{21} - 64 q^{25} + 32 q^{33} + 80 q^{37} - 88 q^{45} - 40 q^{49} + 4 q^{57} + 80 q^{61} - 60 q^{69} - 88 q^{73} + 84 q^{81} + 64 q^{85} - 48 q^{93} - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.911570 1.47277i 0.526295 0.850302i
\(4\) 0 0
\(5\) 1.56046i 0.697860i −0.937149 0.348930i \(-0.886545\pi\)
0.937149 0.348930i \(-0.113455\pi\)
\(6\) 0 0
\(7\) 5.19774i 1.96456i −0.187421 0.982280i \(-0.560013\pi\)
0.187421 0.982280i \(-0.439987\pi\)
\(8\) 0 0
\(9\) −1.33808 2.68506i −0.446027 0.895019i
\(10\) 0 0
\(11\) 3.94998 1.19096 0.595482 0.803369i \(-0.296961\pi\)
0.595482 + 0.803369i \(0.296961\pi\)
\(12\) 0 0
\(13\) −4.57497 −1.26887 −0.634434 0.772977i \(-0.718767\pi\)
−0.634434 + 0.772977i \(0.718767\pi\)
\(14\) 0 0
\(15\) −2.29820 1.42247i −0.593391 0.367280i
\(16\) 0 0
\(17\) 0.943764i 0.228896i 0.993429 + 0.114448i \(0.0365100\pi\)
−0.993429 + 0.114448i \(0.963490\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 0 0
\(21\) −7.65505 4.73810i −1.67047 1.03394i
\(22\) 0 0
\(23\) −0.478311 −0.0997348 −0.0498674 0.998756i \(-0.515880\pi\)
−0.0498674 + 0.998756i \(0.515880\pi\)
\(24\) 0 0
\(25\) 2.56496 0.512992
\(26\) 0 0
\(27\) −5.17422 0.476937i −0.995779 0.0917866i
\(28\) 0 0
\(29\) 9.53573i 1.77074i −0.464887 0.885370i \(-0.653905\pi\)
0.464887 0.885370i \(-0.346095\pi\)
\(30\) 0 0
\(31\) 2.67282i 0.480053i 0.970766 + 0.240026i \(0.0771561\pi\)
−0.970766 + 0.240026i \(0.922844\pi\)
\(32\) 0 0
\(33\) 3.60068 5.81740i 0.626798 1.01268i
\(34\) 0 0
\(35\) −8.11087 −1.37099
\(36\) 0 0
\(37\) 6.67282 1.09701 0.548503 0.836149i \(-0.315198\pi\)
0.548503 + 0.836149i \(0.315198\pi\)
\(38\) 0 0
\(39\) −4.17040 + 6.73786i −0.667799 + 1.07892i
\(40\) 0 0
\(41\) 0.718550i 0.112219i 0.998425 + 0.0561093i \(0.0178695\pi\)
−0.998425 + 0.0561093i \(0.982130\pi\)
\(42\) 0 0
\(43\) 4.49735i 0.685839i 0.939365 + 0.342920i \(0.111416\pi\)
−0.939365 + 0.342920i \(0.888584\pi\)
\(44\) 0 0
\(45\) −4.18993 + 2.08802i −0.624598 + 0.311264i
\(46\) 0 0
\(47\) 8.30239 1.21103 0.605514 0.795835i \(-0.292968\pi\)
0.605514 + 0.795835i \(0.292968\pi\)
\(48\) 0 0
\(49\) −20.0165 −2.85949
\(50\) 0 0
\(51\) 1.38994 + 0.860307i 0.194631 + 0.120467i
\(52\) 0 0
\(53\) 13.4492i 1.84739i 0.383124 + 0.923697i \(0.374848\pi\)
−0.383124 + 0.923697i \(0.625152\pi\)
\(54\) 0 0
\(55\) 6.16379i 0.831125i
\(56\) 0 0
\(57\) 1.47277 + 0.911570i 0.195073 + 0.120740i
\(58\) 0 0
\(59\) 6.71376 0.874057 0.437029 0.899448i \(-0.356031\pi\)
0.437029 + 0.899448i \(0.356031\pi\)
\(60\) 0 0
\(61\) 9.09618 1.16465 0.582323 0.812957i \(-0.302144\pi\)
0.582323 + 0.812957i \(0.302144\pi\)
\(62\) 0 0
\(63\) −13.9562 + 6.95499i −1.75832 + 0.876247i
\(64\) 0 0
\(65\) 7.13906i 0.885492i
\(66\) 0 0
\(67\) 11.9465i 1.45950i 0.683715 + 0.729750i \(0.260363\pi\)
−0.683715 + 0.729750i \(0.739637\pi\)
\(68\) 0 0
\(69\) −0.436014 + 0.704441i −0.0524899 + 0.0848047i
\(70\) 0 0
\(71\) −16.1835 −1.92063 −0.960314 0.278921i \(-0.910023\pi\)
−0.960314 + 0.278921i \(0.910023\pi\)
\(72\) 0 0
\(73\) −2.58862 −0.302975 −0.151487 0.988459i \(-0.548406\pi\)
−0.151487 + 0.988459i \(0.548406\pi\)
\(74\) 0 0
\(75\) 2.33814 3.77759i 0.269985 0.436198i
\(76\) 0 0
\(77\) 20.5309i 2.33972i
\(78\) 0 0
\(79\) 9.22393i 1.03777i 0.854843 + 0.518886i \(0.173653\pi\)
−0.854843 + 0.518886i \(0.826347\pi\)
\(80\) 0 0
\(81\) −5.41908 + 7.18565i −0.602120 + 0.798406i
\(82\) 0 0
\(83\) 4.07767 0.447583 0.223791 0.974637i \(-0.428157\pi\)
0.223791 + 0.974637i \(0.428157\pi\)
\(84\) 0 0
\(85\) 1.47271 0.159738
\(86\) 0 0
\(87\) −14.0439 8.69248i −1.50566 0.931932i
\(88\) 0 0
\(89\) 15.6078i 1.65443i −0.561889 0.827213i \(-0.689925\pi\)
0.561889 0.827213i \(-0.310075\pi\)
\(90\) 0 0
\(91\) 23.7795i 2.49277i
\(92\) 0 0
\(93\) 3.93644 + 2.43646i 0.408190 + 0.252650i
\(94\) 0 0
\(95\) 1.56046 0.160100
\(96\) 0 0
\(97\) 1.01988 0.103554 0.0517768 0.998659i \(-0.483512\pi\)
0.0517768 + 0.998659i \(0.483512\pi\)
\(98\) 0 0
\(99\) −5.28539 10.6059i −0.531202 1.06594i
\(100\) 0 0
\(101\) 7.66119i 0.762317i −0.924510 0.381158i \(-0.875525\pi\)
0.924510 0.381158i \(-0.124475\pi\)
\(102\) 0 0
\(103\) 15.7513i 1.55202i −0.630719 0.776012i \(-0.717240\pi\)
0.630719 0.776012i \(-0.282760\pi\)
\(104\) 0 0
\(105\) −7.39362 + 11.9454i −0.721543 + 1.16575i
\(106\) 0 0
\(107\) −1.10071 −0.106410 −0.0532051 0.998584i \(-0.516944\pi\)
−0.0532051 + 0.998584i \(0.516944\pi\)
\(108\) 0 0
\(109\) −9.83599 −0.942117 −0.471059 0.882102i \(-0.656128\pi\)
−0.471059 + 0.882102i \(0.656128\pi\)
\(110\) 0 0
\(111\) 6.08274 9.82751i 0.577348 0.932786i
\(112\) 0 0
\(113\) 5.84994i 0.550316i −0.961399 0.275158i \(-0.911270\pi\)
0.961399 0.275158i \(-0.0887302\pi\)
\(114\) 0 0
\(115\) 0.746386i 0.0696009i
\(116\) 0 0
\(117\) 6.12168 + 12.2841i 0.565949 + 1.13566i
\(118\) 0 0
\(119\) 4.90543 0.449680
\(120\) 0 0
\(121\) 4.60233 0.418394
\(122\) 0 0
\(123\) 1.05826 + 0.655009i 0.0954198 + 0.0590601i
\(124\) 0 0
\(125\) 11.8048i 1.05586i
\(126\) 0 0
\(127\) 4.38197i 0.388837i 0.980919 + 0.194418i \(0.0622819\pi\)
−0.980919 + 0.194418i \(0.937718\pi\)
\(128\) 0 0
\(129\) 6.62355 + 4.09965i 0.583171 + 0.360954i
\(130\) 0 0
\(131\) 7.84538 0.685454 0.342727 0.939435i \(-0.388649\pi\)
0.342727 + 0.939435i \(0.388649\pi\)
\(132\) 0 0
\(133\) 5.19774 0.450701
\(134\) 0 0
\(135\) −0.744242 + 8.07417i −0.0640541 + 0.694914i
\(136\) 0 0
\(137\) 4.62430i 0.395081i −0.980295 0.197540i \(-0.936705\pi\)
0.980295 0.197540i \(-0.0632953\pi\)
\(138\) 0 0
\(139\) 12.1161i 1.02767i 0.857889 + 0.513836i \(0.171776\pi\)
−0.857889 + 0.513836i \(0.828224\pi\)
\(140\) 0 0
\(141\) 7.56821 12.2275i 0.637358 1.02974i
\(142\) 0 0
\(143\) −18.0710 −1.51118
\(144\) 0 0
\(145\) −14.8801 −1.23573
\(146\) 0 0
\(147\) −18.2464 + 29.4796i −1.50494 + 2.43143i
\(148\) 0 0
\(149\) 23.1466i 1.89624i −0.317913 0.948120i \(-0.602982\pi\)
0.317913 0.948120i \(-0.397018\pi\)
\(150\) 0 0
\(151\) 13.8186i 1.12454i −0.826952 0.562272i \(-0.809927\pi\)
0.826952 0.562272i \(-0.190073\pi\)
\(152\) 0 0
\(153\) 2.53406 1.26283i 0.204867 0.102094i
\(154\) 0 0
\(155\) 4.17084 0.335010
\(156\) 0 0
\(157\) 0.646129 0.0515667 0.0257834 0.999668i \(-0.491792\pi\)
0.0257834 + 0.999668i \(0.491792\pi\)
\(158\) 0 0
\(159\) 19.8076 + 12.2599i 1.57084 + 0.972274i
\(160\) 0 0
\(161\) 2.48614i 0.195935i
\(162\) 0 0
\(163\) 7.98182i 0.625184i −0.949887 0.312592i \(-0.898803\pi\)
0.949887 0.312592i \(-0.101197\pi\)
\(164\) 0 0
\(165\) −9.07782 5.61872i −0.706708 0.437417i
\(166\) 0 0
\(167\) −9.91273 −0.767070 −0.383535 0.923526i \(-0.625294\pi\)
−0.383535 + 0.923526i \(0.625294\pi\)
\(168\) 0 0
\(169\) 7.93033 0.610026
\(170\) 0 0
\(171\) 2.68506 1.33808i 0.205332 0.102326i
\(172\) 0 0
\(173\) 8.86242i 0.673797i 0.941541 + 0.336899i \(0.109378\pi\)
−0.941541 + 0.336899i \(0.890622\pi\)
\(174\) 0 0
\(175\) 13.3320i 1.00780i
\(176\) 0 0
\(177\) 6.12006 9.88780i 0.460012 0.743213i
\(178\) 0 0
\(179\) 14.6128 1.09221 0.546107 0.837715i \(-0.316109\pi\)
0.546107 + 0.837715i \(0.316109\pi\)
\(180\) 0 0
\(181\) 4.52129 0.336065 0.168032 0.985781i \(-0.446259\pi\)
0.168032 + 0.985781i \(0.446259\pi\)
\(182\) 0 0
\(183\) 8.29180 13.3965i 0.612948 0.990301i
\(184\) 0 0
\(185\) 10.4127i 0.765556i
\(186\) 0 0
\(187\) 3.72785i 0.272607i
\(188\) 0 0
\(189\) −2.47899 + 26.8942i −0.180320 + 1.95627i
\(190\) 0 0
\(191\) 7.11497 0.514821 0.257410 0.966302i \(-0.417131\pi\)
0.257410 + 0.966302i \(0.417131\pi\)
\(192\) 0 0
\(193\) −3.59540 −0.258802 −0.129401 0.991592i \(-0.541305\pi\)
−0.129401 + 0.991592i \(0.541305\pi\)
\(194\) 0 0
\(195\) 10.5142 + 6.50775i 0.752935 + 0.466030i
\(196\) 0 0
\(197\) 6.18698i 0.440804i −0.975409 0.220402i \(-0.929263\pi\)
0.975409 0.220402i \(-0.0707369\pi\)
\(198\) 0 0
\(199\) 8.75679i 0.620752i 0.950614 + 0.310376i \(0.100455\pi\)
−0.950614 + 0.310376i \(0.899545\pi\)
\(200\) 0 0
\(201\) 17.5944 + 10.8901i 1.24102 + 0.768127i
\(202\) 0 0
\(203\) −49.5642 −3.47872
\(204\) 0 0
\(205\) 1.12127 0.0783129
\(206\) 0 0
\(207\) 0.640019 + 1.28429i 0.0444844 + 0.0892646i
\(208\) 0 0
\(209\) 3.94998i 0.273226i
\(210\) 0 0
\(211\) 8.94811i 0.616014i 0.951384 + 0.308007i \(0.0996620\pi\)
−0.951384 + 0.308007i \(0.900338\pi\)
\(212\) 0 0
\(213\) −14.7524 + 23.8345i −1.01082 + 1.63311i
\(214\) 0 0
\(215\) 7.01794 0.478620
\(216\) 0 0
\(217\) 13.8926 0.943093
\(218\) 0 0
\(219\) −2.35970 + 3.81243i −0.159454 + 0.257620i
\(220\) 0 0
\(221\) 4.31769i 0.290439i
\(222\) 0 0
\(223\) 6.09361i 0.408058i 0.978965 + 0.204029i \(0.0654037\pi\)
−0.978965 + 0.204029i \(0.934596\pi\)
\(224\) 0 0
\(225\) −3.43212 6.88707i −0.228808 0.459138i
\(226\) 0 0
\(227\) 17.5984 1.16805 0.584025 0.811736i \(-0.301477\pi\)
0.584025 + 0.811736i \(0.301477\pi\)
\(228\) 0 0
\(229\) −3.41758 −0.225840 −0.112920 0.993604i \(-0.536020\pi\)
−0.112920 + 0.993604i \(0.536020\pi\)
\(230\) 0 0
\(231\) −30.2373 18.7154i −1.98947 1.23138i
\(232\) 0 0
\(233\) 2.84464i 0.186359i −0.995649 0.0931794i \(-0.970297\pi\)
0.995649 0.0931794i \(-0.0297030\pi\)
\(234\) 0 0
\(235\) 12.9556i 0.845127i
\(236\) 0 0
\(237\) 13.5847 + 8.40825i 0.882420 + 0.546175i
\(238\) 0 0
\(239\) 1.75650 0.113618 0.0568091 0.998385i \(-0.481907\pi\)
0.0568091 + 0.998385i \(0.481907\pi\)
\(240\) 0 0
\(241\) −22.8706 −1.47323 −0.736613 0.676314i \(-0.763576\pi\)
−0.736613 + 0.676314i \(0.763576\pi\)
\(242\) 0 0
\(243\) 5.64292 + 14.5313i 0.361994 + 0.932181i
\(244\) 0 0
\(245\) 31.2349i 1.99553i
\(246\) 0 0
\(247\) 4.57497i 0.291098i
\(248\) 0 0
\(249\) 3.71708 6.00546i 0.235560 0.380580i
\(250\) 0 0
\(251\) 22.1279 1.39670 0.698350 0.715756i \(-0.253918\pi\)
0.698350 + 0.715756i \(0.253918\pi\)
\(252\) 0 0
\(253\) −1.88932 −0.118781
\(254\) 0 0
\(255\) 1.34248 2.16895i 0.0840691 0.135825i
\(256\) 0 0
\(257\) 13.0220i 0.812291i −0.913809 0.406145i \(-0.866873\pi\)
0.913809 0.406145i \(-0.133127\pi\)
\(258\) 0 0
\(259\) 34.6836i 2.15513i
\(260\) 0 0
\(261\) −25.6040 + 12.7596i −1.58485 + 0.789798i
\(262\) 0 0
\(263\) −6.61856 −0.408118 −0.204059 0.978959i \(-0.565413\pi\)
−0.204059 + 0.978959i \(0.565413\pi\)
\(264\) 0 0
\(265\) 20.9870 1.28922
\(266\) 0 0
\(267\) −22.9867 14.2276i −1.40676 0.870716i
\(268\) 0 0
\(269\) 5.92485i 0.361245i 0.983553 + 0.180622i \(0.0578112\pi\)
−0.983553 + 0.180622i \(0.942189\pi\)
\(270\) 0 0
\(271\) 9.04573i 0.549489i −0.961517 0.274745i \(-0.911407\pi\)
0.961517 0.274745i \(-0.0885933\pi\)
\(272\) 0 0
\(273\) 35.0216 + 21.6766i 2.11960 + 1.31193i
\(274\) 0 0
\(275\) 10.1315 0.610955
\(276\) 0 0
\(277\) −7.95300 −0.477849 −0.238925 0.971038i \(-0.576795\pi\)
−0.238925 + 0.971038i \(0.576795\pi\)
\(278\) 0 0
\(279\) 7.17668 3.57645i 0.429657 0.214117i
\(280\) 0 0
\(281\) 13.7321i 0.819187i 0.912268 + 0.409594i \(0.134330\pi\)
−0.912268 + 0.409594i \(0.865670\pi\)
\(282\) 0 0
\(283\) 15.8270i 0.940819i 0.882448 + 0.470410i \(0.155894\pi\)
−0.882448 + 0.470410i \(0.844106\pi\)
\(284\) 0 0
\(285\) 1.42247 2.29820i 0.0842598 0.136133i
\(286\) 0 0
\(287\) 3.73483 0.220460
\(288\) 0 0
\(289\) 16.1093 0.947606
\(290\) 0 0
\(291\) 0.929696 1.50205i 0.0544997 0.0880518i
\(292\) 0 0
\(293\) 19.2202i 1.12286i 0.827525 + 0.561428i \(0.189748\pi\)
−0.827525 + 0.561428i \(0.810252\pi\)
\(294\) 0 0
\(295\) 10.4766i 0.609969i
\(296\) 0 0
\(297\) −20.4381 1.88389i −1.18594 0.109314i
\(298\) 0 0
\(299\) 2.18826 0.126550
\(300\) 0 0
\(301\) 23.3760 1.34737
\(302\) 0 0
\(303\) −11.2831 6.98371i −0.648200 0.401204i
\(304\) 0 0
\(305\) 14.1942i 0.812760i
\(306\) 0 0
\(307\) 14.6217i 0.834506i −0.908790 0.417253i \(-0.862993\pi\)
0.908790 0.417253i \(-0.137007\pi\)
\(308\) 0 0
\(309\) −23.1980 14.3584i −1.31969 0.816822i
\(310\) 0 0
\(311\) 14.8008 0.839274 0.419637 0.907692i \(-0.362157\pi\)
0.419637 + 0.907692i \(0.362157\pi\)
\(312\) 0 0
\(313\) −14.2611 −0.806084 −0.403042 0.915181i \(-0.632047\pi\)
−0.403042 + 0.915181i \(0.632047\pi\)
\(314\) 0 0
\(315\) 10.8530 + 21.7782i 0.611497 + 1.22706i
\(316\) 0 0
\(317\) 17.6456i 0.991074i 0.868587 + 0.495537i \(0.165029\pi\)
−0.868587 + 0.495537i \(0.834971\pi\)
\(318\) 0 0
\(319\) 37.6659i 2.10889i
\(320\) 0 0
\(321\) −1.00338 + 1.62110i −0.0560031 + 0.0904808i
\(322\) 0 0
\(323\) −0.943764 −0.0525124
\(324\) 0 0
\(325\) −11.7346 −0.650919
\(326\) 0 0
\(327\) −8.96619 + 14.4861i −0.495832 + 0.801084i
\(328\) 0 0
\(329\) 43.1536i 2.37914i
\(330\) 0 0
\(331\) 30.5424i 1.67876i −0.543545 0.839380i \(-0.682918\pi\)
0.543545 0.839380i \(-0.317082\pi\)
\(332\) 0 0
\(333\) −8.92878 17.9169i −0.489294 0.981841i
\(334\) 0 0
\(335\) 18.6421 1.01853
\(336\) 0 0
\(337\) −1.27548 −0.0694797 −0.0347399 0.999396i \(-0.511060\pi\)
−0.0347399 + 0.999396i \(0.511060\pi\)
\(338\) 0 0
\(339\) −8.61560 5.33263i −0.467935 0.289629i
\(340\) 0 0
\(341\) 10.5576i 0.571726i
\(342\) 0 0
\(343\) 67.6561i 3.65309i
\(344\) 0 0
\(345\) 1.09925 + 0.680383i 0.0591818 + 0.0366306i
\(346\) 0 0
\(347\) 27.5527 1.47910 0.739552 0.673099i \(-0.235037\pi\)
0.739552 + 0.673099i \(0.235037\pi\)
\(348\) 0 0
\(349\) 14.8750 0.796243 0.398121 0.917333i \(-0.369662\pi\)
0.398121 + 0.917333i \(0.369662\pi\)
\(350\) 0 0
\(351\) 23.6719 + 2.18197i 1.26351 + 0.116465i
\(352\) 0 0
\(353\) 28.0666i 1.49383i −0.664918 0.746916i \(-0.731534\pi\)
0.664918 0.746916i \(-0.268466\pi\)
\(354\) 0 0
\(355\) 25.2537i 1.34033i
\(356\) 0 0
\(357\) 4.47165 7.22456i 0.236665 0.382364i
\(358\) 0 0
\(359\) 0.814123 0.0429678 0.0214839 0.999769i \(-0.493161\pi\)
0.0214839 + 0.999769i \(0.493161\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 4.19535 6.77816i 0.220199 0.355761i
\(364\) 0 0
\(365\) 4.03944i 0.211434i
\(366\) 0 0
\(367\) 7.92669i 0.413770i −0.978365 0.206885i \(-0.933667\pi\)
0.978365 0.206885i \(-0.0663326\pi\)
\(368\) 0 0
\(369\) 1.92935 0.961479i 0.100438 0.0500526i
\(370\) 0 0
\(371\) 69.9055 3.62931
\(372\) 0 0
\(373\) −24.6734 −1.27754 −0.638769 0.769399i \(-0.720556\pi\)
−0.638769 + 0.769399i \(0.720556\pi\)
\(374\) 0 0
\(375\) −17.3858 10.7609i −0.897797 0.555692i
\(376\) 0 0
\(377\) 43.6257i 2.24684i
\(378\) 0 0
\(379\) 4.17277i 0.214341i −0.994241 0.107170i \(-0.965821\pi\)
0.994241 0.107170i \(-0.0341790\pi\)
\(380\) 0 0
\(381\) 6.45362 + 3.99447i 0.330629 + 0.204643i
\(382\) 0 0
\(383\) 23.2424 1.18763 0.593816 0.804601i \(-0.297621\pi\)
0.593816 + 0.804601i \(0.297621\pi\)
\(384\) 0 0
\(385\) −32.0378 −1.63279
\(386\) 0 0
\(387\) 12.0756 6.01782i 0.613840 0.305903i
\(388\) 0 0
\(389\) 6.76247i 0.342871i 0.985195 + 0.171436i \(0.0548405\pi\)
−0.985195 + 0.171436i \(0.945159\pi\)
\(390\) 0 0
\(391\) 0.451413i 0.0228289i
\(392\) 0 0
\(393\) 7.15161 11.5544i 0.360751 0.582843i
\(394\) 0 0
\(395\) 14.3936 0.724220
\(396\) 0 0
\(397\) 18.5197 0.929476 0.464738 0.885448i \(-0.346149\pi\)
0.464738 + 0.885448i \(0.346149\pi\)
\(398\) 0 0
\(399\) 4.73810 7.65505i 0.237202 0.383232i
\(400\) 0 0
\(401\) 2.15044i 0.107388i 0.998557 + 0.0536940i \(0.0170996\pi\)
−0.998557 + 0.0536940i \(0.982900\pi\)
\(402\) 0 0
\(403\) 12.2281i 0.609124i
\(404\) 0 0
\(405\) 11.2129 + 8.45626i 0.557175 + 0.420195i
\(406\) 0 0
\(407\) 26.3575 1.30649
\(408\) 0 0
\(409\) −5.05338 −0.249874 −0.124937 0.992165i \(-0.539873\pi\)
−0.124937 + 0.992165i \(0.539873\pi\)
\(410\) 0 0
\(411\) −6.81051 4.21537i −0.335938 0.207929i
\(412\) 0 0
\(413\) 34.8963i 1.71714i
\(414\) 0 0
\(415\) 6.36305i 0.312350i
\(416\) 0 0
\(417\) 17.8441 + 11.0446i 0.873831 + 0.540858i
\(418\) 0 0
\(419\) 16.7170 0.816677 0.408339 0.912831i \(-0.366108\pi\)
0.408339 + 0.912831i \(0.366108\pi\)
\(420\) 0 0
\(421\) 17.6475 0.860085 0.430042 0.902809i \(-0.358499\pi\)
0.430042 + 0.902809i \(0.358499\pi\)
\(422\) 0 0
\(423\) −11.1093 22.2924i −0.540151 1.08389i
\(424\) 0 0
\(425\) 2.42072i 0.117422i
\(426\) 0 0
\(427\) 47.2795i 2.28802i
\(428\) 0 0
\(429\) −16.4730 + 26.6144i −0.795324 + 1.28496i
\(430\) 0 0
\(431\) −17.2969 −0.833161 −0.416581 0.909099i \(-0.636772\pi\)
−0.416581 + 0.909099i \(0.636772\pi\)
\(432\) 0 0
\(433\) −5.57046 −0.267699 −0.133850 0.991002i \(-0.542734\pi\)
−0.133850 + 0.991002i \(0.542734\pi\)
\(434\) 0 0
\(435\) −13.5643 + 21.9150i −0.650358 + 1.05074i
\(436\) 0 0
\(437\) 0.478311i 0.0228807i
\(438\) 0 0
\(439\) 18.1982i 0.868554i −0.900779 0.434277i \(-0.857004\pi\)
0.900779 0.434277i \(-0.142996\pi\)
\(440\) 0 0
\(441\) 26.7836 + 53.7453i 1.27541 + 2.55930i
\(442\) 0 0
\(443\) −4.53497 −0.215463 −0.107731 0.994180i \(-0.534359\pi\)
−0.107731 + 0.994180i \(0.534359\pi\)
\(444\) 0 0
\(445\) −24.3554 −1.15456
\(446\) 0 0
\(447\) −34.0895 21.0997i −1.61238 0.997981i
\(448\) 0 0
\(449\) 10.7240i 0.506095i 0.967454 + 0.253048i \(0.0814330\pi\)
−0.967454 + 0.253048i \(0.918567\pi\)
\(450\) 0 0
\(451\) 2.83826i 0.133648i
\(452\) 0 0
\(453\) −20.3516 12.5966i −0.956202 0.591842i
\(454\) 0 0
\(455\) 37.1070 1.73960
\(456\) 0 0
\(457\) −11.5115 −0.538485 −0.269242 0.963072i \(-0.586773\pi\)
−0.269242 + 0.963072i \(0.586773\pi\)
\(458\) 0 0
\(459\) 0.450116 4.88324i 0.0210096 0.227930i
\(460\) 0 0
\(461\) 11.3375i 0.528040i −0.964517 0.264020i \(-0.914952\pi\)
0.964517 0.264020i \(-0.0850485\pi\)
\(462\) 0 0
\(463\) 25.3906i 1.18000i 0.807402 + 0.590001i \(0.200873\pi\)
−0.807402 + 0.590001i \(0.799127\pi\)
\(464\) 0 0
\(465\) 3.80201 6.14267i 0.176314 0.284859i
\(466\) 0 0
\(467\) 13.5527 0.627146 0.313573 0.949564i \(-0.398474\pi\)
0.313573 + 0.949564i \(0.398474\pi\)
\(468\) 0 0
\(469\) 62.0948 2.86727
\(470\) 0 0
\(471\) 0.588992 0.951597i 0.0271393 0.0438473i
\(472\) 0 0
\(473\) 17.7644i 0.816810i
\(474\) 0 0
\(475\) 2.56496i 0.117688i
\(476\) 0 0
\(477\) 36.1120 17.9962i 1.65345 0.823988i
\(478\) 0 0
\(479\) 9.81816 0.448603 0.224302 0.974520i \(-0.427990\pi\)
0.224302 + 0.974520i \(0.427990\pi\)
\(480\) 0 0
\(481\) −30.5279 −1.39195
\(482\) 0 0
\(483\) 3.66150 + 2.26629i 0.166604 + 0.103120i
\(484\) 0 0
\(485\) 1.59149i 0.0722659i
\(486\) 0 0
\(487\) 18.4184i 0.834620i 0.908764 + 0.417310i \(0.137027\pi\)
−0.908764 + 0.417310i \(0.862973\pi\)
\(488\) 0 0
\(489\) −11.7554 7.27598i −0.531595 0.329031i
\(490\) 0 0
\(491\) −14.1060 −0.636594 −0.318297 0.947991i \(-0.603111\pi\)
−0.318297 + 0.947991i \(0.603111\pi\)
\(492\) 0 0
\(493\) 8.99948 0.405316
\(494\) 0 0
\(495\) −16.5501 + 8.24765i −0.743873 + 0.370704i
\(496\) 0 0
\(497\) 84.1175i 3.77319i
\(498\) 0 0
\(499\) 33.6421i 1.50603i 0.658006 + 0.753013i \(0.271400\pi\)
−0.658006 + 0.753013i \(0.728600\pi\)
\(500\) 0 0
\(501\) −9.03615 + 14.5991i −0.403705 + 0.652241i
\(502\) 0 0
\(503\) −32.0656 −1.42973 −0.714867 0.699260i \(-0.753513\pi\)
−0.714867 + 0.699260i \(0.753513\pi\)
\(504\) 0 0
\(505\) −11.9550 −0.531990
\(506\) 0 0
\(507\) 7.22905 11.6795i 0.321053 0.518706i
\(508\) 0 0
\(509\) 3.04414i 0.134929i 0.997722 + 0.0674645i \(0.0214909\pi\)
−0.997722 + 0.0674645i \(0.978509\pi\)
\(510\) 0 0
\(511\) 13.4549i 0.595212i
\(512\) 0 0
\(513\) 0.476937 5.17422i 0.0210573 0.228447i
\(514\) 0 0
\(515\) −24.5793 −1.08309
\(516\) 0 0
\(517\) 32.7943 1.44229
\(518\) 0 0
\(519\) 13.0523 + 8.07871i 0.572931 + 0.354616i
\(520\) 0 0
\(521\) 15.9554i 0.699020i −0.936933 0.349510i \(-0.886348\pi\)
0.936933 0.349510i \(-0.113652\pi\)
\(522\) 0 0
\(523\) 5.81054i 0.254077i 0.991898 + 0.127039i \(0.0405472\pi\)
−0.991898 + 0.127039i \(0.959453\pi\)
\(524\) 0 0
\(525\) −19.6349 12.1530i −0.856937 0.530402i
\(526\) 0 0
\(527\) −2.52251 −0.109882
\(528\) 0 0
\(529\) −22.7712 −0.990053
\(530\) 0 0
\(531\) −8.98356 18.0268i −0.389853 0.782298i
\(532\) 0 0
\(533\) 3.28734i 0.142391i
\(534\) 0 0
\(535\) 1.71762i 0.0742593i
\(536\) 0 0
\(537\) 13.3206 21.5213i 0.574827 0.928713i
\(538\) 0 0
\(539\) −79.0646 −3.40555
\(540\) 0 0
\(541\) 33.5044 1.44047 0.720234 0.693731i \(-0.244034\pi\)
0.720234 + 0.693731i \(0.244034\pi\)
\(542\) 0 0
\(543\) 4.12147 6.65880i 0.176869 0.285756i
\(544\) 0 0
\(545\) 15.3487i 0.657466i
\(546\) 0 0
\(547\) 28.7552i 1.22948i 0.788728 + 0.614742i \(0.210740\pi\)
−0.788728 + 0.614742i \(0.789260\pi\)
\(548\) 0 0
\(549\) −12.1714 24.4238i −0.519464 1.04238i
\(550\) 0 0
\(551\) 9.53573 0.406236
\(552\) 0 0
\(553\) 47.9435 2.03877
\(554\) 0 0
\(555\) −15.3354 9.49189i −0.650954 0.402908i
\(556\) 0 0
\(557\) 43.3822i 1.83816i 0.394065 + 0.919082i \(0.371068\pi\)
−0.394065 + 0.919082i \(0.628932\pi\)
\(558\) 0 0
\(559\) 20.5752i 0.870240i
\(560\) 0 0
\(561\) 5.49025 + 3.39819i 0.231798 + 0.143472i
\(562\) 0 0
\(563\) −22.6671 −0.955304 −0.477652 0.878549i \(-0.658512\pi\)
−0.477652 + 0.878549i \(0.658512\pi\)
\(564\) 0 0
\(565\) −9.12861 −0.384044
\(566\) 0 0
\(567\) 37.3491 + 28.1669i 1.56852 + 1.18290i
\(568\) 0 0
\(569\) 14.0125i 0.587432i −0.955893 0.293716i \(-0.905108\pi\)
0.955893 0.293716i \(-0.0948921\pi\)
\(570\) 0 0
\(571\) 8.24727i 0.345137i −0.984997 0.172569i \(-0.944793\pi\)
0.984997 0.172569i \(-0.0552067\pi\)
\(572\) 0 0
\(573\) 6.48579 10.4787i 0.270948 0.437753i
\(574\) 0 0
\(575\) −1.22685 −0.0511631
\(576\) 0 0
\(577\) −9.95201 −0.414308 −0.207154 0.978308i \(-0.566420\pi\)
−0.207154 + 0.978308i \(0.566420\pi\)
\(578\) 0 0
\(579\) −3.27745 + 5.29518i −0.136206 + 0.220060i
\(580\) 0 0
\(581\) 21.1947i 0.879302i
\(582\) 0 0
\(583\) 53.1242i 2.20018i
\(584\) 0 0
\(585\) 19.1688 9.55264i 0.792532 0.394953i
\(586\) 0 0
\(587\) 4.87447 0.201191 0.100596 0.994927i \(-0.467925\pi\)
0.100596 + 0.994927i \(0.467925\pi\)
\(588\) 0 0
\(589\) −2.67282 −0.110132
\(590\) 0 0
\(591\) −9.11197 5.63986i −0.374816 0.231993i
\(592\) 0 0
\(593\) 0.0890545i 0.00365703i −0.999998 0.00182851i \(-0.999418\pi\)
0.999998 0.00182851i \(-0.000582034\pi\)
\(594\) 0 0
\(595\) 7.65474i 0.313814i
\(596\) 0 0
\(597\) 12.8967 + 7.98242i 0.527827 + 0.326699i
\(598\) 0 0
\(599\) 19.1498 0.782438 0.391219 0.920298i \(-0.372054\pi\)
0.391219 + 0.920298i \(0.372054\pi\)
\(600\) 0 0
\(601\) 32.1940 1.31322 0.656610 0.754231i \(-0.271990\pi\)
0.656610 + 0.754231i \(0.271990\pi\)
\(602\) 0 0
\(603\) 32.0771 15.9854i 1.30628 0.650976i
\(604\) 0 0
\(605\) 7.18176i 0.291980i
\(606\) 0 0
\(607\) 12.6053i 0.511635i 0.966725 + 0.255817i \(0.0823446\pi\)
−0.966725 + 0.255817i \(0.917655\pi\)
\(608\) 0 0
\(609\) −45.1812 + 72.9965i −1.83084 + 2.95797i
\(610\) 0 0
\(611\) −37.9832 −1.53663
\(612\) 0 0
\(613\) 13.6810 0.552570 0.276285 0.961076i \(-0.410897\pi\)
0.276285 + 0.961076i \(0.410897\pi\)
\(614\) 0 0
\(615\) 1.02212 1.65137i 0.0412157 0.0665896i
\(616\) 0 0
\(617\) 24.1797i 0.973437i −0.873559 0.486719i \(-0.838194\pi\)
0.873559 0.486719i \(-0.161806\pi\)
\(618\) 0 0
\(619\) 12.8882i 0.518020i −0.965875 0.259010i \(-0.916604\pi\)
0.965875 0.259010i \(-0.0833963\pi\)
\(620\) 0 0
\(621\) 2.47489 + 0.228124i 0.0993138 + 0.00915431i
\(622\) 0 0
\(623\) −81.1253 −3.25022
\(624\) 0 0
\(625\) −5.59618 −0.223847
\(626\) 0 0
\(627\) 5.81740 + 3.60068i 0.232324 + 0.143797i
\(628\) 0 0
\(629\) 6.29757i 0.251100i
\(630\) 0 0
\(631\) 0.642645i 0.0255833i −0.999918 0.0127916i \(-0.995928\pi\)
0.999918 0.0127916i \(-0.00407182\pi\)
\(632\) 0 0
\(633\) 13.1785 + 8.15683i 0.523798 + 0.324205i
\(634\) 0 0
\(635\) 6.83789 0.271354
\(636\) 0 0
\(637\) 91.5746 3.62832
\(638\) 0 0
\(639\) 21.6548 + 43.4536i 0.856652 + 1.71900i
\(640\) 0 0
\(641\) 34.1623i 1.34933i 0.738123 + 0.674666i \(0.235712\pi\)
−0.738123 + 0.674666i \(0.764288\pi\)
\(642\) 0 0
\(643\) 30.0798i 1.18623i −0.805117 0.593115i \(-0.797898\pi\)
0.805117 0.593115i \(-0.202102\pi\)
\(644\) 0 0
\(645\) 6.39734 10.3358i 0.251895 0.406971i
\(646\) 0 0
\(647\) 35.8344 1.40880 0.704398 0.709806i \(-0.251217\pi\)
0.704398 + 0.709806i \(0.251217\pi\)
\(648\) 0 0
\(649\) 26.5192 1.04097
\(650\) 0 0
\(651\) 12.6641 20.4606i 0.496345 0.801914i
\(652\) 0 0
\(653\) 16.8550i 0.659589i 0.944053 + 0.329794i \(0.106979\pi\)
−0.944053 + 0.329794i \(0.893021\pi\)
\(654\) 0 0
\(655\) 12.2424i 0.478351i
\(656\) 0 0
\(657\) 3.46378 + 6.95059i 0.135135 + 0.271168i
\(658\) 0 0
\(659\) −26.8030 −1.04410 −0.522048 0.852916i \(-0.674832\pi\)
−0.522048 + 0.852916i \(0.674832\pi\)
\(660\) 0 0
\(661\) 1.47971 0.0575539 0.0287769 0.999586i \(-0.490839\pi\)
0.0287769 + 0.999586i \(0.490839\pi\)
\(662\) 0 0
\(663\) −6.35895 3.93587i −0.246961 0.152857i
\(664\) 0 0
\(665\) 8.11087i 0.314526i
\(666\) 0 0
\(667\) 4.56105i 0.176604i
\(668\) 0 0
\(669\) 8.97446 + 5.55475i 0.346973 + 0.214759i
\(670\) 0 0
\(671\) 35.9297 1.38705
\(672\) 0 0
\(673\) 39.8636 1.53663 0.768315 0.640072i \(-0.221096\pi\)
0.768315 + 0.640072i \(0.221096\pi\)
\(674\) 0 0
\(675\) −13.2717 1.22332i −0.510826 0.0470858i
\(676\) 0 0
\(677\) 19.4838i 0.748823i −0.927263 0.374412i \(-0.877845\pi\)
0.927263 0.374412i \(-0.122155\pi\)
\(678\) 0 0
\(679\) 5.30109i 0.203437i
\(680\) 0 0
\(681\) 16.0422 25.9184i 0.614739 0.993195i
\(682\) 0 0
\(683\) 29.8222 1.14111 0.570557 0.821258i \(-0.306727\pi\)
0.570557 + 0.821258i \(0.306727\pi\)
\(684\) 0 0
\(685\) −7.21604 −0.275711
\(686\) 0 0
\(687\) −3.11536 + 5.03330i −0.118858 + 0.192032i
\(688\) 0 0
\(689\) 61.5298i 2.34410i
\(690\) 0 0
\(691\) 37.1878i 1.41469i −0.706869 0.707344i \(-0.749893\pi\)
0.706869 0.707344i \(-0.250107\pi\)
\(692\) 0 0
\(693\) −55.1268 + 27.4721i −2.09409 + 1.04358i
\(694\) 0 0
\(695\) 18.9067 0.717170
\(696\) 0 0
\(697\) −0.678142 −0.0256864
\(698\) 0 0
\(699\) −4.18950 2.59309i −0.158461 0.0980797i
\(700\) 0 0
\(701\) 23.7299i 0.896266i −0.893967 0.448133i \(-0.852089\pi\)
0.893967 0.448133i \(-0.147911\pi\)
\(702\) 0 0
\(703\) 6.67282i 0.251670i
\(704\) 0 0
\(705\) −19.0805 11.8099i −0.718614 0.444786i
\(706\) 0 0
\(707\) −39.8208 −1.49762
\(708\) 0 0
\(709\) −42.6920 −1.60333 −0.801666 0.597772i \(-0.796053\pi\)
−0.801666 + 0.597772i \(0.796053\pi\)
\(710\) 0 0
\(711\) 24.7668 12.3424i 0.928827 0.462875i
\(712\) 0 0
\(713\) 1.27844i 0.0478780i
\(714\) 0 0
\(715\) 28.1991i 1.05459i
\(716\) 0 0
\(717\) 1.60117 2.58691i 0.0597967 0.0966099i
\(718\) 0 0
\(719\) 52.4059 1.95441 0.977205 0.212300i \(-0.0680953\pi\)
0.977205 + 0.212300i \(0.0680953\pi\)
\(720\) 0 0
\(721\) −81.8712 −3.04904
\(722\) 0 0
\(723\) −20.8482 + 33.6831i −0.775352 + 1.25269i
\(724\) 0 0
\(725\) 24.4588i 0.908376i
\(726\) 0 0
\(727\) 22.3551i 0.829104i 0.910026 + 0.414552i \(0.136062\pi\)
−0.910026 + 0.414552i \(0.863938\pi\)
\(728\) 0 0
\(729\) 26.5451 + 4.93555i 0.983150 + 0.182798i
\(730\) 0 0
\(731\) −4.24444 −0.156986
\(732\) 0 0
\(733\) −35.1732 −1.29915 −0.649576 0.760297i \(-0.725053\pi\)
−0.649576 + 0.760297i \(0.725053\pi\)
\(734\) 0 0
\(735\) 46.0017 + 28.4728i 1.69680 + 1.05023i
\(736\) 0 0
\(737\) 47.1885i 1.73821i
\(738\) 0 0
\(739\) 3.00534i 0.110553i 0.998471 + 0.0552766i \(0.0176040\pi\)
−0.998471 + 0.0552766i \(0.982396\pi\)
\(740\) 0 0
\(741\) −6.73786 4.17040i −0.247521 0.153204i
\(742\) 0 0
\(743\) −9.45589 −0.346903 −0.173451 0.984842i \(-0.555492\pi\)
−0.173451 + 0.984842i \(0.555492\pi\)
\(744\) 0 0
\(745\) −36.1193 −1.32331
\(746\) 0 0
\(747\) −5.45626 10.9488i −0.199634 0.400595i
\(748\) 0 0
\(749\) 5.72123i 0.209049i
\(750\) 0 0
\(751\) 30.6226i 1.11744i −0.829358 0.558718i \(-0.811293\pi\)
0.829358 0.558718i \(-0.188707\pi\)
\(752\) 0 0
\(753\) 20.1711 32.5892i 0.735076 1.18762i
\(754\) 0 0
\(755\) −21.5634 −0.784774
\(756\) 0 0
\(757\) −43.2437 −1.57172 −0.785859 0.618406i \(-0.787779\pi\)
−0.785859 + 0.618406i \(0.787779\pi\)
\(758\) 0 0
\(759\) −1.72225 + 2.78253i −0.0625136 + 0.100999i
\(760\) 0 0
\(761\) 40.2871i 1.46041i −0.683230 0.730203i \(-0.739425\pi\)
0.683230 0.730203i \(-0.260575\pi\)
\(762\) 0 0
\(763\) 51.1249i 1.85085i
\(764\) 0 0
\(765\) −1.97060 3.95430i −0.0712473 0.142968i
\(766\) 0 0
\(767\) −30.7152 −1.10906
\(768\) 0 0
\(769\) 51.4218 1.85432 0.927158 0.374671i \(-0.122244\pi\)
0.927158 + 0.374671i \(0.122244\pi\)
\(770\) 0 0
\(771\) −19.1784 11.8705i −0.690692 0.427504i
\(772\) 0 0
\(773\) 45.9251i 1.65181i 0.563808 + 0.825906i \(0.309336\pi\)
−0.563808 + 0.825906i \(0.690664\pi\)
\(774\) 0 0
\(775\) 6.85568i 0.246263i
\(776\) 0 0
\(777\) −51.0808 31.6165i −1.83251 1.13424i
\(778\) 0 0
\(779\) −0.718550 −0.0257447
\(780\) 0 0
\(781\) −63.9245 −2.28740
\(782\) 0 0
\(783\) −4.54794 + 49.3399i −0.162530 + 1.76327i
\(784\) 0 0
\(785\) 1.00826i 0.0359863i
\(786\) 0 0
\(787\) 9.83789i 0.350683i 0.984508 + 0.175341i \(0.0561030\pi\)
−0.984508 + 0.175341i \(0.943897\pi\)
\(788\) 0 0
\(789\) −6.03328 + 9.74760i −0.214791 + 0.347024i
\(790\) 0 0
\(791\) −30.4065 −1.08113
\(792\) 0 0
\(793\) −41.6147 −1.47778
\(794\) 0 0
\(795\) 19.1311 30.9090i 0.678511 1.09623i
\(796\) 0 0
\(797\) 15.2827i 0.541341i −0.962672 0.270670i \(-0.912755\pi\)
0.962672 0.270670i \(-0.0872453\pi\)
\(798\) 0 0
\(799\) 7.83549i 0.277200i
\(800\) 0 0
\(801\) −41.9079 + 20.8845i −1.48074 + 0.737919i
\(802\) 0 0
\(803\) −10.2250 −0.360832
\(804\) 0 0
\(805\) 3.87952 0.136735
\(806\) 0 0
\(807\) 8.72592 + 5.40092i 0.307167 + 0.190121i
\(808\) 0 0
\(809\) 40.5493i 1.42564i −0.701349 0.712818i \(-0.747419\pi\)
0.701349 0.712818i \(-0.252581\pi\)
\(810\) 0 0
\(811\) 31.2472i 1.09724i −0.836073 0.548618i \(-0.815154\pi\)
0.836073 0.548618i \(-0.184846\pi\)
\(812\) 0 0
\(813\) −13.3223 8.24582i −0.467232 0.289193i
\(814\) 0 0
\(815\) −12.4553 −0.436291
\(816\) 0 0
\(817\) −4.49735 −0.157342
\(818\) 0 0
\(819\) 63.8493 31.8189i 2.23107 1.11184i
\(820\) 0 0
\(821\) 44.2879i 1.54566i −0.634613 0.772830i \(-0.718841\pi\)
0.634613 0.772830i \(-0.281159\pi\)
\(822\) 0 0
\(823\) 34.3913i 1.19881i −0.800447 0.599403i \(-0.795405\pi\)
0.800447 0.599403i \(-0.204595\pi\)
\(824\) 0 0
\(825\) 9.23560 14.9214i 0.321542 0.519496i
\(826\) 0 0
\(827\) 9.91938 0.344931 0.172465 0.985016i \(-0.444827\pi\)
0.172465 + 0.985016i \(0.444827\pi\)
\(828\) 0 0
\(829\) 18.5294 0.643551 0.321776 0.946816i \(-0.395720\pi\)
0.321776 + 0.946816i \(0.395720\pi\)
\(830\) 0 0
\(831\) −7.24971 + 11.7129i −0.251490 + 0.406316i
\(832\) 0 0
\(833\) 18.8908i 0.654528i
\(834\) 0 0
\(835\) 15.4684i 0.535307i
\(836\) 0 0
\(837\) 1.27477 13.8298i 0.0440624 0.478027i
\(838\) 0 0
\(839\) −47.2441 −1.63105 −0.815524 0.578723i \(-0.803551\pi\)
−0.815524 + 0.578723i \(0.803551\pi\)
\(840\) 0 0
\(841\) −61.9301 −2.13552
\(842\) 0 0
\(843\) 20.2241 + 12.5178i 0.696557 + 0.431134i
\(844\) 0 0
\(845\) 12.3750i 0.425712i
\(846\) 0 0
\(847\) 23.9217i 0.821959i
\(848\) 0 0
\(849\) 23.3095 + 14.4274i 0.799981 + 0.495149i
\(850\) 0 0
\(851\) −3.19169 −0.109410
\(852\) 0 0
\(853\) −49.9700 −1.71094 −0.855469 0.517854i \(-0.826731\pi\)
−0.855469 + 0.517854i \(0.826731\pi\)
\(854\) 0 0
\(855\) −2.08802 4.18993i −0.0714089 0.143293i
\(856\) 0 0
\(857\) 25.6647i 0.876690i 0.898807 + 0.438345i \(0.144435\pi\)
−0.898807 + 0.438345i \(0.855565\pi\)
\(858\) 0 0
\(859\) 33.8458i 1.15481i 0.816460 + 0.577403i \(0.195934\pi\)
−0.816460 + 0.577403i \(0.804066\pi\)
\(860\) 0 0
\(861\) 3.40456 5.50054i 0.116027 0.187458i
\(862\) 0 0
\(863\) −4.97167 −0.169238 −0.0846188 0.996413i \(-0.526967\pi\)
−0.0846188 + 0.996413i \(0.526967\pi\)
\(864\) 0 0
\(865\) 13.8295 0.470216
\(866\) 0 0
\(867\) 14.6848 23.7252i 0.498721 0.805752i
\(868\) 0 0
\(869\) 36.4343i 1.23595i
\(870\) 0 0
\(871\) 54.6549i 1.85191i
\(872\) 0 0
\(873\) −1.36469 2.73845i −0.0461877 0.0926825i
\(874\) 0 0
\(875\) −61.3584 −2.07429
\(876\) 0 0
\(877\) −4.41062 −0.148936 −0.0744680 0.997223i \(-0.523726\pi\)
−0.0744680 + 0.997223i \(0.523726\pi\)
\(878\) 0 0
\(879\) 28.3069 + 17.5206i 0.954767 + 0.590954i
\(880\) 0 0
\(881\) 19.9885i 0.673429i −0.941607 0.336714i \(-0.890684\pi\)
0.941607 0.336714i \(-0.109316\pi\)
\(882\) 0 0
\(883\) 42.6504i 1.43530i −0.696404 0.717650i \(-0.745218\pi\)
0.696404 0.717650i \(-0.254782\pi\)
\(884\) 0 0
\(885\) −15.4295 9.55012i −0.518658 0.321024i
\(886\) 0 0
\(887\) −39.8221 −1.33710 −0.668548 0.743669i \(-0.733084\pi\)
−0.668548 + 0.743669i \(0.733084\pi\)
\(888\) 0 0
\(889\) 22.7763 0.763893
\(890\) 0 0
\(891\) −21.4052 + 28.3832i −0.717102 + 0.950872i
\(892\) 0 0
\(893\) 8.30239i 0.277829i
\(894\) 0 0
\(895\) 22.8028i 0.762213i
\(896\) 0 0
\(897\) 1.99475 3.22279i 0.0666028 0.107606i
\(898\) 0 0
\(899\) 25.4873 0.850049
\(900\) 0 0
\(901\) −12.6929 −0.422862
\(902\) 0 0
\(903\) 21.3089 34.4274i 0.709115 1.14567i
\(904\) 0 0
\(905\) 7.05529i 0.234526i
\(906\) 0 0
\(907\) 55.6210i 1.84687i 0.383759 + 0.923433i \(0.374629\pi\)
−0.383759 + 0.923433i \(0.625371\pi\)
\(908\) 0 0
\(909\) −20.5707 + 10.2513i −0.682288 + 0.340014i
\(910\) 0 0
\(911\) −34.4831 −1.14248 −0.571238 0.820784i \(-0.693537\pi\)
−0.571238 + 0.820784i \(0.693537\pi\)
\(912\) 0 0
\(913\) 16.1067 0.533054
\(914\) 0 0
\(915\) −20.9048 12.9390i −0.691091 0.427751i
\(916\) 0 0
\(917\) 40.7782i 1.34662i
\(918\) 0 0
\(919\) 53.7710i 1.77374i 0.462016 + 0.886872i \(0.347126\pi\)
−0.462016 + 0.886872i \(0.652874\pi\)
\(920\) 0 0
\(921\) −21.5344 13.3287i −0.709582 0.439196i
\(922\) 0 0
\(923\) 74.0390 2.43702
\(924\) 0 0
\(925\) 17.1155 0.562755
\(926\) 0 0
\(927\) −42.2932 + 21.0765i −1.38909 + 0.692244i
\(928\) 0 0
\(929\) 6.13198i 0.201184i −0.994928 0.100592i \(-0.967926\pi\)
0.994928 0.100592i \(-0.0320737\pi\)
\(930\) 0 0
\(931\) 20.0165i 0.656013i
\(932\) 0 0
\(933\) 13.4919 21.7980i 0.441706 0.713636i
\(934\) 0 0
\(935\) 5.81716 0.190242
\(936\) 0 0
\(937\) 55.8334 1.82400 0.911999 0.410192i \(-0.134538\pi\)
0.911999 + 0.410192i \(0.134538\pi\)
\(938\) 0 0
\(939\) −13.0000 + 21.0032i −0.424238 + 0.685415i
\(940\) 0 0
\(941\) 19.6290i 0.639886i −0.947437 0.319943i \(-0.896336\pi\)
0.947437 0.319943i \(-0.103664\pi\)
\(942\) 0 0
\(943\) 0.343691i 0.0111921i
\(944\) 0 0
\(945\) 41.9674 + 3.86837i 1.36520 + 0.125838i
\(946\) 0 0
\(947\) 4.58710 0.149061 0.0745303 0.997219i \(-0.476254\pi\)
0.0745303 + 0.997219i \(0.476254\pi\)
\(948\) 0 0
\(949\) 11.8428 0.384435
\(950\) 0 0
\(951\) 25.9878 + 16.0852i 0.842712 + 0.521597i
\(952\) 0 0
\(953\) 58.7629i 1.90352i −0.306848 0.951758i \(-0.599274\pi\)
0.306848 0.951758i \(-0.400726\pi\)
\(954\) 0 0
\(955\) 11.1026i 0.359273i
\(956\) 0 0
\(957\) −55.4731 34.3351i −1.79319 1.10990i
\(958\) 0 0
\(959\) −24.0359 −0.776159
\(960\) 0 0
\(961\) 23.8560 0.769549
\(962\) 0 0
\(963\) 1.47285 + 2.95548i 0.0474618 + 0.0952391i
\(964\) 0 0
\(965\) 5.61048i 0.180608i
\(966\) 0 0
\(967\) 30.6116i 0.984401i 0.870482 + 0.492201i \(0.163807\pi\)
−0.870482 + 0.492201i \(0.836193\pi\)
\(968\) 0 0
\(969\) −0.860307 + 1.38994i −0.0276370 + 0.0446514i
\(970\) 0 0
\(971\) 18.1059 0.581045 0.290523 0.956868i \(-0.406171\pi\)
0.290523 + 0.956868i \(0.406171\pi\)
\(972\) 0 0
\(973\) 62.9761 2.01892
\(974\) 0 0
\(975\) −10.6969 + 17.2823i −0.342575 + 0.553478i
\(976\) 0 0
\(977\) 19.6539i 0.628785i 0.949293 + 0.314393i \(0.101801\pi\)
−0.949293 + 0.314393i \(0.898199\pi\)
\(978\) 0 0
\(979\) 61.6506i 1.97036i
\(980\) 0 0
\(981\) 13.1614 + 26.4102i 0.420210 + 0.843213i
\(982\) 0 0
\(983\) 45.5366 1.45239 0.726196 0.687487i \(-0.241286\pi\)
0.726196 + 0.687487i \(0.241286\pi\)
\(984\) 0 0
\(985\) −9.65454 −0.307619
\(986\) 0 0
\(987\) −63.5552 39.3375i −2.02298 1.25213i
\(988\) 0 0
\(989\) 2.15113i 0.0684021i
\(990\) 0 0
\(991\) 36.6902i 1.16550i 0.812650 + 0.582752i \(0.198024\pi\)
−0.812650 + 0.582752i \(0.801976\pi\)
\(992\) 0 0
\(993\) −44.9817 27.8415i −1.42745 0.883523i
\(994\) 0 0
\(995\) 13.6646 0.433198
\(996\) 0 0
\(997\) −48.1862 −1.52607 −0.763036 0.646356i \(-0.776292\pi\)
−0.763036 + 0.646356i \(0.776292\pi\)
\(998\) 0 0
\(999\) −34.5266 3.18252i −1.09237 0.100690i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.d.g.191.23 yes 32
3.2 odd 2 inner 1824.2.d.g.191.9 32
4.3 odd 2 inner 1824.2.d.g.191.10 yes 32
12.11 even 2 inner 1824.2.d.g.191.24 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.d.g.191.9 32 3.2 odd 2 inner
1824.2.d.g.191.10 yes 32 4.3 odd 2 inner
1824.2.d.g.191.23 yes 32 1.1 even 1 trivial
1824.2.d.g.191.24 yes 32 12.11 even 2 inner