Properties

Label 1824.2.bb.a.31.9
Level $1824$
Weight $2$
Character 1824.31
Analytic conductor $14.565$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(31,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.9
Character \(\chi\) \(=\) 1824.31
Dual form 1824.2.bb.a.1471.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(-0.352093 - 0.609843i) q^{5} -0.0726253i q^{7} +(-0.500000 + 0.866025i) q^{9} -1.77299i q^{11} +(2.42846 + 1.40207i) q^{13} +(-0.352093 + 0.609843i) q^{15} +(3.41547 + 5.91577i) q^{17} +(-3.54782 + 2.53239i) q^{19} +(-0.0628953 + 0.0363126i) q^{21} +(4.39446 + 2.53714i) q^{23} +(2.25206 - 3.90068i) q^{25} +1.00000 q^{27} +(-5.17824 - 2.98966i) q^{29} +0.690868 q^{31} +(-1.53545 + 0.886495i) q^{33} +(-0.0442900 + 0.0255709i) q^{35} +10.7779i q^{37} -2.80414i q^{39} +(-1.04119 + 0.601130i) q^{41} +(9.49783 - 5.48357i) q^{43} +0.704186 q^{45} +(-3.35724 - 1.93830i) q^{47} +6.99473 q^{49} +(3.41547 - 5.91577i) q^{51} +(9.05207 + 5.22621i) q^{53} +(-1.08125 + 0.624257i) q^{55} +(3.96702 + 1.80630i) q^{57} +(-7.24248 - 12.5443i) q^{59} +(4.69049 - 8.12417i) q^{61} +(0.0628953 + 0.0363126i) q^{63} -1.97464i q^{65} +(1.61637 - 2.79963i) q^{67} -5.07429i q^{69} +(-1.90279 - 3.29573i) q^{71} +(5.46110 + 9.45890i) q^{73} -4.50412 q^{75} -0.128764 q^{77} +(5.68613 + 9.84867i) q^{79} +(-0.500000 - 0.866025i) q^{81} -11.2982i q^{83} +(2.40513 - 4.16581i) q^{85} +5.97932i q^{87} +(7.06701 + 4.08014i) q^{89} +(0.101826 - 0.176367i) q^{91} +(-0.345434 - 0.598309i) q^{93} +(2.79352 + 1.27197i) q^{95} +(-6.90853 + 3.98864i) q^{97} +(1.53545 + 0.886495i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 20 q^{3} - 20 q^{9} - 12 q^{13} + 8 q^{19} - 12 q^{21} - 20 q^{25} + 40 q^{27} - 40 q^{31} + 24 q^{41} - 12 q^{43} + 24 q^{47} - 16 q^{49} - 24 q^{53} - 4 q^{57} - 4 q^{61} + 12 q^{63} + 4 q^{67}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) −0.352093 0.609843i −0.157461 0.272730i 0.776491 0.630128i \(-0.216997\pi\)
−0.933952 + 0.357397i \(0.883664\pi\)
\(6\) 0 0
\(7\) 0.0726253i 0.0274498i −0.999906 0.0137249i \(-0.995631\pi\)
0.999906 0.0137249i \(-0.00436890\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.77299i 0.534576i −0.963617 0.267288i \(-0.913872\pi\)
0.963617 0.267288i \(-0.0861276\pi\)
\(12\) 0 0
\(13\) 2.42846 + 1.40207i 0.673532 + 0.388864i 0.797414 0.603433i \(-0.206201\pi\)
−0.123881 + 0.992297i \(0.539534\pi\)
\(14\) 0 0
\(15\) −0.352093 + 0.609843i −0.0909101 + 0.157461i
\(16\) 0 0
\(17\) 3.41547 + 5.91577i 0.828374 + 1.43479i 0.899313 + 0.437305i \(0.144067\pi\)
−0.0709391 + 0.997481i \(0.522600\pi\)
\(18\) 0 0
\(19\) −3.54782 + 2.53239i −0.813925 + 0.580970i
\(20\) 0 0
\(21\) −0.0628953 + 0.0363126i −0.0137249 + 0.00792407i
\(22\) 0 0
\(23\) 4.39446 + 2.53714i 0.916309 + 0.529031i 0.882456 0.470396i \(-0.155889\pi\)
0.0338530 + 0.999427i \(0.489222\pi\)
\(24\) 0 0
\(25\) 2.25206 3.90068i 0.450412 0.780137i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −5.17824 2.98966i −0.961575 0.555166i −0.0649175 0.997891i \(-0.520678\pi\)
−0.896657 + 0.442725i \(0.854012\pi\)
\(30\) 0 0
\(31\) 0.690868 0.124083 0.0620417 0.998074i \(-0.480239\pi\)
0.0620417 + 0.998074i \(0.480239\pi\)
\(32\) 0 0
\(33\) −1.53545 + 0.886495i −0.267288 + 0.154319i
\(34\) 0 0
\(35\) −0.0442900 + 0.0255709i −0.00748638 + 0.00432227i
\(36\) 0 0
\(37\) 10.7779i 1.77188i 0.463797 + 0.885941i \(0.346487\pi\)
−0.463797 + 0.885941i \(0.653513\pi\)
\(38\) 0 0
\(39\) 2.80414i 0.449022i
\(40\) 0 0
\(41\) −1.04119 + 0.601130i −0.162606 + 0.0938808i −0.579095 0.815260i \(-0.696594\pi\)
0.416489 + 0.909141i \(0.363261\pi\)
\(42\) 0 0
\(43\) 9.49783 5.48357i 1.44841 0.836237i 0.450019 0.893019i \(-0.351417\pi\)
0.998387 + 0.0567821i \(0.0180840\pi\)
\(44\) 0 0
\(45\) 0.704186 0.104974
\(46\) 0 0
\(47\) −3.35724 1.93830i −0.489704 0.282731i 0.234748 0.972056i \(-0.424574\pi\)
−0.724451 + 0.689326i \(0.757907\pi\)
\(48\) 0 0
\(49\) 6.99473 0.999247
\(50\) 0 0
\(51\) 3.41547 5.91577i 0.478262 0.828374i
\(52\) 0 0
\(53\) 9.05207 + 5.22621i 1.24340 + 0.717876i 0.969784 0.243964i \(-0.0784480\pi\)
0.273613 + 0.961840i \(0.411781\pi\)
\(54\) 0 0
\(55\) −1.08125 + 0.624257i −0.145795 + 0.0841749i
\(56\) 0 0
\(57\) 3.96702 + 1.80630i 0.525445 + 0.239251i
\(58\) 0 0
\(59\) −7.24248 12.5443i −0.942890 1.63313i −0.759921 0.650015i \(-0.774762\pi\)
−0.182969 0.983119i \(-0.558571\pi\)
\(60\) 0 0
\(61\) 4.69049 8.12417i 0.600556 1.04019i −0.392181 0.919888i \(-0.628279\pi\)
0.992737 0.120305i \(-0.0383873\pi\)
\(62\) 0 0
\(63\) 0.0628953 + 0.0363126i 0.00792407 + 0.00457496i
\(64\) 0 0
\(65\) 1.97464i 0.244924i
\(66\) 0 0
\(67\) 1.61637 2.79963i 0.197471 0.342029i −0.750237 0.661169i \(-0.770061\pi\)
0.947708 + 0.319140i \(0.103394\pi\)
\(68\) 0 0
\(69\) 5.07429i 0.610872i
\(70\) 0 0
\(71\) −1.90279 3.29573i −0.225820 0.391131i 0.730745 0.682650i \(-0.239173\pi\)
−0.956565 + 0.291519i \(0.905839\pi\)
\(72\) 0 0
\(73\) 5.46110 + 9.45890i 0.639173 + 1.10708i 0.985614 + 0.169009i \(0.0540567\pi\)
−0.346441 + 0.938072i \(0.612610\pi\)
\(74\) 0 0
\(75\) −4.50412 −0.520091
\(76\) 0 0
\(77\) −0.128764 −0.0146740
\(78\) 0 0
\(79\) 5.68613 + 9.84867i 0.639740 + 1.10806i 0.985490 + 0.169735i \(0.0542913\pi\)
−0.345750 + 0.938327i \(0.612375\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 11.2982i 1.24014i −0.784547 0.620070i \(-0.787104\pi\)
0.784547 0.620070i \(-0.212896\pi\)
\(84\) 0 0
\(85\) 2.40513 4.16581i 0.260873 0.451845i
\(86\) 0 0
\(87\) 5.97932i 0.641050i
\(88\) 0 0
\(89\) 7.06701 + 4.08014i 0.749102 + 0.432494i 0.825369 0.564593i \(-0.190967\pi\)
−0.0762674 + 0.997087i \(0.524300\pi\)
\(90\) 0 0
\(91\) 0.101826 0.176367i 0.0106742 0.0184883i
\(92\) 0 0
\(93\) −0.345434 0.598309i −0.0358198 0.0620417i
\(94\) 0 0
\(95\) 2.79352 + 1.27197i 0.286609 + 0.130502i
\(96\) 0 0
\(97\) −6.90853 + 3.98864i −0.701455 + 0.404985i −0.807889 0.589334i \(-0.799390\pi\)
0.106434 + 0.994320i \(0.466057\pi\)
\(98\) 0 0
\(99\) 1.53545 + 0.886495i 0.154319 + 0.0890961i
\(100\) 0 0
\(101\) −7.57609 + 13.1222i −0.753850 + 1.30571i 0.192095 + 0.981376i \(0.438472\pi\)
−0.945944 + 0.324329i \(0.894861\pi\)
\(102\) 0 0
\(103\) 5.50018 0.541949 0.270975 0.962587i \(-0.412654\pi\)
0.270975 + 0.962587i \(0.412654\pi\)
\(104\) 0 0
\(105\) 0.0442900 + 0.0255709i 0.00432227 + 0.00249546i
\(106\) 0 0
\(107\) 11.3724 1.09941 0.549706 0.835358i \(-0.314740\pi\)
0.549706 + 0.835358i \(0.314740\pi\)
\(108\) 0 0
\(109\) 13.3765 7.72294i 1.28124 0.739724i 0.304164 0.952620i \(-0.401623\pi\)
0.977075 + 0.212896i \(0.0682896\pi\)
\(110\) 0 0
\(111\) 9.33397 5.38897i 0.885941 0.511499i
\(112\) 0 0
\(113\) 4.06196i 0.382117i −0.981579 0.191058i \(-0.938808\pi\)
0.981579 0.191058i \(-0.0611920\pi\)
\(114\) 0 0
\(115\) 3.57324i 0.333207i
\(116\) 0 0
\(117\) −2.42846 + 1.40207i −0.224511 + 0.129621i
\(118\) 0 0
\(119\) 0.429635 0.248050i 0.0393846 0.0227387i
\(120\) 0 0
\(121\) 7.85651 0.714228
\(122\) 0 0
\(123\) 1.04119 + 0.601130i 0.0938808 + 0.0542021i
\(124\) 0 0
\(125\) −6.69267 −0.598611
\(126\) 0 0
\(127\) −6.27231 + 10.8640i −0.556577 + 0.964020i 0.441202 + 0.897408i \(0.354552\pi\)
−0.997779 + 0.0666120i \(0.978781\pi\)
\(128\) 0 0
\(129\) −9.49783 5.48357i −0.836237 0.482802i
\(130\) 0 0
\(131\) 12.6088 7.27968i 1.10163 0.636029i 0.164985 0.986296i \(-0.447243\pi\)
0.936650 + 0.350267i \(0.113909\pi\)
\(132\) 0 0
\(133\) 0.183916 + 0.257661i 0.0159475 + 0.0223421i
\(134\) 0 0
\(135\) −0.352093 0.609843i −0.0303034 0.0524870i
\(136\) 0 0
\(137\) 7.12304 12.3375i 0.608562 1.05406i −0.382915 0.923783i \(-0.625080\pi\)
0.991478 0.130277i \(-0.0415868\pi\)
\(138\) 0 0
\(139\) −12.2017 7.04467i −1.03494 0.597521i −0.116541 0.993186i \(-0.537181\pi\)
−0.918395 + 0.395665i \(0.870514\pi\)
\(140\) 0 0
\(141\) 3.87661i 0.326469i
\(142\) 0 0
\(143\) 2.48585 4.30562i 0.207878 0.360054i
\(144\) 0 0
\(145\) 4.21055i 0.349667i
\(146\) 0 0
\(147\) −3.49736 6.05761i −0.288458 0.499623i
\(148\) 0 0
\(149\) −3.73874 6.47569i −0.306290 0.530509i 0.671258 0.741224i \(-0.265754\pi\)
−0.977548 + 0.210714i \(0.932421\pi\)
\(150\) 0 0
\(151\) −10.0151 −0.815015 −0.407508 0.913202i \(-0.633602\pi\)
−0.407508 + 0.913202i \(0.633602\pi\)
\(152\) 0 0
\(153\) −6.83095 −0.552249
\(154\) 0 0
\(155\) −0.243250 0.421321i −0.0195383 0.0338413i
\(156\) 0 0
\(157\) 5.02195 + 8.69827i 0.400795 + 0.694197i 0.993822 0.110985i \(-0.0354006\pi\)
−0.593027 + 0.805183i \(0.702067\pi\)
\(158\) 0 0
\(159\) 10.4524i 0.828931i
\(160\) 0 0
\(161\) 0.184261 0.319149i 0.0145218 0.0251525i
\(162\) 0 0
\(163\) 0.808933i 0.0633605i 0.999498 + 0.0316802i \(0.0100858\pi\)
−0.999498 + 0.0316802i \(0.989914\pi\)
\(164\) 0 0
\(165\) 1.08125 + 0.624257i 0.0841749 + 0.0485984i
\(166\) 0 0
\(167\) 3.82191 6.61974i 0.295748 0.512251i −0.679410 0.733759i \(-0.737764\pi\)
0.975159 + 0.221507i \(0.0710977\pi\)
\(168\) 0 0
\(169\) −2.56840 4.44861i −0.197569 0.342200i
\(170\) 0 0
\(171\) −0.419206 4.33869i −0.0320575 0.331788i
\(172\) 0 0
\(173\) 9.84543 5.68426i 0.748534 0.432166i −0.0766300 0.997060i \(-0.524416\pi\)
0.825164 + 0.564893i \(0.191083\pi\)
\(174\) 0 0
\(175\) −0.283288 0.163557i −0.0214146 0.0123637i
\(176\) 0 0
\(177\) −7.24248 + 12.5443i −0.544378 + 0.942890i
\(178\) 0 0
\(179\) 4.75125 0.355125 0.177562 0.984110i \(-0.443179\pi\)
0.177562 + 0.984110i \(0.443179\pi\)
\(180\) 0 0
\(181\) 1.06823 + 0.616745i 0.0794011 + 0.0458423i 0.539175 0.842194i \(-0.318736\pi\)
−0.459774 + 0.888036i \(0.652070\pi\)
\(182\) 0 0
\(183\) −9.38098 −0.693462
\(184\) 0 0
\(185\) 6.57286 3.79484i 0.483246 0.279002i
\(186\) 0 0
\(187\) 10.4886 6.05560i 0.767003 0.442829i
\(188\) 0 0
\(189\) 0.0726253i 0.00528271i
\(190\) 0 0
\(191\) 20.1291i 1.45649i 0.685316 + 0.728246i \(0.259664\pi\)
−0.685316 + 0.728246i \(0.740336\pi\)
\(192\) 0 0
\(193\) 8.89392 5.13491i 0.640198 0.369619i −0.144493 0.989506i \(-0.546155\pi\)
0.784691 + 0.619887i \(0.212822\pi\)
\(194\) 0 0
\(195\) −1.71009 + 0.987318i −0.122462 + 0.0707033i
\(196\) 0 0
\(197\) −27.6742 −1.97170 −0.985852 0.167621i \(-0.946392\pi\)
−0.985852 + 0.167621i \(0.946392\pi\)
\(198\) 0 0
\(199\) 17.0440 + 9.84037i 1.20822 + 0.697566i 0.962370 0.271742i \(-0.0875999\pi\)
0.245849 + 0.969308i \(0.420933\pi\)
\(200\) 0 0
\(201\) −3.23274 −0.228020
\(202\) 0 0
\(203\) −0.217125 + 0.376071i −0.0152392 + 0.0263950i
\(204\) 0 0
\(205\) 0.733190 + 0.423308i 0.0512082 + 0.0295651i
\(206\) 0 0
\(207\) −4.39446 + 2.53714i −0.305436 + 0.176344i
\(208\) 0 0
\(209\) 4.48990 + 6.29024i 0.310573 + 0.435105i
\(210\) 0 0
\(211\) 9.80726 + 16.9867i 0.675160 + 1.16941i 0.976422 + 0.215870i \(0.0692586\pi\)
−0.301262 + 0.953541i \(0.597408\pi\)
\(212\) 0 0
\(213\) −1.90279 + 3.29573i −0.130377 + 0.225820i
\(214\) 0 0
\(215\) −6.68824 3.86146i −0.456134 0.263349i
\(216\) 0 0
\(217\) 0.0501745i 0.00340606i
\(218\) 0 0
\(219\) 5.46110 9.45890i 0.369027 0.639173i
\(220\) 0 0
\(221\) 19.1549i 1.28850i
\(222\) 0 0
\(223\) 11.7774 + 20.3991i 0.788675 + 1.36603i 0.926779 + 0.375608i \(0.122566\pi\)
−0.138103 + 0.990418i \(0.544101\pi\)
\(224\) 0 0
\(225\) 2.25206 + 3.90068i 0.150137 + 0.260046i
\(226\) 0 0
\(227\) −2.92483 −0.194128 −0.0970639 0.995278i \(-0.530945\pi\)
−0.0970639 + 0.995278i \(0.530945\pi\)
\(228\) 0 0
\(229\) 17.3383 1.14574 0.572872 0.819645i \(-0.305829\pi\)
0.572872 + 0.819645i \(0.305829\pi\)
\(230\) 0 0
\(231\) 0.0643819 + 0.111513i 0.00423602 + 0.00733700i
\(232\) 0 0
\(233\) −5.27035 9.12851i −0.345272 0.598029i 0.640131 0.768266i \(-0.278880\pi\)
−0.985403 + 0.170237i \(0.945547\pi\)
\(234\) 0 0
\(235\) 2.72985i 0.178076i
\(236\) 0 0
\(237\) 5.68613 9.84867i 0.369354 0.639740i
\(238\) 0 0
\(239\) 4.23256i 0.273782i 0.990586 + 0.136891i \(0.0437110\pi\)
−0.990586 + 0.136891i \(0.956289\pi\)
\(240\) 0 0
\(241\) −0.304695 0.175916i −0.0196271 0.0113317i 0.490154 0.871636i \(-0.336940\pi\)
−0.509781 + 0.860304i \(0.670274\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −2.46280 4.26569i −0.157342 0.272525i
\(246\) 0 0
\(247\) −12.1663 + 1.17551i −0.774123 + 0.0747961i
\(248\) 0 0
\(249\) −9.78453 + 5.64910i −0.620070 + 0.357997i
\(250\) 0 0
\(251\) −21.1101 12.1879i −1.33246 0.769294i −0.346781 0.937946i \(-0.612725\pi\)
−0.985676 + 0.168652i \(0.946059\pi\)
\(252\) 0 0
\(253\) 4.49833 7.79133i 0.282807 0.489837i
\(254\) 0 0
\(255\) −4.81026 −0.301230
\(256\) 0 0
\(257\) −16.5851 9.57542i −1.03455 0.597298i −0.116266 0.993218i \(-0.537093\pi\)
−0.918285 + 0.395920i \(0.870426\pi\)
\(258\) 0 0
\(259\) 0.782751 0.0486378
\(260\) 0 0
\(261\) 5.17824 2.98966i 0.320525 0.185055i
\(262\) 0 0
\(263\) −2.68676 + 1.55120i −0.165673 + 0.0956511i −0.580544 0.814229i \(-0.697160\pi\)
0.414871 + 0.909880i \(0.363827\pi\)
\(264\) 0 0
\(265\) 7.36046i 0.452149i
\(266\) 0 0
\(267\) 8.16028i 0.499401i
\(268\) 0 0
\(269\) −10.4435 + 6.02956i −0.636752 + 0.367629i −0.783362 0.621566i \(-0.786497\pi\)
0.146611 + 0.989194i \(0.453164\pi\)
\(270\) 0 0
\(271\) −7.43530 + 4.29277i −0.451662 + 0.260767i −0.708532 0.705679i \(-0.750642\pi\)
0.256870 + 0.966446i \(0.417309\pi\)
\(272\) 0 0
\(273\) −0.203651 −0.0123255
\(274\) 0 0
\(275\) −6.91587 3.99288i −0.417043 0.240780i
\(276\) 0 0
\(277\) 7.50557 0.450966 0.225483 0.974247i \(-0.427604\pi\)
0.225483 + 0.974247i \(0.427604\pi\)
\(278\) 0 0
\(279\) −0.345434 + 0.598309i −0.0206806 + 0.0358198i
\(280\) 0 0
\(281\) −1.65380 0.954820i −0.0986572 0.0569598i 0.449860 0.893099i \(-0.351474\pi\)
−0.548517 + 0.836140i \(0.684807\pi\)
\(282\) 0 0
\(283\) −23.5620 + 13.6035i −1.40061 + 0.808644i −0.994455 0.105159i \(-0.966465\pi\)
−0.406158 + 0.913803i \(0.633132\pi\)
\(284\) 0 0
\(285\) −0.295199 3.05525i −0.0174861 0.180977i
\(286\) 0 0
\(287\) 0.0436572 + 0.0756166i 0.00257701 + 0.00446351i
\(288\) 0 0
\(289\) −14.8309 + 25.6879i −0.872407 + 1.51105i
\(290\) 0 0
\(291\) 6.90853 + 3.98864i 0.404985 + 0.233818i
\(292\) 0 0
\(293\) 11.0983i 0.648372i 0.945993 + 0.324186i \(0.105090\pi\)
−0.945993 + 0.324186i \(0.894910\pi\)
\(294\) 0 0
\(295\) −5.10005 + 8.83355i −0.296937 + 0.514309i
\(296\) 0 0
\(297\) 1.77299i 0.102879i
\(298\) 0 0
\(299\) 7.11450 + 12.3227i 0.411442 + 0.712639i
\(300\) 0 0
\(301\) −0.398246 0.689782i −0.0229545 0.0397584i
\(302\) 0 0
\(303\) 15.1522 0.870471
\(304\) 0 0
\(305\) −6.60596 −0.378256
\(306\) 0 0
\(307\) 3.95490 + 6.85009i 0.225718 + 0.390955i 0.956535 0.291619i \(-0.0941938\pi\)
−0.730816 + 0.682574i \(0.760860\pi\)
\(308\) 0 0
\(309\) −2.75009 4.76330i −0.156447 0.270975i
\(310\) 0 0
\(311\) 21.0104i 1.19139i 0.803211 + 0.595694i \(0.203123\pi\)
−0.803211 + 0.595694i \(0.796877\pi\)
\(312\) 0 0
\(313\) 3.84777 6.66453i 0.217489 0.376702i −0.736551 0.676382i \(-0.763547\pi\)
0.954040 + 0.299681i \(0.0968801\pi\)
\(314\) 0 0
\(315\) 0.0511417i 0.00288151i
\(316\) 0 0
\(317\) −15.5232 8.96234i −0.871872 0.503375i −0.00390184 0.999992i \(-0.501242\pi\)
−0.867970 + 0.496617i \(0.834575\pi\)
\(318\) 0 0
\(319\) −5.30063 + 9.18096i −0.296778 + 0.514035i
\(320\) 0 0
\(321\) −5.68621 9.84880i −0.317373 0.549706i
\(322\) 0 0
\(323\) −27.0985 12.3388i −1.50780 0.686547i
\(324\) 0 0
\(325\) 10.9381 6.31509i 0.606734 0.350298i
\(326\) 0 0
\(327\) −13.3765 7.72294i −0.739724 0.427080i
\(328\) 0 0
\(329\) −0.140770 + 0.243820i −0.00776089 + 0.0134423i
\(330\) 0 0
\(331\) −25.3504 −1.39338 −0.696692 0.717371i \(-0.745345\pi\)
−0.696692 + 0.717371i \(0.745345\pi\)
\(332\) 0 0
\(333\) −9.33397 5.38897i −0.511499 0.295314i
\(334\) 0 0
\(335\) −2.27645 −0.124376
\(336\) 0 0
\(337\) −8.04964 + 4.64746i −0.438492 + 0.253163i −0.702958 0.711232i \(-0.748138\pi\)
0.264466 + 0.964395i \(0.414804\pi\)
\(338\) 0 0
\(339\) −3.51776 + 2.03098i −0.191058 + 0.110308i
\(340\) 0 0
\(341\) 1.22490i 0.0663321i
\(342\) 0 0
\(343\) 1.01637i 0.0548789i
\(344\) 0 0
\(345\) −3.09452 + 1.78662i −0.166603 + 0.0961885i
\(346\) 0 0
\(347\) 8.44926 4.87818i 0.453580 0.261875i −0.255761 0.966740i \(-0.582326\pi\)
0.709341 + 0.704865i \(0.248993\pi\)
\(348\) 0 0
\(349\) 15.0537 0.805808 0.402904 0.915242i \(-0.368001\pi\)
0.402904 + 0.915242i \(0.368001\pi\)
\(350\) 0 0
\(351\) 2.42846 + 1.40207i 0.129621 + 0.0748369i
\(352\) 0 0
\(353\) 13.6139 0.724593 0.362297 0.932063i \(-0.381993\pi\)
0.362297 + 0.932063i \(0.381993\pi\)
\(354\) 0 0
\(355\) −1.33992 + 2.32081i −0.0711155 + 0.123176i
\(356\) 0 0
\(357\) −0.429635 0.248050i −0.0227387 0.0131282i
\(358\) 0 0
\(359\) 7.35127 4.24426i 0.387985 0.224003i −0.293301 0.956020i \(-0.594754\pi\)
0.681287 + 0.732017i \(0.261421\pi\)
\(360\) 0 0
\(361\) 6.17400 17.9689i 0.324947 0.945732i
\(362\) 0 0
\(363\) −3.92825 6.80394i −0.206180 0.357114i
\(364\) 0 0
\(365\) 3.84563 6.66083i 0.201290 0.348644i
\(366\) 0 0
\(367\) 8.04723 + 4.64607i 0.420062 + 0.242523i 0.695104 0.718909i \(-0.255358\pi\)
−0.275042 + 0.961432i \(0.588692\pi\)
\(368\) 0 0
\(369\) 1.20226i 0.0625872i
\(370\) 0 0
\(371\) 0.379555 0.657409i 0.0197055 0.0341310i
\(372\) 0 0
\(373\) 22.2938i 1.15433i 0.816628 + 0.577165i \(0.195841\pi\)
−0.816628 + 0.577165i \(0.804159\pi\)
\(374\) 0 0
\(375\) 3.34634 + 5.79603i 0.172804 + 0.299305i
\(376\) 0 0
\(377\) −8.38342 14.5205i −0.431768 0.747844i
\(378\) 0 0
\(379\) 15.9462 0.819100 0.409550 0.912288i \(-0.365686\pi\)
0.409550 + 0.912288i \(0.365686\pi\)
\(380\) 0 0
\(381\) 12.5446 0.642680
\(382\) 0 0
\(383\) −12.7623 22.1050i −0.652125 1.12951i −0.982606 0.185701i \(-0.940544\pi\)
0.330481 0.943813i \(-0.392789\pi\)
\(384\) 0 0
\(385\) 0.0453369 + 0.0785258i 0.00231058 + 0.00400204i
\(386\) 0 0
\(387\) 10.9671i 0.557491i
\(388\) 0 0
\(389\) −11.4743 + 19.8741i −0.581770 + 1.00765i 0.413500 + 0.910504i \(0.364306\pi\)
−0.995270 + 0.0971507i \(0.969027\pi\)
\(390\) 0 0
\(391\) 34.6622i 1.75294i
\(392\) 0 0
\(393\) −12.6088 7.27968i −0.636029 0.367211i
\(394\) 0 0
\(395\) 4.00410 6.93530i 0.201468 0.348953i
\(396\) 0 0
\(397\) −10.5592 18.2891i −0.529953 0.917906i −0.999389 0.0349393i \(-0.988876\pi\)
0.469436 0.882966i \(-0.344457\pi\)
\(398\) 0 0
\(399\) 0.131183 0.288106i 0.00656738 0.0144233i
\(400\) 0 0
\(401\) 3.66180 2.11414i 0.182862 0.105575i −0.405775 0.913973i \(-0.632998\pi\)
0.588636 + 0.808398i \(0.299665\pi\)
\(402\) 0 0
\(403\) 1.67774 + 0.968644i 0.0835742 + 0.0482516i
\(404\) 0 0
\(405\) −0.352093 + 0.609843i −0.0174957 + 0.0303034i
\(406\) 0 0
\(407\) 19.1092 0.947207
\(408\) 0 0
\(409\) −33.2638 19.2049i −1.64479 0.949621i −0.979096 0.203397i \(-0.934802\pi\)
−0.665695 0.746224i \(-0.731865\pi\)
\(410\) 0 0
\(411\) −14.2461 −0.702707
\(412\) 0 0
\(413\) −0.911036 + 0.525987i −0.0448292 + 0.0258821i
\(414\) 0 0
\(415\) −6.89014 + 3.97802i −0.338223 + 0.195273i
\(416\) 0 0
\(417\) 14.0893i 0.689957i
\(418\) 0 0
\(419\) 29.1398i 1.42357i 0.702397 + 0.711786i \(0.252113\pi\)
−0.702397 + 0.711786i \(0.747887\pi\)
\(420\) 0 0
\(421\) −21.2601 + 12.2745i −1.03615 + 0.598224i −0.918742 0.394859i \(-0.870793\pi\)
−0.117413 + 0.993083i \(0.537460\pi\)
\(422\) 0 0
\(423\) 3.35724 1.93830i 0.163235 0.0942435i
\(424\) 0 0
\(425\) 30.7674 1.49244
\(426\) 0 0
\(427\) −0.590020 0.340648i −0.0285531 0.0164851i
\(428\) 0 0
\(429\) −4.97171 −0.240036
\(430\) 0 0
\(431\) −13.4042 + 23.2168i −0.645658 + 1.11831i 0.338492 + 0.940969i \(0.390083\pi\)
−0.984149 + 0.177342i \(0.943250\pi\)
\(432\) 0 0
\(433\) −1.13851 0.657320i −0.0547133 0.0315888i 0.472394 0.881388i \(-0.343390\pi\)
−0.527107 + 0.849799i \(0.676723\pi\)
\(434\) 0 0
\(435\) 3.64645 2.10528i 0.174834 0.100940i
\(436\) 0 0
\(437\) −22.0158 + 2.12717i −1.05316 + 0.101756i
\(438\) 0 0
\(439\) −17.2505 29.8787i −0.823321 1.42603i −0.903196 0.429229i \(-0.858785\pi\)
0.0798742 0.996805i \(-0.474548\pi\)
\(440\) 0 0
\(441\) −3.49736 + 6.05761i −0.166541 + 0.288458i
\(442\) 0 0
\(443\) 23.2827 + 13.4423i 1.10620 + 0.638663i 0.937842 0.347064i \(-0.112821\pi\)
0.168355 + 0.985726i \(0.446155\pi\)
\(444\) 0 0
\(445\) 5.74636i 0.272404i
\(446\) 0 0
\(447\) −3.73874 + 6.47569i −0.176836 + 0.306290i
\(448\) 0 0
\(449\) 15.3531i 0.724560i 0.932069 + 0.362280i \(0.118002\pi\)
−0.932069 + 0.362280i \(0.881998\pi\)
\(450\) 0 0
\(451\) 1.06580 + 1.84601i 0.0501864 + 0.0869254i
\(452\) 0 0
\(453\) 5.00754 + 8.67331i 0.235275 + 0.407508i
\(454\) 0 0
\(455\) −0.143409 −0.00672310
\(456\) 0 0
\(457\) 26.1671 1.22404 0.612022 0.790841i \(-0.290356\pi\)
0.612022 + 0.790841i \(0.290356\pi\)
\(458\) 0 0
\(459\) 3.41547 + 5.91577i 0.159421 + 0.276125i
\(460\) 0 0
\(461\) −19.4541 33.6956i −0.906069 1.56936i −0.819475 0.573115i \(-0.805735\pi\)
−0.0865942 0.996244i \(-0.527598\pi\)
\(462\) 0 0
\(463\) 10.4149i 0.484019i −0.970274 0.242010i \(-0.922193\pi\)
0.970274 0.242010i \(-0.0778066\pi\)
\(464\) 0 0
\(465\) −0.243250 + 0.421321i −0.0112804 + 0.0195383i
\(466\) 0 0
\(467\) 30.0215i 1.38923i 0.719382 + 0.694615i \(0.244425\pi\)
−0.719382 + 0.694615i \(0.755575\pi\)
\(468\) 0 0
\(469\) −0.203324 0.117389i −0.00938863 0.00542053i
\(470\) 0 0
\(471\) 5.02195 8.69827i 0.231399 0.400795i
\(472\) 0 0
\(473\) −9.72232 16.8395i −0.447033 0.774283i
\(474\) 0 0
\(475\) 1.88816 + 19.5420i 0.0866345 + 0.896649i
\(476\) 0 0
\(477\) −9.05207 + 5.22621i −0.414466 + 0.239292i
\(478\) 0 0
\(479\) −26.7708 15.4561i −1.22319 0.706208i −0.257592 0.966254i \(-0.582929\pi\)
−0.965596 + 0.260046i \(0.916262\pi\)
\(480\) 0 0
\(481\) −15.1114 + 26.1738i −0.689022 + 1.19342i
\(482\) 0 0
\(483\) −0.368522 −0.0167683
\(484\) 0 0
\(485\) 4.86490 + 2.80875i 0.220904 + 0.127539i
\(486\) 0 0
\(487\) −19.4901 −0.883181 −0.441591 0.897217i \(-0.645586\pi\)
−0.441591 + 0.897217i \(0.645586\pi\)
\(488\) 0 0
\(489\) 0.700556 0.404466i 0.0316802 0.0182906i
\(490\) 0 0
\(491\) 5.47165 3.15906i 0.246932 0.142566i −0.371427 0.928462i \(-0.621131\pi\)
0.618359 + 0.785896i \(0.287798\pi\)
\(492\) 0 0
\(493\) 40.8444i 1.83954i
\(494\) 0 0
\(495\) 1.24851i 0.0561166i
\(496\) 0 0
\(497\) −0.239353 + 0.138191i −0.0107365 + 0.00619870i
\(498\) 0 0
\(499\) 7.98695 4.61127i 0.357545 0.206429i −0.310458 0.950587i \(-0.600482\pi\)
0.668003 + 0.744158i \(0.267149\pi\)
\(500\) 0 0
\(501\) −7.64382 −0.341501
\(502\) 0 0
\(503\) −5.95331 3.43715i −0.265445 0.153255i 0.361371 0.932422i \(-0.382309\pi\)
−0.626816 + 0.779167i \(0.715642\pi\)
\(504\) 0 0
\(505\) 10.6700 0.474807
\(506\) 0 0
\(507\) −2.56840 + 4.44861i −0.114067 + 0.197569i
\(508\) 0 0
\(509\) 6.78994 + 3.92017i 0.300959 + 0.173759i 0.642874 0.765972i \(-0.277742\pi\)
−0.341915 + 0.939731i \(0.611075\pi\)
\(510\) 0 0
\(511\) 0.686955 0.396614i 0.0303891 0.0175452i
\(512\) 0 0
\(513\) −3.54782 + 2.53239i −0.156640 + 0.111808i
\(514\) 0 0
\(515\) −1.93658 3.35425i −0.0853358 0.147806i
\(516\) 0 0
\(517\) −3.43659 + 5.95235i −0.151141 + 0.261784i
\(518\) 0 0
\(519\) −9.84543 5.68426i −0.432166 0.249511i
\(520\) 0 0
\(521\) 4.93216i 0.216082i 0.994146 + 0.108041i \(0.0344578\pi\)
−0.994146 + 0.108041i \(0.965542\pi\)
\(522\) 0 0
\(523\) −2.81281 + 4.87194i −0.122996 + 0.213035i −0.920948 0.389686i \(-0.872583\pi\)
0.797952 + 0.602721i \(0.205917\pi\)
\(524\) 0 0
\(525\) 0.327113i 0.0142764i
\(526\) 0 0
\(527\) 2.35964 + 4.08702i 0.102788 + 0.178033i
\(528\) 0 0
\(529\) 1.37419 + 2.38017i 0.0597475 + 0.103486i
\(530\) 0 0
\(531\) 14.4850 0.628594
\(532\) 0 0
\(533\) −3.37130 −0.146027
\(534\) 0 0
\(535\) −4.00415 6.93539i −0.173114 0.299843i
\(536\) 0 0
\(537\) −2.37562 4.11470i −0.102516 0.177562i
\(538\) 0 0
\(539\) 12.4016i 0.534174i
\(540\) 0 0
\(541\) 3.88423 6.72769i 0.166996 0.289246i −0.770366 0.637602i \(-0.779927\pi\)
0.937362 + 0.348356i \(0.113260\pi\)
\(542\) 0 0
\(543\) 1.23349i 0.0529341i
\(544\) 0 0
\(545\) −9.41957 5.43839i −0.403490 0.232955i
\(546\) 0 0
\(547\) −1.66939 + 2.89147i −0.0713781 + 0.123631i −0.899506 0.436909i \(-0.856073\pi\)
0.828127 + 0.560540i \(0.189406\pi\)
\(548\) 0 0
\(549\) 4.69049 + 8.12417i 0.200185 + 0.346731i
\(550\) 0 0
\(551\) 25.9424 2.50657i 1.10518 0.106783i
\(552\) 0 0
\(553\) 0.715263 0.412957i 0.0304161 0.0175607i
\(554\) 0 0
\(555\) −6.57286 3.79484i −0.279002 0.161082i
\(556\) 0 0
\(557\) 1.47191 2.54942i 0.0623668 0.108022i −0.833156 0.553038i \(-0.813468\pi\)
0.895523 + 0.445015i \(0.146802\pi\)
\(558\) 0 0
\(559\) 30.7534 1.30073
\(560\) 0 0
\(561\) −10.4886 6.05560i −0.442829 0.255668i
\(562\) 0 0
\(563\) −40.6625 −1.71372 −0.856860 0.515549i \(-0.827588\pi\)
−0.856860 + 0.515549i \(0.827588\pi\)
\(564\) 0 0
\(565\) −2.47716 + 1.43019i −0.104215 + 0.0601684i
\(566\) 0 0
\(567\) −0.0628953 + 0.0363126i −0.00264136 + 0.00152499i
\(568\) 0 0
\(569\) 11.0984i 0.465271i −0.972564 0.232635i \(-0.925265\pi\)
0.972564 0.232635i \(-0.0747349\pi\)
\(570\) 0 0
\(571\) 31.4703i 1.31699i 0.752584 + 0.658496i \(0.228807\pi\)
−0.752584 + 0.658496i \(0.771193\pi\)
\(572\) 0 0
\(573\) 17.4323 10.0646i 0.728246 0.420453i
\(574\) 0 0
\(575\) 19.7932 11.4276i 0.825433 0.476564i
\(576\) 0 0
\(577\) −0.0700151 −0.00291477 −0.00145738 0.999999i \(-0.500464\pi\)
−0.00145738 + 0.999999i \(0.500464\pi\)
\(578\) 0 0
\(579\) −8.89392 5.13491i −0.369619 0.213399i
\(580\) 0 0
\(581\) −0.820535 −0.0340415
\(582\) 0 0
\(583\) 9.26602 16.0492i 0.383759 0.664690i
\(584\) 0 0
\(585\) 1.71009 + 0.987318i 0.0707033 + 0.0408206i
\(586\) 0 0
\(587\) 10.4649 6.04191i 0.431933 0.249376i −0.268237 0.963353i \(-0.586441\pi\)
0.700170 + 0.713977i \(0.253108\pi\)
\(588\) 0 0
\(589\) −2.45107 + 1.74955i −0.100995 + 0.0720888i
\(590\) 0 0
\(591\) 13.8371 + 23.9665i 0.569182 + 0.985852i
\(592\) 0 0
\(593\) 3.11772 5.40005i 0.128029 0.221754i −0.794884 0.606762i \(-0.792468\pi\)
0.922913 + 0.385008i \(0.125801\pi\)
\(594\) 0 0
\(595\) −0.302543 0.174673i −0.0124031 0.00716091i
\(596\) 0 0
\(597\) 19.6807i 0.805479i
\(598\) 0 0
\(599\) −6.27446 + 10.8677i −0.256367 + 0.444041i −0.965266 0.261269i \(-0.915859\pi\)
0.708899 + 0.705310i \(0.249192\pi\)
\(600\) 0 0
\(601\) 24.3511i 0.993302i 0.867950 + 0.496651i \(0.165437\pi\)
−0.867950 + 0.496651i \(0.834563\pi\)
\(602\) 0 0
\(603\) 1.61637 + 2.79963i 0.0658236 + 0.114010i
\(604\) 0 0
\(605\) −2.76622 4.79124i −0.112463 0.194792i
\(606\) 0 0
\(607\) 11.8367 0.480435 0.240218 0.970719i \(-0.422781\pi\)
0.240218 + 0.970719i \(0.422781\pi\)
\(608\) 0 0
\(609\) 0.434250 0.0175967
\(610\) 0 0
\(611\) −5.43527 9.41416i −0.219887 0.380856i
\(612\) 0 0
\(613\) −21.6932 37.5736i −0.876178 1.51759i −0.855502 0.517799i \(-0.826752\pi\)
−0.0206757 0.999786i \(-0.506582\pi\)
\(614\) 0 0
\(615\) 0.846615i 0.0341388i
\(616\) 0 0
\(617\) 13.7532 23.8212i 0.553683 0.959007i −0.444322 0.895867i \(-0.646555\pi\)
0.998005 0.0631397i \(-0.0201114\pi\)
\(618\) 0 0
\(619\) 44.0057i 1.76874i 0.466787 + 0.884370i \(0.345411\pi\)
−0.466787 + 0.884370i \(0.654589\pi\)
\(620\) 0 0
\(621\) 4.39446 + 2.53714i 0.176344 + 0.101812i
\(622\) 0 0
\(623\) 0.296321 0.513244i 0.0118719 0.0205627i
\(624\) 0 0
\(625\) −8.90386 15.4219i −0.356154 0.616877i
\(626\) 0 0
\(627\) 3.20256 7.03349i 0.127898 0.280890i
\(628\) 0 0
\(629\) −63.7599 + 36.8118i −2.54227 + 1.46778i
\(630\) 0 0
\(631\) 30.0724 + 17.3623i 1.19717 + 0.691184i 0.959922 0.280267i \(-0.0904229\pi\)
0.237243 + 0.971450i \(0.423756\pi\)
\(632\) 0 0
\(633\) 9.80726 16.9867i 0.389804 0.675160i
\(634\) 0 0
\(635\) 8.83375 0.350557
\(636\) 0 0
\(637\) 16.9864 + 9.80709i 0.673025 + 0.388571i
\(638\) 0 0
\(639\) 3.80558 0.150546
\(640\) 0 0
\(641\) 15.7958 9.11971i 0.623897 0.360207i −0.154488 0.987995i \(-0.549373\pi\)
0.778385 + 0.627788i \(0.216039\pi\)
\(642\) 0 0
\(643\) 7.56336 4.36671i 0.298270 0.172206i −0.343396 0.939191i \(-0.611577\pi\)
0.641665 + 0.766985i \(0.278244\pi\)
\(644\) 0 0
\(645\) 7.72292i 0.304090i
\(646\) 0 0
\(647\) 34.5327i 1.35762i −0.734314 0.678810i \(-0.762496\pi\)
0.734314 0.678810i \(-0.237504\pi\)
\(648\) 0 0
\(649\) −22.2410 + 12.8408i −0.873035 + 0.504047i
\(650\) 0 0
\(651\) −0.0434524 + 0.0250872i −0.00170303 + 0.000983246i
\(652\) 0 0
\(653\) −2.14048 −0.0837633 −0.0418816 0.999123i \(-0.513335\pi\)
−0.0418816 + 0.999123i \(0.513335\pi\)
\(654\) 0 0
\(655\) −8.87893 5.12625i −0.346929 0.200299i
\(656\) 0 0
\(657\) −10.9222 −0.426116
\(658\) 0 0
\(659\) −3.66647 + 6.35051i −0.142825 + 0.247381i −0.928560 0.371184i \(-0.878952\pi\)
0.785734 + 0.618564i \(0.212285\pi\)
\(660\) 0 0
\(661\) 20.4420 + 11.8022i 0.795101 + 0.459052i 0.841755 0.539859i \(-0.181523\pi\)
−0.0466544 + 0.998911i \(0.514856\pi\)
\(662\) 0 0
\(663\) 16.5886 9.57746i 0.644250 0.371958i
\(664\) 0 0
\(665\) 0.0923775 0.202880i 0.00358225 0.00786737i
\(666\) 0 0
\(667\) −15.1704 26.2759i −0.587400 1.01741i
\(668\) 0 0
\(669\) 11.7774 20.3991i 0.455342 0.788675i
\(670\) 0 0
\(671\) −14.4041 8.31619i −0.556063 0.321043i
\(672\) 0 0
\(673\) 34.1646i 1.31695i 0.752603 + 0.658474i \(0.228798\pi\)
−0.752603 + 0.658474i \(0.771202\pi\)
\(674\) 0 0
\(675\) 2.25206 3.90068i 0.0866819 0.150137i
\(676\) 0 0
\(677\) 6.65640i 0.255826i 0.991785 + 0.127913i \(0.0408279\pi\)
−0.991785 + 0.127913i \(0.959172\pi\)
\(678\) 0 0
\(679\) 0.289676 + 0.501734i 0.0111168 + 0.0192548i
\(680\) 0 0
\(681\) 1.46242 + 2.53298i 0.0560399 + 0.0970639i
\(682\) 0 0
\(683\) −29.2564 −1.11947 −0.559733 0.828673i \(-0.689096\pi\)
−0.559733 + 0.828673i \(0.689096\pi\)
\(684\) 0 0
\(685\) −10.0319 −0.383299
\(686\) 0 0
\(687\) −8.66913 15.0154i −0.330748 0.572872i
\(688\) 0 0
\(689\) 14.6550 + 25.3832i 0.558312 + 0.967025i
\(690\) 0 0
\(691\) 16.9501i 0.644811i −0.946602 0.322405i \(-0.895509\pi\)
0.946602 0.322405i \(-0.104491\pi\)
\(692\) 0 0
\(693\) 0.0643819 0.111513i 0.00244567 0.00423602i
\(694\) 0 0
\(695\) 9.92152i 0.376345i
\(696\) 0 0
\(697\) −7.11230 4.10629i −0.269398 0.155537i
\(698\) 0 0
\(699\) −5.27035 + 9.12851i −0.199343 + 0.345272i
\(700\) 0 0
\(701\) 14.4425 + 25.0151i 0.545485 + 0.944808i 0.998576 + 0.0533437i \(0.0169879\pi\)
−0.453091 + 0.891464i \(0.649679\pi\)
\(702\) 0 0
\(703\) −27.2940 38.2382i −1.02941 1.44218i
\(704\) 0 0
\(705\) 2.36412 1.36493i 0.0890380 0.0514061i
\(706\) 0 0
\(707\) 0.953002 + 0.550216i 0.0358413 + 0.0206930i
\(708\) 0 0
\(709\) 12.7331 22.0543i 0.478200 0.828267i −0.521487 0.853259i \(-0.674623\pi\)
0.999688 + 0.0249917i \(0.00795592\pi\)
\(710\) 0 0
\(711\) −11.3723 −0.426493
\(712\) 0 0
\(713\) 3.03599 + 1.75283i 0.113699 + 0.0656440i
\(714\) 0 0
\(715\) −3.50101 −0.130930
\(716\) 0 0
\(717\) 3.66551 2.11628i 0.136891 0.0790340i
\(718\) 0 0
\(719\) −11.7643 + 6.79215i −0.438736 + 0.253304i −0.703061 0.711129i \(-0.748184\pi\)
0.264325 + 0.964434i \(0.414851\pi\)
\(720\) 0 0
\(721\) 0.399452i 0.0148764i
\(722\) 0 0
\(723\) 0.351832i 0.0130848i
\(724\) 0 0
\(725\) −23.3234 + 13.4658i −0.866210 + 0.500107i
\(726\) 0 0
\(727\) −7.11240 + 4.10635i −0.263784 + 0.152296i −0.626060 0.779775i \(-0.715333\pi\)
0.362275 + 0.932071i \(0.382000\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 64.8792 + 37.4580i 2.39964 + 1.38543i
\(732\) 0 0
\(733\) 28.3976 1.04889 0.524445 0.851444i \(-0.324273\pi\)
0.524445 + 0.851444i \(0.324273\pi\)
\(734\) 0 0
\(735\) −2.46280 + 4.26569i −0.0908416 + 0.157342i
\(736\) 0 0
\(737\) −4.96371 2.86580i −0.182841 0.105563i
\(738\) 0 0
\(739\) 30.2534 17.4668i 1.11289 0.642528i 0.173314 0.984867i \(-0.444552\pi\)
0.939577 + 0.342339i \(0.111219\pi\)
\(740\) 0 0
\(741\) 7.10117 + 9.94857i 0.260868 + 0.365470i
\(742\) 0 0
\(743\) −10.1304 17.5464i −0.371649 0.643714i 0.618171 0.786044i \(-0.287874\pi\)
−0.989819 + 0.142330i \(0.954541\pi\)
\(744\) 0 0
\(745\) −2.63277 + 4.56010i −0.0964573 + 0.167069i
\(746\) 0 0
\(747\) 9.78453 + 5.64910i 0.357997 + 0.206690i
\(748\) 0 0
\(749\) 0.825925i 0.0301786i
\(750\) 0 0
\(751\) 24.4701 42.3835i 0.892928 1.54660i 0.0565803 0.998398i \(-0.481980\pi\)
0.836348 0.548199i \(-0.184686\pi\)
\(752\) 0 0
\(753\) 24.3758i 0.888304i
\(754\) 0 0
\(755\) 3.52624 + 6.10763i 0.128333 + 0.222279i
\(756\) 0 0
\(757\) −8.15290 14.1212i −0.296322 0.513245i 0.678969 0.734167i \(-0.262427\pi\)
−0.975292 + 0.220921i \(0.929094\pi\)
\(758\) 0 0
\(759\) −8.99665 −0.326558
\(760\) 0 0
\(761\) 40.1681 1.45609 0.728047 0.685527i \(-0.240428\pi\)
0.728047 + 0.685527i \(0.240428\pi\)
\(762\) 0 0
\(763\) −0.560881 0.971474i −0.0203052 0.0351697i
\(764\) 0 0
\(765\) 2.40513 + 4.16581i 0.0869577 + 0.150615i
\(766\) 0 0
\(767\) 40.6178i 1.46662i
\(768\) 0 0
\(769\) 26.5649 46.0117i 0.957954 1.65922i 0.230495 0.973073i \(-0.425965\pi\)
0.727459 0.686151i \(-0.240701\pi\)
\(770\) 0 0
\(771\) 19.1508i 0.689701i
\(772\) 0 0
\(773\) 33.5464 + 19.3680i 1.20658 + 0.696620i 0.962011 0.273012i \(-0.0880198\pi\)
0.244570 + 0.969632i \(0.421353\pi\)
\(774\) 0 0
\(775\) 1.55588 2.69486i 0.0558887 0.0968021i
\(776\) 0 0
\(777\) −0.391376 0.677882i −0.0140405 0.0243189i
\(778\) 0 0
\(779\) 2.17165 4.76939i 0.0778073 0.170881i
\(780\) 0 0
\(781\) −5.84329 + 3.37363i −0.209089 + 0.120718i
\(782\) 0 0
\(783\) −5.17824 2.98966i −0.185055 0.106842i
\(784\) 0 0
\(785\) 3.53639 6.12520i 0.126219 0.218618i
\(786\) 0 0
\(787\) 25.7284 0.917119 0.458560 0.888664i \(-0.348366\pi\)
0.458560 + 0.888664i \(0.348366\pi\)
\(788\) 0 0
\(789\) 2.68676 + 1.55120i 0.0956511 + 0.0552242i
\(790\) 0 0
\(791\) −0.295001 −0.0104890
\(792\) 0 0
\(793\) 22.7813 13.1528i 0.808987 0.467069i
\(794\) 0 0
\(795\) −6.37434 + 3.68023i −0.226075 + 0.130524i
\(796\) 0 0
\(797\) 17.5541i 0.621798i 0.950443 + 0.310899i \(0.100630\pi\)
−0.950443 + 0.310899i \(0.899370\pi\)
\(798\) 0 0
\(799\) 26.4809i 0.936826i
\(800\) 0 0
\(801\) −7.06701 + 4.08014i −0.249701 + 0.144165i
\(802\) 0 0
\(803\) 16.7705 9.68247i 0.591819 0.341687i
\(804\) 0 0
\(805\) −0.259508 −0.00914645
\(806\) 0 0
\(807\) 10.4435 + 6.02956i 0.367629 + 0.212251i
\(808\) 0 0
\(809\) 29.2175 1.02723 0.513616 0.858020i \(-0.328306\pi\)
0.513616 + 0.858020i \(0.328306\pi\)
\(810\) 0 0
\(811\) −7.79841 + 13.5072i −0.273839 + 0.474303i −0.969842 0.243736i \(-0.921627\pi\)
0.696003 + 0.718039i \(0.254960\pi\)
\(812\) 0 0
\(813\) 7.43530 + 4.29277i 0.260767 + 0.150554i
\(814\) 0 0
\(815\) 0.493322 0.284820i 0.0172803 0.00997680i
\(816\) 0 0
\(817\) −19.8100 + 43.5069i −0.693064 + 1.52211i
\(818\) 0 0
\(819\) 0.101826 + 0.176367i 0.00355808 + 0.00616277i
\(820\) 0 0
\(821\) 20.5697 35.6278i 0.717888 1.24342i −0.243947 0.969789i \(-0.578442\pi\)
0.961835 0.273630i \(-0.0882244\pi\)
\(822\) 0 0
\(823\) −34.4865 19.9108i −1.20213 0.694047i −0.241098 0.970501i \(-0.577508\pi\)
−0.961027 + 0.276453i \(0.910841\pi\)
\(824\) 0 0
\(825\) 7.98576i 0.278028i
\(826\) 0 0
\(827\) −7.90231 + 13.6872i −0.274790 + 0.475951i −0.970082 0.242777i \(-0.921942\pi\)
0.695292 + 0.718727i \(0.255275\pi\)
\(828\) 0 0
\(829\) 9.83528i 0.341593i 0.985306 + 0.170797i \(0.0546341\pi\)
−0.985306 + 0.170797i \(0.945366\pi\)
\(830\) 0 0
\(831\) −3.75279 6.50002i −0.130183 0.225483i
\(832\) 0 0
\(833\) 23.8903 + 41.3792i 0.827750 + 1.43370i
\(834\) 0 0
\(835\) −5.38268 −0.186275
\(836\) 0 0
\(837\) 0.690868 0.0238799
\(838\) 0 0
\(839\) 9.94373 + 17.2231i 0.343296 + 0.594606i 0.985043 0.172311i \(-0.0551233\pi\)
−0.641747 + 0.766917i \(0.721790\pi\)
\(840\) 0 0
\(841\) 3.37611 + 5.84759i 0.116418 + 0.201641i
\(842\) 0 0
\(843\) 1.90964i 0.0657715i
\(844\) 0 0
\(845\) −1.80863 + 3.13265i −0.0622189 + 0.107766i
\(846\) 0 0
\(847\) 0.570581i 0.0196054i
\(848\) 0 0
\(849\) 23.5620 + 13.6035i 0.808644 + 0.466871i
\(850\) 0 0
\(851\) −27.3452 + 47.3633i −0.937381 + 1.62359i
\(852\) 0 0
\(853\) −16.1443 27.9627i −0.552769 0.957424i −0.998073 0.0620446i \(-0.980238\pi\)
0.445304 0.895379i \(-0.353095\pi\)
\(854\) 0 0
\(855\) −2.49832 + 1.78327i −0.0854409 + 0.0609867i
\(856\) 0 0
\(857\) 10.6837 6.16823i 0.364948 0.210703i −0.306301 0.951935i \(-0.599091\pi\)
0.671249 + 0.741232i \(0.265758\pi\)
\(858\) 0 0
\(859\) −16.4923 9.52185i −0.562711 0.324881i 0.191522 0.981488i \(-0.438658\pi\)
−0.754233 + 0.656607i \(0.771991\pi\)
\(860\) 0 0
\(861\) 0.0436572 0.0756166i 0.00148784 0.00257701i
\(862\) 0 0
\(863\) −15.8003 −0.537850 −0.268925 0.963161i \(-0.586668\pi\)
−0.268925 + 0.963161i \(0.586668\pi\)
\(864\) 0 0
\(865\) −6.93302 4.00278i −0.235730 0.136099i
\(866\) 0 0
\(867\) 29.6618 1.00737
\(868\) 0 0
\(869\) 17.4616 10.0815i 0.592344 0.341990i
\(870\) 0 0
\(871\) 7.85055 4.53252i 0.266006 0.153579i
\(872\) 0 0
\(873\) 7.97729i 0.269990i
\(874\) 0 0
\(875\) 0.486057i 0.0164317i
\(876\) 0 0
\(877\) −13.7280 + 7.92586i −0.463561 + 0.267637i −0.713541 0.700614i \(-0.752910\pi\)
0.249979 + 0.968251i \(0.419576\pi\)
\(878\) 0 0
\(879\) 9.61145 5.54917i 0.324186 0.187169i
\(880\) 0 0
\(881\) −40.9662 −1.38019 −0.690093 0.723721i \(-0.742430\pi\)
−0.690093 + 0.723721i \(0.742430\pi\)
\(882\) 0 0
\(883\) −16.8948 9.75421i −0.568555 0.328255i 0.188017 0.982166i \(-0.439794\pi\)
−0.756572 + 0.653910i \(0.773127\pi\)
\(884\) 0 0
\(885\) 10.2001 0.342873
\(886\) 0 0
\(887\) 5.57203 9.65104i 0.187090 0.324050i −0.757188 0.653196i \(-0.773428\pi\)
0.944279 + 0.329146i \(0.106761\pi\)
\(888\) 0 0
\(889\) 0.788998 + 0.455528i 0.0264621 + 0.0152779i
\(890\) 0 0
\(891\) −1.53545 + 0.886495i −0.0514396 + 0.0296987i
\(892\) 0 0
\(893\) 16.8194 1.62510i 0.562840 0.0543818i
\(894\) 0 0
\(895\) −1.67288 2.89752i −0.0559183 0.0968533i
\(896\) 0 0
\(897\) 7.11450 12.3227i 0.237546 0.411442i
\(898\) 0 0
\(899\) −3.57748 2.06546i −0.119316 0.0688869i
\(900\) 0 0
\(901\) 71.4000i 2.37868i
\(902\) 0 0
\(903\) −0.398246 + 0.689782i −0.0132528 + 0.0229545i
\(904\) 0 0
\(905\) 0.868606i 0.0288735i
\(906\) 0 0
\(907\) 5.65089 + 9.78763i 0.187635 + 0.324993i 0.944461 0.328623i \(-0.106585\pi\)
−0.756826 + 0.653616i \(0.773251\pi\)
\(908\) 0 0
\(909\) −7.57609 13.1222i −0.251283 0.435235i
\(910\) 0 0
\(911\) 53.3381 1.76717 0.883585 0.468270i \(-0.155123\pi\)
0.883585 + 0.468270i \(0.155123\pi\)
\(912\) 0 0
\(913\) −20.0316 −0.662949
\(914\) 0 0
\(915\) 3.30298 + 5.72093i 0.109193 + 0.189128i
\(916\) 0 0
\(917\) −0.528689 0.915716i −0.0174589 0.0302396i
\(918\) 0 0
\(919\) 59.7213i 1.97002i −0.172491 0.985011i \(-0.555181\pi\)
0.172491 0.985011i \(-0.444819\pi\)
\(920\) 0 0
\(921\) 3.95490 6.85009i 0.130318 0.225718i
\(922\) 0 0
\(923\) 10.6714i 0.351253i
\(924\) 0 0
\(925\) 42.0413 + 24.2726i 1.38231 + 0.798078i
\(926\) 0 0
\(927\) −2.75009 + 4.76330i −0.0903249 + 0.156447i
\(928\) 0 0
\(929\) −15.5602 26.9511i −0.510514 0.884235i −0.999926 0.0121828i \(-0.996122\pi\)
0.489412 0.872053i \(-0.337211\pi\)
\(930\) 0 0
\(931\) −24.8160 + 17.7134i −0.813312 + 0.580532i
\(932\) 0 0
\(933\) 18.1955 10.5052i 0.595694 0.343924i
\(934\) 0 0
\(935\) −7.38593 4.26427i −0.241546 0.139457i
\(936\) 0 0
\(937\) −0.985759 + 1.70738i −0.0322033 + 0.0557778i −0.881678 0.471852i \(-0.843586\pi\)
0.849475 + 0.527630i \(0.176919\pi\)
\(938\) 0 0
\(939\) −7.69554 −0.251135
\(940\) 0 0
\(941\) −45.9983 26.5572i −1.49950 0.865738i −0.499503 0.866312i \(-0.666484\pi\)
−1.00000 0.000573531i \(0.999817\pi\)
\(942\) 0 0
\(943\) −6.10061 −0.198663
\(944\) 0 0
\(945\) −0.0442900 + 0.0255709i −0.00144076 + 0.000831821i
\(946\) 0 0
\(947\) 5.12227 2.95734i 0.166451 0.0961007i −0.414460 0.910067i \(-0.636030\pi\)
0.580911 + 0.813967i \(0.302696\pi\)
\(948\) 0 0
\(949\) 30.6274i 0.994206i
\(950\) 0 0
\(951\) 17.9247i 0.581248i
\(952\) 0 0
\(953\) 42.6334 24.6144i 1.38103 0.797338i 0.388748 0.921344i \(-0.372908\pi\)
0.992281 + 0.124006i \(0.0395742\pi\)
\(954\) 0 0
\(955\) 12.2756 7.08733i 0.397229 0.229341i
\(956\) 0 0
\(957\) 10.6013 0.342690
\(958\) 0 0
\(959\) −0.896012 0.517313i −0.0289337 0.0167049i
\(960\) 0 0
\(961\) −30.5227 −0.984603
\(962\) 0 0
\(963\) −5.68621 + 9.84880i −0.183235 + 0.317373i
\(964\) 0 0
\(965\) −6.26298 3.61593i −0.201612 0.116401i
\(966\) 0 0
\(967\) 12.9601 7.48250i 0.416768 0.240621i −0.276926 0.960891i \(-0.589316\pi\)
0.693694 + 0.720270i \(0.255982\pi\)
\(968\) 0 0
\(969\) 2.86358 + 29.6374i 0.0919913 + 0.952090i
\(970\) 0 0
\(971\) 7.57514 + 13.1205i 0.243098 + 0.421058i 0.961595 0.274472i \(-0.0885030\pi\)
−0.718497 + 0.695530i \(0.755170\pi\)
\(972\) 0 0
\(973\) −0.511621 + 0.886153i −0.0164018 + 0.0284088i
\(974\) 0 0
\(975\) −10.9381 6.31509i −0.350298 0.202245i
\(976\) 0 0
\(977\) 49.2334i 1.57511i 0.616241 + 0.787557i \(0.288655\pi\)
−0.616241 + 0.787557i \(0.711345\pi\)
\(978\) 0 0
\(979\) 7.23405 12.5297i 0.231201 0.400452i
\(980\) 0 0
\(981\) 15.4459i 0.493149i
\(982\) 0 0
\(983\) 21.4667 + 37.1814i 0.684682 + 1.18590i 0.973537 + 0.228531i \(0.0733921\pi\)
−0.288855 + 0.957373i \(0.593275\pi\)
\(984\) 0 0
\(985\) 9.74389 + 16.8769i 0.310466 + 0.537743i
\(986\) 0 0
\(987\) 0.281540 0.00896150
\(988\) 0 0
\(989\) 55.6504 1.76958
\(990\) 0 0
\(991\) −7.83230 13.5659i −0.248801 0.430937i 0.714392 0.699746i \(-0.246703\pi\)
−0.963194 + 0.268809i \(0.913370\pi\)
\(992\) 0 0
\(993\) 12.6752 + 21.9541i 0.402235 + 0.696692i
\(994\) 0 0
\(995\) 13.8589i 0.439357i
\(996\) 0 0
\(997\) −19.5704 + 33.8969i −0.619801 + 1.07353i 0.369721 + 0.929143i \(0.379453\pi\)
−0.989522 + 0.144384i \(0.953880\pi\)
\(998\) 0 0
\(999\) 10.7779i 0.340999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.bb.a.31.9 40
4.3 odd 2 1824.2.bb.b.31.9 yes 40
19.8 odd 6 1824.2.bb.b.1471.9 yes 40
76.27 even 6 inner 1824.2.bb.a.1471.9 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.bb.a.31.9 40 1.1 even 1 trivial
1824.2.bb.a.1471.9 yes 40 76.27 even 6 inner
1824.2.bb.b.31.9 yes 40 4.3 odd 2
1824.2.bb.b.1471.9 yes 40 19.8 odd 6