Properties

Label 1824.2.bb.a.31.13
Level $1824$
Weight $2$
Character 1824.31
Analytic conductor $14.565$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(31,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.13
Character \(\chi\) \(=\) 1824.31
Dual form 1824.2.bb.a.1471.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(0.508588 + 0.880900i) q^{5} +1.27458i q^{7} +(-0.500000 + 0.866025i) q^{9} +0.0879656i q^{11} +(-3.47163 - 2.00435i) q^{13} +(0.508588 - 0.880900i) q^{15} +(-2.85692 - 4.94832i) q^{17} +(2.85898 + 3.29032i) q^{19} +(1.10381 - 0.637288i) q^{21} +(3.99307 + 2.30540i) q^{23} +(1.98268 - 3.43410i) q^{25} +1.00000 q^{27} +(2.52234 + 1.45627i) q^{29} +7.52645 q^{31} +(0.0761804 - 0.0439828i) q^{33} +(-1.12277 + 0.648234i) q^{35} -2.94596i q^{37} +4.00869i q^{39} +(2.94846 - 1.70230i) q^{41} +(1.88831 - 1.09022i) q^{43} -1.01718 q^{45} +(2.26213 + 1.30604i) q^{47} +5.37546 q^{49} +(-2.85692 + 4.94832i) q^{51} +(4.74768 + 2.74107i) q^{53} +(-0.0774889 + 0.0447382i) q^{55} +(1.42001 - 4.12111i) q^{57} +(1.68855 + 2.92466i) q^{59} +(-6.37060 + 11.0342i) q^{61} +(-1.10381 - 0.637288i) q^{63} -4.07755i q^{65} +(-2.40354 + 4.16306i) q^{67} -4.61080i q^{69} +(0.644658 + 1.11658i) q^{71} +(3.09225 + 5.35593i) q^{73} -3.96535 q^{75} -0.112119 q^{77} +(7.52313 + 13.0304i) q^{79} +(-0.500000 - 0.866025i) q^{81} -12.0104i q^{83} +(2.90599 - 5.03332i) q^{85} -2.91255i q^{87} +(3.84299 + 2.21875i) q^{89} +(2.55469 - 4.42485i) q^{91} +(-3.76322 - 6.51809i) q^{93} +(-1.44440 + 4.19190i) q^{95} +(-8.08295 + 4.66669i) q^{97} +(-0.0761804 - 0.0439828i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 20 q^{3} - 20 q^{9} - 12 q^{13} + 8 q^{19} - 12 q^{21} - 20 q^{25} + 40 q^{27} - 40 q^{31} + 24 q^{41} - 12 q^{43} + 24 q^{47} - 16 q^{49} - 24 q^{53} - 4 q^{57} - 4 q^{61} + 12 q^{63} + 4 q^{67}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0.508588 + 0.880900i 0.227447 + 0.393951i 0.957051 0.289920i \(-0.0936287\pi\)
−0.729603 + 0.683870i \(0.760295\pi\)
\(6\) 0 0
\(7\) 1.27458i 0.481744i 0.970557 + 0.240872i \(0.0774334\pi\)
−0.970557 + 0.240872i \(0.922567\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0.0879656i 0.0265226i 0.999912 + 0.0132613i \(0.00422133\pi\)
−0.999912 + 0.0132613i \(0.995779\pi\)
\(12\) 0 0
\(13\) −3.47163 2.00435i −0.962857 0.555906i −0.0658059 0.997832i \(-0.520962\pi\)
−0.897051 + 0.441927i \(0.854295\pi\)
\(14\) 0 0
\(15\) 0.508588 0.880900i 0.131317 0.227447i
\(16\) 0 0
\(17\) −2.85692 4.94832i −0.692904 1.20014i −0.970882 0.239557i \(-0.922998\pi\)
0.277979 0.960587i \(-0.410336\pi\)
\(18\) 0 0
\(19\) 2.85898 + 3.29032i 0.655896 + 0.754852i
\(20\) 0 0
\(21\) 1.10381 0.637288i 0.240872 0.139068i
\(22\) 0 0
\(23\) 3.99307 + 2.30540i 0.832612 + 0.480709i 0.854746 0.519046i \(-0.173713\pi\)
−0.0221340 + 0.999755i \(0.507046\pi\)
\(24\) 0 0
\(25\) 1.98268 3.43410i 0.396535 0.686819i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.52234 + 1.45627i 0.468387 + 0.270423i 0.715564 0.698547i \(-0.246170\pi\)
−0.247177 + 0.968970i \(0.579503\pi\)
\(30\) 0 0
\(31\) 7.52645 1.35179 0.675895 0.736998i \(-0.263757\pi\)
0.675895 + 0.736998i \(0.263757\pi\)
\(32\) 0 0
\(33\) 0.0761804 0.0439828i 0.0132613 0.00765642i
\(34\) 0 0
\(35\) −1.12277 + 0.648234i −0.189783 + 0.109572i
\(36\) 0 0
\(37\) 2.94596i 0.484313i −0.970237 0.242156i \(-0.922145\pi\)
0.970237 0.242156i \(-0.0778547\pi\)
\(38\) 0 0
\(39\) 4.00869i 0.641905i
\(40\) 0 0
\(41\) 2.94846 1.70230i 0.460473 0.265854i −0.251770 0.967787i \(-0.581013\pi\)
0.712243 + 0.701933i \(0.247679\pi\)
\(42\) 0 0
\(43\) 1.88831 1.09022i 0.287965 0.166257i −0.349059 0.937101i \(-0.613499\pi\)
0.637024 + 0.770844i \(0.280165\pi\)
\(44\) 0 0
\(45\) −1.01718 −0.151632
\(46\) 0 0
\(47\) 2.26213 + 1.30604i 0.329966 + 0.190506i 0.655826 0.754912i \(-0.272321\pi\)
−0.325860 + 0.945418i \(0.605654\pi\)
\(48\) 0 0
\(49\) 5.37546 0.767923
\(50\) 0 0
\(51\) −2.85692 + 4.94832i −0.400048 + 0.692904i
\(52\) 0 0
\(53\) 4.74768 + 2.74107i 0.652144 + 0.376516i 0.789277 0.614037i \(-0.210455\pi\)
−0.137133 + 0.990553i \(0.543789\pi\)
\(54\) 0 0
\(55\) −0.0774889 + 0.0447382i −0.0104486 + 0.00603250i
\(56\) 0 0
\(57\) 1.42001 4.12111i 0.188085 0.545855i
\(58\) 0 0
\(59\) 1.68855 + 2.92466i 0.219831 + 0.380758i 0.954756 0.297390i \(-0.0961161\pi\)
−0.734925 + 0.678148i \(0.762783\pi\)
\(60\) 0 0
\(61\) −6.37060 + 11.0342i −0.815671 + 1.41278i 0.0931734 + 0.995650i \(0.470299\pi\)
−0.908845 + 0.417134i \(0.863034\pi\)
\(62\) 0 0
\(63\) −1.10381 0.637288i −0.139068 0.0802907i
\(64\) 0 0
\(65\) 4.07755i 0.505758i
\(66\) 0 0
\(67\) −2.40354 + 4.16306i −0.293640 + 0.508599i −0.974668 0.223659i \(-0.928200\pi\)
0.681028 + 0.732258i \(0.261533\pi\)
\(68\) 0 0
\(69\) 4.61080i 0.555075i
\(70\) 0 0
\(71\) 0.644658 + 1.11658i 0.0765068 + 0.132514i 0.901741 0.432278i \(-0.142290\pi\)
−0.825234 + 0.564791i \(0.808957\pi\)
\(72\) 0 0
\(73\) 3.09225 + 5.35593i 0.361920 + 0.626864i 0.988277 0.152672i \(-0.0487880\pi\)
−0.626357 + 0.779537i \(0.715455\pi\)
\(74\) 0 0
\(75\) −3.96535 −0.457879
\(76\) 0 0
\(77\) −0.112119 −0.0127771
\(78\) 0 0
\(79\) 7.52313 + 13.0304i 0.846419 + 1.46604i 0.884383 + 0.466761i \(0.154579\pi\)
−0.0379649 + 0.999279i \(0.512087\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 12.0104i 1.31832i −0.752004 0.659159i \(-0.770912\pi\)
0.752004 0.659159i \(-0.229088\pi\)
\(84\) 0 0
\(85\) 2.90599 5.03332i 0.315198 0.545940i
\(86\) 0 0
\(87\) 2.91255i 0.312258i
\(88\) 0 0
\(89\) 3.84299 + 2.21875i 0.407356 + 0.235187i 0.689653 0.724140i \(-0.257763\pi\)
−0.282297 + 0.959327i \(0.591096\pi\)
\(90\) 0 0
\(91\) 2.55469 4.42485i 0.267804 0.463851i
\(92\) 0 0
\(93\) −3.76322 6.51809i −0.390228 0.675895i
\(94\) 0 0
\(95\) −1.44440 + 4.19190i −0.148192 + 0.430080i
\(96\) 0 0
\(97\) −8.08295 + 4.66669i −0.820699 + 0.473831i −0.850657 0.525720i \(-0.823796\pi\)
0.0299584 + 0.999551i \(0.490463\pi\)
\(98\) 0 0
\(99\) −0.0761804 0.0439828i −0.00765642 0.00442044i
\(100\) 0 0
\(101\) 3.80402 6.58876i 0.378514 0.655606i −0.612332 0.790601i \(-0.709768\pi\)
0.990846 + 0.134995i \(0.0431018\pi\)
\(102\) 0 0
\(103\) 16.9095 1.66614 0.833070 0.553167i \(-0.186581\pi\)
0.833070 + 0.553167i \(0.186581\pi\)
\(104\) 0 0
\(105\) 1.12277 + 0.648234i 0.109572 + 0.0632611i
\(106\) 0 0
\(107\) 1.99749 0.193104 0.0965522 0.995328i \(-0.469219\pi\)
0.0965522 + 0.995328i \(0.469219\pi\)
\(108\) 0 0
\(109\) 11.1161 6.41789i 1.06473 0.614723i 0.137994 0.990433i \(-0.455935\pi\)
0.926737 + 0.375711i \(0.122601\pi\)
\(110\) 0 0
\(111\) −2.55128 + 1.47298i −0.242156 + 0.139809i
\(112\) 0 0
\(113\) 19.7888i 1.86158i −0.365560 0.930788i \(-0.619122\pi\)
0.365560 0.930788i \(-0.380878\pi\)
\(114\) 0 0
\(115\) 4.68999i 0.437344i
\(116\) 0 0
\(117\) 3.47163 2.00435i 0.320952 0.185302i
\(118\) 0 0
\(119\) 6.30701 3.64135i 0.578163 0.333802i
\(120\) 0 0
\(121\) 10.9923 0.999297
\(122\) 0 0
\(123\) −2.94846 1.70230i −0.265854 0.153491i
\(124\) 0 0
\(125\) 9.11934 0.815659
\(126\) 0 0
\(127\) 8.02046 13.8918i 0.711700 1.23270i −0.252518 0.967592i \(-0.581259\pi\)
0.964218 0.265109i \(-0.0854080\pi\)
\(128\) 0 0
\(129\) −1.88831 1.09022i −0.166257 0.0959883i
\(130\) 0 0
\(131\) −17.7628 + 10.2554i −1.55195 + 0.896016i −0.553962 + 0.832542i \(0.686885\pi\)
−0.997983 + 0.0634744i \(0.979782\pi\)
\(132\) 0 0
\(133\) −4.19376 + 3.64399i −0.363645 + 0.315974i
\(134\) 0 0
\(135\) 0.508588 + 0.880900i 0.0437723 + 0.0758158i
\(136\) 0 0
\(137\) 1.98262 3.43400i 0.169387 0.293387i −0.768818 0.639468i \(-0.779155\pi\)
0.938204 + 0.346082i \(0.112488\pi\)
\(138\) 0 0
\(139\) −7.37387 4.25731i −0.625444 0.361100i 0.153542 0.988142i \(-0.450932\pi\)
−0.778985 + 0.627042i \(0.784265\pi\)
\(140\) 0 0
\(141\) 2.61208i 0.219977i
\(142\) 0 0
\(143\) 0.176314 0.305384i 0.0147441 0.0255375i
\(144\) 0 0
\(145\) 2.96257i 0.246028i
\(146\) 0 0
\(147\) −2.68773 4.65528i −0.221680 0.383961i
\(148\) 0 0
\(149\) −7.45843 12.9184i −0.611018 1.05831i −0.991069 0.133349i \(-0.957427\pi\)
0.380051 0.924966i \(-0.375906\pi\)
\(150\) 0 0
\(151\) 8.79143 0.715436 0.357718 0.933830i \(-0.383555\pi\)
0.357718 + 0.933830i \(0.383555\pi\)
\(152\) 0 0
\(153\) 5.71383 0.461936
\(154\) 0 0
\(155\) 3.82786 + 6.63005i 0.307461 + 0.532538i
\(156\) 0 0
\(157\) 4.42080 + 7.65705i 0.352818 + 0.611099i 0.986742 0.162296i \(-0.0518901\pi\)
−0.633924 + 0.773395i \(0.718557\pi\)
\(158\) 0 0
\(159\) 5.48215i 0.434763i
\(160\) 0 0
\(161\) −2.93840 + 5.08947i −0.231579 + 0.401106i
\(162\) 0 0
\(163\) 0.459879i 0.0360205i −0.999838 0.0180103i \(-0.994267\pi\)
0.999838 0.0180103i \(-0.00573315\pi\)
\(164\) 0 0
\(165\) 0.0774889 + 0.0447382i 0.00603250 + 0.00348287i
\(166\) 0 0
\(167\) −0.827126 + 1.43263i −0.0640050 + 0.110860i −0.896252 0.443545i \(-0.853721\pi\)
0.832247 + 0.554405i \(0.187054\pi\)
\(168\) 0 0
\(169\) 1.53481 + 2.65838i 0.118063 + 0.204490i
\(170\) 0 0
\(171\) −4.27899 + 0.830790i −0.327223 + 0.0635321i
\(172\) 0 0
\(173\) 8.51406 4.91559i 0.647312 0.373726i −0.140114 0.990135i \(-0.544747\pi\)
0.787426 + 0.616410i \(0.211413\pi\)
\(174\) 0 0
\(175\) 4.37701 + 2.52707i 0.330871 + 0.191029i
\(176\) 0 0
\(177\) 1.68855 2.92466i 0.126919 0.219831i
\(178\) 0 0
\(179\) −9.42853 −0.704721 −0.352361 0.935864i \(-0.614621\pi\)
−0.352361 + 0.935864i \(0.614621\pi\)
\(180\) 0 0
\(181\) 1.16742 + 0.674010i 0.0867736 + 0.0500987i 0.542759 0.839889i \(-0.317380\pi\)
−0.455985 + 0.889987i \(0.650713\pi\)
\(182\) 0 0
\(183\) 12.7412 0.941856
\(184\) 0 0
\(185\) 2.59510 1.49828i 0.190795 0.110156i
\(186\) 0 0
\(187\) 0.435282 0.251310i 0.0318310 0.0183776i
\(188\) 0 0
\(189\) 1.27458i 0.0927117i
\(190\) 0 0
\(191\) 8.74988i 0.633119i −0.948573 0.316559i \(-0.897472\pi\)
0.948573 0.316559i \(-0.102528\pi\)
\(192\) 0 0
\(193\) −12.8551 + 7.42187i −0.925327 + 0.534238i −0.885331 0.464962i \(-0.846068\pi\)
−0.0399963 + 0.999200i \(0.512735\pi\)
\(194\) 0 0
\(195\) −3.53126 + 2.03877i −0.252879 + 0.146000i
\(196\) 0 0
\(197\) −21.3626 −1.52203 −0.761013 0.648737i \(-0.775297\pi\)
−0.761013 + 0.648737i \(0.775297\pi\)
\(198\) 0 0
\(199\) 4.58658 + 2.64807i 0.325134 + 0.187716i 0.653679 0.756772i \(-0.273225\pi\)
−0.328544 + 0.944488i \(0.606558\pi\)
\(200\) 0 0
\(201\) 4.80709 0.339066
\(202\) 0 0
\(203\) −1.85613 + 3.21491i −0.130275 + 0.225643i
\(204\) 0 0
\(205\) 2.99911 + 1.73154i 0.209467 + 0.120936i
\(206\) 0 0
\(207\) −3.99307 + 2.30540i −0.277537 + 0.160236i
\(208\) 0 0
\(209\) −0.289435 + 0.251492i −0.0200206 + 0.0173961i
\(210\) 0 0
\(211\) 2.10211 + 3.64097i 0.144715 + 0.250655i 0.929267 0.369409i \(-0.120440\pi\)
−0.784551 + 0.620064i \(0.787107\pi\)
\(212\) 0 0
\(213\) 0.644658 1.11658i 0.0441712 0.0765068i
\(214\) 0 0
\(215\) 1.92075 + 1.10894i 0.130994 + 0.0756293i
\(216\) 0 0
\(217\) 9.59302i 0.651217i
\(218\) 0 0
\(219\) 3.09225 5.35593i 0.208955 0.361920i
\(220\) 0 0
\(221\) 22.9050i 1.54076i
\(222\) 0 0
\(223\) 3.66065 + 6.34043i 0.245135 + 0.424586i 0.962170 0.272451i \(-0.0878343\pi\)
−0.717034 + 0.697038i \(0.754501\pi\)
\(224\) 0 0
\(225\) 1.98268 + 3.43410i 0.132178 + 0.228940i
\(226\) 0 0
\(227\) −11.7450 −0.779544 −0.389772 0.920911i \(-0.627446\pi\)
−0.389772 + 0.920911i \(0.627446\pi\)
\(228\) 0 0
\(229\) −8.43141 −0.557163 −0.278581 0.960413i \(-0.589864\pi\)
−0.278581 + 0.960413i \(0.589864\pi\)
\(230\) 0 0
\(231\) 0.0560594 + 0.0970977i 0.00368844 + 0.00638856i
\(232\) 0 0
\(233\) −12.8114 22.1900i −0.839301 1.45371i −0.890480 0.455023i \(-0.849631\pi\)
0.0511785 0.998690i \(-0.483702\pi\)
\(234\) 0 0
\(235\) 2.65695i 0.173320i
\(236\) 0 0
\(237\) 7.52313 13.0304i 0.488680 0.846419i
\(238\) 0 0
\(239\) 4.18663i 0.270811i 0.990790 + 0.135405i \(0.0432337\pi\)
−0.990790 + 0.135405i \(0.956766\pi\)
\(240\) 0 0
\(241\) 6.94509 + 4.00975i 0.447373 + 0.258291i 0.706720 0.707493i \(-0.250174\pi\)
−0.259347 + 0.965784i \(0.583507\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 2.73389 + 4.73524i 0.174662 + 0.302524i
\(246\) 0 0
\(247\) −3.33038 17.1532i −0.211907 1.09143i
\(248\) 0 0
\(249\) −10.4014 + 6.00522i −0.659159 + 0.380566i
\(250\) 0 0
\(251\) −5.43141 3.13582i −0.342827 0.197931i 0.318694 0.947858i \(-0.396756\pi\)
−0.661522 + 0.749926i \(0.730089\pi\)
\(252\) 0 0
\(253\) −0.202796 + 0.351252i −0.0127497 + 0.0220831i
\(254\) 0 0
\(255\) −5.81197 −0.363960
\(256\) 0 0
\(257\) −10.9231 6.30645i −0.681363 0.393385i 0.119005 0.992894i \(-0.462029\pi\)
−0.800368 + 0.599508i \(0.795363\pi\)
\(258\) 0 0
\(259\) 3.75485 0.233315
\(260\) 0 0
\(261\) −2.52234 + 1.45627i −0.156129 + 0.0901411i
\(262\) 0 0
\(263\) 14.7368 8.50828i 0.908708 0.524643i 0.0286929 0.999588i \(-0.490866\pi\)
0.880015 + 0.474945i \(0.157532\pi\)
\(264\) 0 0
\(265\) 5.57631i 0.342550i
\(266\) 0 0
\(267\) 4.43751i 0.271571i
\(268\) 0 0
\(269\) 5.52202 3.18814i 0.336684 0.194384i −0.322121 0.946699i \(-0.604396\pi\)
0.658805 + 0.752314i \(0.271062\pi\)
\(270\) 0 0
\(271\) −10.3400 + 5.96983i −0.628113 + 0.362641i −0.780021 0.625753i \(-0.784792\pi\)
0.151908 + 0.988395i \(0.451458\pi\)
\(272\) 0 0
\(273\) −5.10938 −0.309234
\(274\) 0 0
\(275\) 0.302082 + 0.174407i 0.0182162 + 0.0105172i
\(276\) 0 0
\(277\) −8.54848 −0.513628 −0.256814 0.966461i \(-0.582673\pi\)
−0.256814 + 0.966461i \(0.582673\pi\)
\(278\) 0 0
\(279\) −3.76322 + 6.51809i −0.225298 + 0.390228i
\(280\) 0 0
\(281\) 7.53614 + 4.35099i 0.449568 + 0.259558i 0.707648 0.706565i \(-0.249756\pi\)
−0.258080 + 0.966124i \(0.583090\pi\)
\(282\) 0 0
\(283\) 0.457715 0.264262i 0.0272083 0.0157087i −0.486334 0.873773i \(-0.661666\pi\)
0.513542 + 0.858064i \(0.328333\pi\)
\(284\) 0 0
\(285\) 4.35249 0.845060i 0.257819 0.0500570i
\(286\) 0 0
\(287\) 2.16971 + 3.75804i 0.128074 + 0.221830i
\(288\) 0 0
\(289\) −7.82393 + 13.5514i −0.460231 + 0.797144i
\(290\) 0 0
\(291\) 8.08295 + 4.66669i 0.473831 + 0.273566i
\(292\) 0 0
\(293\) 14.0740i 0.822215i 0.911587 + 0.411107i \(0.134858\pi\)
−0.911587 + 0.411107i \(0.865142\pi\)
\(294\) 0 0
\(295\) −1.71756 + 2.97489i −0.100000 + 0.173205i
\(296\) 0 0
\(297\) 0.0879656i 0.00510428i
\(298\) 0 0
\(299\) −9.24164 16.0070i −0.534458 0.925708i
\(300\) 0 0
\(301\) 1.38956 + 2.40680i 0.0800932 + 0.138725i
\(302\) 0 0
\(303\) −7.60804 −0.437070
\(304\) 0 0
\(305\) −12.9600 −0.742090
\(306\) 0 0
\(307\) −4.03566 6.98997i −0.230327 0.398938i 0.727577 0.686026i \(-0.240646\pi\)
−0.957904 + 0.287087i \(0.907313\pi\)
\(308\) 0 0
\(309\) −8.45474 14.6440i −0.480973 0.833070i
\(310\) 0 0
\(311\) 4.11163i 0.233149i 0.993182 + 0.116574i \(0.0371914\pi\)
−0.993182 + 0.116574i \(0.962809\pi\)
\(312\) 0 0
\(313\) −16.3926 + 28.3929i −0.926566 + 1.60486i −0.137542 + 0.990496i \(0.543920\pi\)
−0.789023 + 0.614363i \(0.789413\pi\)
\(314\) 0 0
\(315\) 1.29647i 0.0730477i
\(316\) 0 0
\(317\) 17.7896 + 10.2708i 0.999165 + 0.576868i 0.908001 0.418968i \(-0.137608\pi\)
0.0911637 + 0.995836i \(0.470941\pi\)
\(318\) 0 0
\(319\) −0.128102 + 0.221879i −0.00717233 + 0.0124228i
\(320\) 0 0
\(321\) −0.998744 1.72987i −0.0557444 0.0965522i
\(322\) 0 0
\(323\) 8.11370 23.5473i 0.451459 1.31021i
\(324\) 0 0
\(325\) −13.7662 + 7.94794i −0.763614 + 0.440873i
\(326\) 0 0
\(327\) −11.1161 6.41789i −0.614723 0.354910i
\(328\) 0 0
\(329\) −1.66465 + 2.88326i −0.0917751 + 0.158959i
\(330\) 0 0
\(331\) 25.9353 1.42553 0.712766 0.701402i \(-0.247442\pi\)
0.712766 + 0.701402i \(0.247442\pi\)
\(332\) 0 0
\(333\) 2.55128 + 1.47298i 0.139809 + 0.0807188i
\(334\) 0 0
\(335\) −4.88966 −0.267150
\(336\) 0 0
\(337\) 9.37369 5.41190i 0.510617 0.294805i −0.222470 0.974940i \(-0.571412\pi\)
0.733087 + 0.680135i \(0.238079\pi\)
\(338\) 0 0
\(339\) −17.1376 + 9.89441i −0.930788 + 0.537391i
\(340\) 0 0
\(341\) 0.662068i 0.0358530i
\(342\) 0 0
\(343\) 15.7735i 0.851686i
\(344\) 0 0
\(345\) 4.06165 2.34500i 0.218672 0.126250i
\(346\) 0 0
\(347\) −31.2427 + 18.0380i −1.67720 + 0.968331i −0.713764 + 0.700387i \(0.753011\pi\)
−0.963434 + 0.267944i \(0.913656\pi\)
\(348\) 0 0
\(349\) −18.1481 −0.971447 −0.485724 0.874112i \(-0.661444\pi\)
−0.485724 + 0.874112i \(0.661444\pi\)
\(350\) 0 0
\(351\) −3.47163 2.00435i −0.185302 0.106984i
\(352\) 0 0
\(353\) 8.07939 0.430023 0.215011 0.976612i \(-0.431021\pi\)
0.215011 + 0.976612i \(0.431021\pi\)
\(354\) 0 0
\(355\) −0.655731 + 1.13576i −0.0348026 + 0.0602798i
\(356\) 0 0
\(357\) −6.30701 3.64135i −0.333802 0.192721i
\(358\) 0 0
\(359\) −31.1089 + 17.9607i −1.64186 + 0.947931i −0.661695 + 0.749773i \(0.730162\pi\)
−0.980170 + 0.198158i \(0.936504\pi\)
\(360\) 0 0
\(361\) −2.65244 + 18.8139i −0.139602 + 0.990208i
\(362\) 0 0
\(363\) −5.49613 9.51958i −0.288472 0.499648i
\(364\) 0 0
\(365\) −3.14536 + 5.44792i −0.164636 + 0.285157i
\(366\) 0 0
\(367\) 8.67237 + 5.00700i 0.452694 + 0.261363i 0.708967 0.705241i \(-0.249161\pi\)
−0.256273 + 0.966604i \(0.582495\pi\)
\(368\) 0 0
\(369\) 3.40459i 0.177236i
\(370\) 0 0
\(371\) −3.49371 + 6.05128i −0.181384 + 0.314167i
\(372\) 0 0
\(373\) 6.58299i 0.340854i 0.985370 + 0.170427i \(0.0545147\pi\)
−0.985370 + 0.170427i \(0.945485\pi\)
\(374\) 0 0
\(375\) −4.55967 7.89758i −0.235460 0.407829i
\(376\) 0 0
\(377\) −5.83776 10.1113i −0.300660 0.520758i
\(378\) 0 0
\(379\) 18.6606 0.958531 0.479266 0.877670i \(-0.340903\pi\)
0.479266 + 0.877670i \(0.340903\pi\)
\(380\) 0 0
\(381\) −16.0409 −0.821801
\(382\) 0 0
\(383\) 0.0551431 + 0.0955106i 0.00281768 + 0.00488036i 0.867431 0.497558i \(-0.165770\pi\)
−0.864613 + 0.502438i \(0.832436\pi\)
\(384\) 0 0
\(385\) −0.0570223 0.0987654i −0.00290612 0.00503355i
\(386\) 0 0
\(387\) 2.18044i 0.110838i
\(388\) 0 0
\(389\) 5.89866 10.2168i 0.299074 0.518011i −0.676851 0.736120i \(-0.736656\pi\)
0.975924 + 0.218110i \(0.0699890\pi\)
\(390\) 0 0
\(391\) 26.3453i 1.33234i
\(392\) 0 0
\(393\) 17.7628 + 10.2554i 0.896016 + 0.517315i
\(394\) 0 0
\(395\) −7.65235 + 13.2543i −0.385032 + 0.666894i
\(396\) 0 0
\(397\) 7.45758 + 12.9169i 0.374285 + 0.648281i 0.990220 0.139516i \(-0.0445548\pi\)
−0.615935 + 0.787797i \(0.711221\pi\)
\(398\) 0 0
\(399\) 5.25267 + 1.80991i 0.262962 + 0.0906089i
\(400\) 0 0
\(401\) −23.2566 + 13.4272i −1.16138 + 0.670522i −0.951634 0.307234i \(-0.900597\pi\)
−0.209745 + 0.977756i \(0.567263\pi\)
\(402\) 0 0
\(403\) −26.1290 15.0856i −1.30158 0.751468i
\(404\) 0 0
\(405\) 0.508588 0.880900i 0.0252719 0.0437723i
\(406\) 0 0
\(407\) 0.259143 0.0128452
\(408\) 0 0
\(409\) 15.1020 + 8.71915i 0.746746 + 0.431134i 0.824517 0.565837i \(-0.191447\pi\)
−0.0777709 + 0.996971i \(0.524780\pi\)
\(410\) 0 0
\(411\) −3.96524 −0.195591
\(412\) 0 0
\(413\) −3.72770 + 2.15219i −0.183428 + 0.105902i
\(414\) 0 0
\(415\) 10.5800 6.10837i 0.519352 0.299848i
\(416\) 0 0
\(417\) 8.51461i 0.416962i
\(418\) 0 0
\(419\) 38.7316i 1.89216i −0.323927 0.946082i \(-0.605003\pi\)
0.323927 0.946082i \(-0.394997\pi\)
\(420\) 0 0
\(421\) 3.07427 1.77493i 0.149831 0.0865049i −0.423210 0.906031i \(-0.639097\pi\)
0.573041 + 0.819527i \(0.305764\pi\)
\(422\) 0 0
\(423\) −2.26213 + 1.30604i −0.109989 + 0.0635020i
\(424\) 0 0
\(425\) −22.6574 −1.09904
\(426\) 0 0
\(427\) −14.0639 8.11981i −0.680601 0.392945i
\(428\) 0 0
\(429\) −0.352627 −0.0170250
\(430\) 0 0
\(431\) 7.88744 13.6615i 0.379925 0.658049i −0.611126 0.791533i \(-0.709283\pi\)
0.991051 + 0.133484i \(0.0426165\pi\)
\(432\) 0 0
\(433\) −23.5792 13.6135i −1.13314 0.654221i −0.188420 0.982089i \(-0.560337\pi\)
−0.944724 + 0.327868i \(0.893670\pi\)
\(434\) 0 0
\(435\) 2.56567 1.48129i 0.123014 0.0710223i
\(436\) 0 0
\(437\) 3.83061 + 19.7296i 0.183243 + 0.943794i
\(438\) 0 0
\(439\) −6.38314 11.0559i −0.304651 0.527670i 0.672533 0.740067i \(-0.265206\pi\)
−0.977183 + 0.212397i \(0.931873\pi\)
\(440\) 0 0
\(441\) −2.68773 + 4.65528i −0.127987 + 0.221680i
\(442\) 0 0
\(443\) −1.77150 1.02277i −0.0841664 0.0485935i 0.457326 0.889299i \(-0.348807\pi\)
−0.541493 + 0.840706i \(0.682141\pi\)
\(444\) 0 0
\(445\) 4.51373i 0.213971i
\(446\) 0 0
\(447\) −7.45843 + 12.9184i −0.352771 + 0.611018i
\(448\) 0 0
\(449\) 33.7617i 1.59331i −0.604433 0.796656i \(-0.706600\pi\)
0.604433 0.796656i \(-0.293400\pi\)
\(450\) 0 0
\(451\) 0.149744 + 0.259363i 0.00705115 + 0.0122129i
\(452\) 0 0
\(453\) −4.39572 7.61360i −0.206529 0.357718i
\(454\) 0 0
\(455\) 5.19714 0.243646
\(456\) 0 0
\(457\) 40.2004 1.88049 0.940247 0.340494i \(-0.110594\pi\)
0.940247 + 0.340494i \(0.110594\pi\)
\(458\) 0 0
\(459\) −2.85692 4.94832i −0.133349 0.230968i
\(460\) 0 0
\(461\) 15.2260 + 26.3721i 0.709144 + 1.22827i 0.965175 + 0.261605i \(0.0842517\pi\)
−0.256031 + 0.966669i \(0.582415\pi\)
\(462\) 0 0
\(463\) 16.4408i 0.764067i 0.924148 + 0.382034i \(0.124776\pi\)
−0.924148 + 0.382034i \(0.875224\pi\)
\(464\) 0 0
\(465\) 3.82786 6.63005i 0.177513 0.307461i
\(466\) 0 0
\(467\) 20.3955i 0.943790i 0.881655 + 0.471895i \(0.156430\pi\)
−0.881655 + 0.471895i \(0.843570\pi\)
\(468\) 0 0
\(469\) −5.30614 3.06350i −0.245015 0.141459i
\(470\) 0 0
\(471\) 4.42080 7.65705i 0.203700 0.352818i
\(472\) 0 0
\(473\) 0.0959016 + 0.166107i 0.00440956 + 0.00763759i
\(474\) 0 0
\(475\) 16.9677 3.29438i 0.778532 0.151156i
\(476\) 0 0
\(477\) −4.74768 + 2.74107i −0.217381 + 0.125505i
\(478\) 0 0
\(479\) −23.8711 13.7820i −1.09070 0.629714i −0.156935 0.987609i \(-0.550161\pi\)
−0.933762 + 0.357895i \(0.883495\pi\)
\(480\) 0 0
\(481\) −5.90473 + 10.2273i −0.269232 + 0.466324i
\(482\) 0 0
\(483\) 5.87681 0.267404
\(484\) 0 0
\(485\) −8.22178 4.74685i −0.373332 0.215543i
\(486\) 0 0
\(487\) 15.1073 0.684577 0.342288 0.939595i \(-0.388798\pi\)
0.342288 + 0.939595i \(0.388798\pi\)
\(488\) 0 0
\(489\) −0.398267 + 0.229940i −0.0180103 + 0.0103982i
\(490\) 0 0
\(491\) −9.57915 + 5.53052i −0.432301 + 0.249589i −0.700326 0.713823i \(-0.746962\pi\)
0.268026 + 0.963412i \(0.413629\pi\)
\(492\) 0 0
\(493\) 16.6418i 0.749509i
\(494\) 0 0
\(495\) 0.0894765i 0.00402167i
\(496\) 0 0
\(497\) −1.42317 + 0.821665i −0.0638377 + 0.0368567i
\(498\) 0 0
\(499\) 1.24304 0.717669i 0.0556461 0.0321273i −0.471919 0.881642i \(-0.656438\pi\)
0.527565 + 0.849515i \(0.323105\pi\)
\(500\) 0 0
\(501\) 1.65425 0.0739066
\(502\) 0 0
\(503\) −24.2013 13.9727i −1.07908 0.623010i −0.148435 0.988922i \(-0.547424\pi\)
−0.930649 + 0.365912i \(0.880757\pi\)
\(504\) 0 0
\(505\) 7.73872 0.344368
\(506\) 0 0
\(507\) 1.53481 2.65838i 0.0681635 0.118063i
\(508\) 0 0
\(509\) −7.55707 4.36308i −0.334961 0.193390i 0.323080 0.946372i \(-0.395282\pi\)
−0.658042 + 0.752982i \(0.728615\pi\)
\(510\) 0 0
\(511\) −6.82654 + 3.94130i −0.301988 + 0.174353i
\(512\) 0 0
\(513\) 2.85898 + 3.29032i 0.126227 + 0.145271i
\(514\) 0 0
\(515\) 8.59996 + 14.8956i 0.378960 + 0.656377i
\(516\) 0 0
\(517\) −0.114887 + 0.198990i −0.00505271 + 0.00875156i
\(518\) 0 0
\(519\) −8.51406 4.91559i −0.373726 0.215771i
\(520\) 0 0
\(521\) 3.59660i 0.157570i −0.996892 0.0787849i \(-0.974896\pi\)
0.996892 0.0787849i \(-0.0251040\pi\)
\(522\) 0 0
\(523\) −11.4155 + 19.7722i −0.499164 + 0.864578i −1.00000 0.000964547i \(-0.999693\pi\)
0.500835 + 0.865543i \(0.333026\pi\)
\(524\) 0 0
\(525\) 5.05414i 0.220581i
\(526\) 0 0
\(527\) −21.5024 37.2433i −0.936660 1.62234i
\(528\) 0 0
\(529\) −0.870273 1.50736i −0.0378380 0.0655373i
\(530\) 0 0
\(531\) −3.37711 −0.146554
\(532\) 0 0
\(533\) −13.6480 −0.591159
\(534\) 0 0
\(535\) 1.01590 + 1.75959i 0.0439211 + 0.0760736i
\(536\) 0 0
\(537\) 4.71426 + 8.16534i 0.203435 + 0.352361i
\(538\) 0 0
\(539\) 0.472855i 0.0203673i
\(540\) 0 0
\(541\) 4.57120 7.91755i 0.196531 0.340402i −0.750870 0.660450i \(-0.770366\pi\)
0.947401 + 0.320048i \(0.103699\pi\)
\(542\) 0 0
\(543\) 1.34802i 0.0578490i
\(544\) 0 0
\(545\) 11.3070 + 6.52813i 0.484341 + 0.279634i
\(546\) 0 0
\(547\) 3.91037 6.77297i 0.167195 0.289591i −0.770237 0.637757i \(-0.779862\pi\)
0.937433 + 0.348166i \(0.113196\pi\)
\(548\) 0 0
\(549\) −6.37060 11.0342i −0.271890 0.470928i
\(550\) 0 0
\(551\) 2.41972 + 12.4628i 0.103083 + 0.530932i
\(552\) 0 0
\(553\) −16.6083 + 9.58880i −0.706256 + 0.407757i
\(554\) 0 0
\(555\) −2.59510 1.49828i −0.110156 0.0635984i
\(556\) 0 0
\(557\) −12.0609 + 20.8901i −0.511037 + 0.885143i 0.488881 + 0.872351i \(0.337405\pi\)
−0.999918 + 0.0127920i \(0.995928\pi\)
\(558\) 0 0
\(559\) −8.74070 −0.369692
\(560\) 0 0
\(561\) −0.435282 0.251310i −0.0183776 0.0106103i
\(562\) 0 0
\(563\) 45.2764 1.90817 0.954087 0.299531i \(-0.0968301\pi\)
0.954087 + 0.299531i \(0.0968301\pi\)
\(564\) 0 0
\(565\) 17.4320 10.0644i 0.733369 0.423411i
\(566\) 0 0
\(567\) 1.10381 0.637288i 0.0463559 0.0267636i
\(568\) 0 0
\(569\) 11.0826i 0.464605i 0.972644 + 0.232303i \(0.0746259\pi\)
−0.972644 + 0.232303i \(0.925374\pi\)
\(570\) 0 0
\(571\) 2.23402i 0.0934909i 0.998907 + 0.0467454i \(0.0148850\pi\)
−0.998907 + 0.0467454i \(0.985115\pi\)
\(572\) 0 0
\(573\) −7.57762 + 4.37494i −0.316559 + 0.182766i
\(574\) 0 0
\(575\) 15.8339 9.14172i 0.660320 0.381236i
\(576\) 0 0
\(577\) −26.1791 −1.08985 −0.544926 0.838484i \(-0.683442\pi\)
−0.544926 + 0.838484i \(0.683442\pi\)
\(578\) 0 0
\(579\) 12.8551 + 7.42187i 0.534238 + 0.308442i
\(580\) 0 0
\(581\) 15.3082 0.635092
\(582\) 0 0
\(583\) −0.241120 + 0.417632i −0.00998618 + 0.0172966i
\(584\) 0 0
\(585\) 3.53126 + 2.03877i 0.146000 + 0.0842929i
\(586\) 0 0
\(587\) 35.7635 20.6481i 1.47612 0.852237i 0.476482 0.879184i \(-0.341912\pi\)
0.999637 + 0.0269471i \(0.00857857\pi\)
\(588\) 0 0
\(589\) 21.5180 + 24.7644i 0.886633 + 1.02040i
\(590\) 0 0
\(591\) 10.6813 + 18.5006i 0.439371 + 0.761013i
\(592\) 0 0
\(593\) 16.1529 27.9776i 0.663319 1.14890i −0.316419 0.948619i \(-0.602481\pi\)
0.979738 0.200283i \(-0.0641861\pi\)
\(594\) 0 0
\(595\) 6.41534 + 3.70390i 0.263003 + 0.151845i
\(596\) 0 0
\(597\) 5.29613i 0.216756i
\(598\) 0 0
\(599\) −3.36941 + 5.83598i −0.137670 + 0.238452i −0.926614 0.376013i \(-0.877295\pi\)
0.788944 + 0.614465i \(0.210628\pi\)
\(600\) 0 0
\(601\) 22.8234i 0.930987i 0.885051 + 0.465493i \(0.154123\pi\)
−0.885051 + 0.465493i \(0.845877\pi\)
\(602\) 0 0
\(603\) −2.40354 4.16306i −0.0978799 0.169533i
\(604\) 0 0
\(605\) 5.59053 + 9.68309i 0.227287 + 0.393673i
\(606\) 0 0
\(607\) −41.9125 −1.70117 −0.850587 0.525834i \(-0.823753\pi\)
−0.850587 + 0.525834i \(0.823753\pi\)
\(608\) 0 0
\(609\) 3.71226 0.150428
\(610\) 0 0
\(611\) −5.23552 9.06819i −0.211807 0.366860i
\(612\) 0 0
\(613\) −17.0403 29.5147i −0.688252 1.19209i −0.972403 0.233308i \(-0.925045\pi\)
0.284150 0.958780i \(-0.408289\pi\)
\(614\) 0 0
\(615\) 3.46307i 0.139645i
\(616\) 0 0
\(617\) 12.8555 22.2664i 0.517543 0.896411i −0.482249 0.876034i \(-0.660180\pi\)
0.999792 0.0203773i \(-0.00648673\pi\)
\(618\) 0 0
\(619\) 24.6868i 0.992245i −0.868253 0.496122i \(-0.834757\pi\)
0.868253 0.496122i \(-0.165243\pi\)
\(620\) 0 0
\(621\) 3.99307 + 2.30540i 0.160236 + 0.0925125i
\(622\) 0 0
\(623\) −2.82797 + 4.89818i −0.113300 + 0.196242i
\(624\) 0 0
\(625\) −5.27539 9.13725i −0.211016 0.365490i
\(626\) 0 0
\(627\) 0.362516 + 0.124912i 0.0144775 + 0.00498851i
\(628\) 0 0
\(629\) −14.5776 + 8.41636i −0.581245 + 0.335582i
\(630\) 0 0
\(631\) −13.9123 8.03226i −0.553839 0.319759i 0.196830 0.980438i \(-0.436935\pi\)
−0.750669 + 0.660678i \(0.770269\pi\)
\(632\) 0 0
\(633\) 2.10211 3.64097i 0.0835515 0.144715i
\(634\) 0 0
\(635\) 16.3164 0.647498
\(636\) 0 0
\(637\) −18.6616 10.7743i −0.739400 0.426893i
\(638\) 0 0
\(639\) −1.28932 −0.0510046
\(640\) 0 0
\(641\) 3.72801 2.15237i 0.147248 0.0850135i −0.424566 0.905397i \(-0.639573\pi\)
0.571814 + 0.820383i \(0.306240\pi\)
\(642\) 0 0
\(643\) 16.8712 9.74061i 0.665336 0.384132i −0.128971 0.991648i \(-0.541167\pi\)
0.794307 + 0.607516i \(0.207834\pi\)
\(644\) 0 0
\(645\) 2.21789i 0.0873292i
\(646\) 0 0
\(647\) 26.1058i 1.02632i 0.858292 + 0.513162i \(0.171526\pi\)
−0.858292 + 0.513162i \(0.828474\pi\)
\(648\) 0 0
\(649\) −0.257269 + 0.148535i −0.0100987 + 0.00583049i
\(650\) 0 0
\(651\) 8.30780 4.79651i 0.325608 0.187990i
\(652\) 0 0
\(653\) 39.4702 1.54459 0.772294 0.635265i \(-0.219109\pi\)
0.772294 + 0.635265i \(0.219109\pi\)
\(654\) 0 0
\(655\) −18.0679 10.4315i −0.705972 0.407593i
\(656\) 0 0
\(657\) −6.18449 −0.241280
\(658\) 0 0
\(659\) 6.30387 10.9186i 0.245564 0.425329i −0.716726 0.697355i \(-0.754360\pi\)
0.962290 + 0.272026i \(0.0876936\pi\)
\(660\) 0 0
\(661\) −20.7860 12.0008i −0.808481 0.466777i 0.0379472 0.999280i \(-0.487918\pi\)
−0.846428 + 0.532503i \(0.821251\pi\)
\(662\) 0 0
\(663\) 19.8363 11.4525i 0.770378 0.444778i
\(664\) 0 0
\(665\) −5.34289 1.84100i −0.207188 0.0713909i
\(666\) 0 0
\(667\) 6.71459 + 11.6300i 0.259990 + 0.450316i
\(668\) 0 0
\(669\) 3.66065 6.34043i 0.141529 0.245135i
\(670\) 0 0
\(671\) −0.970630 0.560393i −0.0374707 0.0216337i
\(672\) 0 0
\(673\) 42.8304i 1.65099i −0.564409 0.825495i \(-0.690896\pi\)
0.564409 0.825495i \(-0.309104\pi\)
\(674\) 0 0
\(675\) 1.98268 3.43410i 0.0763132 0.132178i
\(676\) 0 0
\(677\) 35.7250i 1.37302i 0.727119 + 0.686512i \(0.240859\pi\)
−0.727119 + 0.686512i \(0.759141\pi\)
\(678\) 0 0
\(679\) −5.94805 10.3023i −0.228265 0.395367i
\(680\) 0 0
\(681\) 5.87251 + 10.1715i 0.225035 + 0.389772i
\(682\) 0 0
\(683\) 6.35337 0.243105 0.121552 0.992585i \(-0.461213\pi\)
0.121552 + 0.992585i \(0.461213\pi\)
\(684\) 0 0
\(685\) 4.03335 0.154106
\(686\) 0 0
\(687\) 4.21570 + 7.30181i 0.160839 + 0.278581i
\(688\) 0 0
\(689\) −10.9881 19.0320i −0.418614 0.725061i
\(690\) 0 0
\(691\) 16.4169i 0.624529i 0.949995 + 0.312264i \(0.101087\pi\)
−0.949995 + 0.312264i \(0.898913\pi\)
\(692\) 0 0
\(693\) 0.0560594 0.0970977i 0.00212952 0.00368844i
\(694\) 0 0
\(695\) 8.66086i 0.328525i
\(696\) 0 0
\(697\) −16.8470 9.72664i −0.638127 0.368423i
\(698\) 0 0
\(699\) −12.8114 + 22.1900i −0.484571 + 0.839301i
\(700\) 0 0
\(701\) −0.917013 1.58831i −0.0346351 0.0599898i 0.848188 0.529695i \(-0.177694\pi\)
−0.882823 + 0.469705i \(0.844360\pi\)
\(702\) 0 0
\(703\) 9.69316 8.42245i 0.365584 0.317659i
\(704\) 0 0
\(705\) 2.30099 1.32848i 0.0866602 0.0500333i
\(706\) 0 0
\(707\) 8.39786 + 4.84851i 0.315834 + 0.182347i
\(708\) 0 0
\(709\) −7.34878 + 12.7285i −0.275989 + 0.478027i −0.970384 0.241567i \(-0.922339\pi\)
0.694395 + 0.719594i \(0.255672\pi\)
\(710\) 0 0
\(711\) −15.0463 −0.564279
\(712\) 0 0
\(713\) 30.0536 + 17.3515i 1.12552 + 0.649817i
\(714\) 0 0
\(715\) 0.358684 0.0134140
\(716\) 0 0
\(717\) 3.62573 2.09332i 0.135405 0.0781764i
\(718\) 0 0
\(719\) −9.39866 + 5.42632i −0.350511 + 0.202368i −0.664910 0.746923i \(-0.731530\pi\)
0.314399 + 0.949291i \(0.398197\pi\)
\(720\) 0 0
\(721\) 21.5524i 0.802654i
\(722\) 0 0
\(723\) 8.01950i 0.298248i
\(724\) 0 0
\(725\) 10.0020 5.77464i 0.371464 0.214465i
\(726\) 0 0
\(727\) −44.7498 + 25.8363i −1.65968 + 0.958215i −0.686813 + 0.726834i \(0.740991\pi\)
−0.972863 + 0.231381i \(0.925676\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.7895 6.22932i −0.399064 0.230400i
\(732\) 0 0
\(733\) 31.6478 1.16894 0.584469 0.811416i \(-0.301303\pi\)
0.584469 + 0.811416i \(0.301303\pi\)
\(734\) 0 0
\(735\) 2.73389 4.73524i 0.100841 0.174662i
\(736\) 0 0
\(737\) −0.366206 0.211429i −0.0134894 0.00778809i
\(738\) 0 0
\(739\) −39.7982 + 22.9775i −1.46400 + 0.845242i −0.999193 0.0401696i \(-0.987210\pi\)
−0.464809 + 0.885411i \(0.653877\pi\)
\(740\) 0 0
\(741\) −13.1899 + 11.4608i −0.484543 + 0.421022i
\(742\) 0 0
\(743\) 7.04194 + 12.1970i 0.258344 + 0.447464i 0.965798 0.259294i \(-0.0834900\pi\)
−0.707455 + 0.706759i \(0.750157\pi\)
\(744\) 0 0
\(745\) 7.58653 13.1403i 0.277949 0.481422i
\(746\) 0 0
\(747\) 10.4014 + 6.00522i 0.380566 + 0.219720i
\(748\) 0 0
\(749\) 2.54595i 0.0930269i
\(750\) 0 0
\(751\) −11.5173 + 19.9485i −0.420271 + 0.727931i −0.995966 0.0897339i \(-0.971398\pi\)
0.575695 + 0.817665i \(0.304732\pi\)
\(752\) 0 0
\(753\) 6.27165i 0.228552i
\(754\) 0 0
\(755\) 4.47122 + 7.74437i 0.162724 + 0.281847i
\(756\) 0 0
\(757\) 1.67333 + 2.89830i 0.0608183 + 0.105340i 0.894831 0.446404i \(-0.147296\pi\)
−0.834013 + 0.551745i \(0.813962\pi\)
\(758\) 0 0
\(759\) 0.405591 0.0147220
\(760\) 0 0
\(761\) 28.2813 1.02520 0.512598 0.858628i \(-0.328683\pi\)
0.512598 + 0.858628i \(0.328683\pi\)
\(762\) 0 0
\(763\) 8.18009 + 14.1683i 0.296139 + 0.512928i
\(764\) 0 0
\(765\) 2.90599 + 5.03332i 0.105066 + 0.181980i
\(766\) 0 0
\(767\) 13.5378i 0.488821i
\(768\) 0 0
\(769\) 6.57596 11.3899i 0.237135 0.410730i −0.722756 0.691103i \(-0.757125\pi\)
0.959891 + 0.280373i \(0.0904583\pi\)
\(770\) 0 0
\(771\) 12.6129i 0.454242i
\(772\) 0 0
\(773\) −13.9449 8.05110i −0.501564 0.289578i 0.227795 0.973709i \(-0.426848\pi\)
−0.729359 + 0.684131i \(0.760182\pi\)
\(774\) 0 0
\(775\) 14.9225 25.8465i 0.536032 0.928435i
\(776\) 0 0
\(777\) −1.87742 3.25179i −0.0673522 0.116657i
\(778\) 0 0
\(779\) 14.0307 + 4.83456i 0.502703 + 0.173216i
\(780\) 0 0
\(781\) −0.0982207 + 0.0567077i −0.00351461 + 0.00202916i
\(782\) 0 0
\(783\) 2.52234 + 1.45627i 0.0901411 + 0.0520430i
\(784\) 0 0
\(785\) −4.49673 + 7.78857i −0.160495 + 0.277986i
\(786\) 0 0
\(787\) 17.2063 0.613338 0.306669 0.951816i \(-0.400786\pi\)
0.306669 + 0.951816i \(0.400786\pi\)
\(788\) 0 0
\(789\) −14.7368 8.50828i −0.524643 0.302903i
\(790\) 0 0
\(791\) 25.2223 0.896803
\(792\) 0 0
\(793\) 44.2327 25.5378i 1.57075 0.906873i
\(794\) 0 0
\(795\) 4.82923 2.78816i 0.171275 0.0988857i
\(796\) 0 0
\(797\) 28.9665i 1.02605i −0.858375 0.513023i \(-0.828526\pi\)
0.858375 0.513023i \(-0.171474\pi\)
\(798\) 0 0
\(799\) 14.9250i 0.528009i
\(800\) 0 0
\(801\) −3.84299 + 2.21875i −0.135785 + 0.0783958i
\(802\) 0 0
\(803\) −0.471137 + 0.272011i −0.0166261 + 0.00959907i
\(804\) 0 0
\(805\) −5.97775 −0.210688
\(806\) 0 0
\(807\) −5.52202 3.18814i −0.194384 0.112228i
\(808\) 0 0
\(809\) 30.5568 1.07432 0.537161 0.843480i \(-0.319497\pi\)
0.537161 + 0.843480i \(0.319497\pi\)
\(810\) 0 0
\(811\) −3.77885 + 6.54516i −0.132693 + 0.229832i −0.924714 0.380663i \(-0.875696\pi\)
0.792021 + 0.610494i \(0.209029\pi\)
\(812\) 0 0
\(813\) 10.3400 + 5.96983i 0.362641 + 0.209371i
\(814\) 0 0
\(815\) 0.405108 0.233889i 0.0141903 0.00819278i
\(816\) 0 0
\(817\) 8.98582 + 3.09624i 0.314374 + 0.108324i
\(818\) 0 0
\(819\) 2.55469 + 4.42485i 0.0892681 + 0.154617i
\(820\) 0 0
\(821\) −8.43577 + 14.6112i −0.294411 + 0.509934i −0.974848 0.222873i \(-0.928457\pi\)
0.680437 + 0.732807i \(0.261790\pi\)
\(822\) 0 0
\(823\) 13.6013 + 7.85273i 0.474113 + 0.273729i 0.717960 0.696085i \(-0.245076\pi\)
−0.243847 + 0.969814i \(0.578409\pi\)
\(824\) 0 0
\(825\) 0.348815i 0.0121442i
\(826\) 0 0
\(827\) −17.7366 + 30.7207i −0.616762 + 1.06826i 0.373311 + 0.927706i \(0.378223\pi\)
−0.990073 + 0.140557i \(0.955111\pi\)
\(828\) 0 0
\(829\) 37.9948i 1.31961i 0.751436 + 0.659807i \(0.229362\pi\)
−0.751436 + 0.659807i \(0.770638\pi\)
\(830\) 0 0
\(831\) 4.27424 + 7.40320i 0.148272 + 0.256814i
\(832\) 0 0
\(833\) −15.3572 26.5995i −0.532096 0.921618i
\(834\) 0 0
\(835\) −1.68267 −0.0582311
\(836\) 0 0
\(837\) 7.52645 0.260152
\(838\) 0 0
\(839\) 10.0098 + 17.3374i 0.345576 + 0.598555i 0.985458 0.169918i \(-0.0543503\pi\)
−0.639883 + 0.768473i \(0.721017\pi\)
\(840\) 0 0
\(841\) −10.2585 17.7683i −0.353742 0.612700i
\(842\) 0 0
\(843\) 8.70198i 0.299712i
\(844\) 0 0
\(845\) −1.56118 + 2.70404i −0.0537061 + 0.0930217i
\(846\) 0 0
\(847\) 14.0105i 0.481405i
\(848\) 0 0
\(849\) −0.457715 0.264262i −0.0157087 0.00906944i
\(850\) 0 0
\(851\) 6.79161 11.7634i 0.232813 0.403245i
\(852\) 0 0
\(853\) −12.2806 21.2707i −0.420481 0.728295i 0.575505 0.817798i \(-0.304805\pi\)
−0.995987 + 0.0895031i \(0.971472\pi\)
\(854\) 0 0
\(855\) −2.90809 3.34684i −0.0994545 0.114459i
\(856\) 0 0
\(857\) −2.73112 + 1.57682i −0.0932934 + 0.0538630i −0.545921 0.837837i \(-0.683820\pi\)
0.452627 + 0.891700i \(0.350487\pi\)
\(858\) 0 0
\(859\) 21.5085 + 12.4179i 0.733860 + 0.423694i 0.819833 0.572603i \(-0.194066\pi\)
−0.0859727 + 0.996297i \(0.527400\pi\)
\(860\) 0 0
\(861\) 2.16971 3.75804i 0.0739434 0.128074i
\(862\) 0 0
\(863\) 5.64262 0.192077 0.0960386 0.995378i \(-0.469383\pi\)
0.0960386 + 0.995378i \(0.469383\pi\)
\(864\) 0 0
\(865\) 8.66030 + 5.00003i 0.294459 + 0.170006i
\(866\) 0 0
\(867\) 15.6479 0.531429
\(868\) 0 0
\(869\) −1.14623 + 0.661777i −0.0388832 + 0.0224492i
\(870\) 0 0
\(871\) 16.6884 9.63508i 0.565466 0.326472i
\(872\) 0 0
\(873\) 9.33339i 0.315887i
\(874\) 0 0
\(875\) 11.6233i 0.392939i
\(876\) 0 0
\(877\) 50.1106 28.9314i 1.69211 0.976943i 0.739307 0.673369i \(-0.235153\pi\)
0.952808 0.303574i \(-0.0981801\pi\)
\(878\) 0 0
\(879\) 12.1885 7.03702i 0.411107 0.237353i
\(880\) 0 0
\(881\) −37.5637 −1.26555 −0.632776 0.774335i \(-0.718085\pi\)
−0.632776 + 0.774335i \(0.718085\pi\)
\(882\) 0 0
\(883\) 23.8307 + 13.7587i 0.801967 + 0.463016i 0.844159 0.536093i \(-0.180101\pi\)
−0.0421913 + 0.999110i \(0.513434\pi\)
\(884\) 0 0
\(885\) 3.43511 0.115470
\(886\) 0 0
\(887\) −22.3871 + 38.7757i −0.751686 + 1.30196i 0.195318 + 0.980740i \(0.437426\pi\)
−0.947005 + 0.321219i \(0.895907\pi\)
\(888\) 0 0
\(889\) 17.7062 + 10.2227i 0.593847 + 0.342858i
\(890\) 0 0
\(891\) 0.0761804 0.0439828i 0.00255214 0.00147348i
\(892\) 0 0
\(893\) 2.17009 + 11.1771i 0.0726194 + 0.374027i
\(894\) 0 0
\(895\) −4.79524 8.30559i −0.160287 0.277625i
\(896\) 0 0
\(897\) −9.24164 + 16.0070i −0.308569 + 0.534458i
\(898\) 0 0
\(899\) 18.9843 + 10.9606i 0.633161 + 0.365555i
\(900\) 0 0
\(901\) 31.3241i 1.04356i
\(902\) 0 0
\(903\) 1.38956 2.40680i 0.0462418 0.0800932i
\(904\) 0 0
\(905\) 1.37117i 0.0455793i
\(906\) 0 0
\(907\) −2.63038 4.55595i −0.0873403 0.151278i 0.819046 0.573728i \(-0.194503\pi\)
−0.906386 + 0.422450i \(0.861170\pi\)
\(908\) 0 0
\(909\) 3.80402 + 6.58876i 0.126171 + 0.218535i
\(910\) 0 0
\(911\) 15.4245 0.511035 0.255517 0.966804i \(-0.417754\pi\)
0.255517 + 0.966804i \(0.417754\pi\)
\(912\) 0 0
\(913\) 1.05651 0.0349652
\(914\) 0 0
\(915\) 6.48002 + 11.2237i 0.214223 + 0.371045i
\(916\) 0 0
\(917\) −13.0712 22.6401i −0.431651 0.747641i
\(918\) 0 0
\(919\) 5.93620i 0.195817i 0.995195 + 0.0979087i \(0.0312153\pi\)
−0.995195 + 0.0979087i \(0.968785\pi\)
\(920\) 0 0
\(921\) −4.03566 + 6.98997i −0.132979 + 0.230327i
\(922\) 0 0
\(923\) 5.16847i 0.170122i
\(924\) 0 0
\(925\) −10.1167 5.84088i −0.332635 0.192047i
\(926\) 0 0
\(927\) −8.45474 + 14.6440i −0.277690 + 0.480973i
\(928\) 0 0
\(929\) −21.2461 36.7994i −0.697063 1.20735i −0.969480 0.245170i \(-0.921156\pi\)
0.272417 0.962179i \(-0.412177\pi\)
\(930\) 0 0
\(931\) 15.3683 + 17.6870i 0.503677 + 0.579668i
\(932\) 0 0
\(933\) 3.56077 2.05581i 0.116574 0.0673043i
\(934\) 0 0
\(935\) 0.442758 + 0.255627i 0.0144797 + 0.00835989i
\(936\) 0 0
\(937\) 7.75363 13.4297i 0.253300 0.438729i −0.711132 0.703058i \(-0.751817\pi\)
0.964432 + 0.264329i \(0.0851506\pi\)
\(938\) 0 0
\(939\) 32.7852 1.06991
\(940\) 0 0
\(941\) −10.6746 6.16300i −0.347983 0.200908i 0.315813 0.948821i \(-0.397723\pi\)
−0.663797 + 0.747913i \(0.731056\pi\)
\(942\) 0 0
\(943\) 15.6979 0.511194
\(944\) 0 0
\(945\) −1.12277 + 0.648234i −0.0365238 + 0.0210870i
\(946\) 0 0
\(947\) 21.4030 12.3570i 0.695503 0.401549i −0.110168 0.993913i \(-0.535139\pi\)
0.805670 + 0.592364i \(0.201805\pi\)
\(948\) 0 0
\(949\) 24.7917i 0.804774i
\(950\) 0 0
\(951\) 20.5417i 0.666110i
\(952\) 0 0
\(953\) −52.5164 + 30.3204i −1.70117 + 0.982173i −0.756598 + 0.653880i \(0.773140\pi\)
−0.944576 + 0.328293i \(0.893527\pi\)
\(954\) 0 0
\(955\) 7.70777 4.45008i 0.249418 0.144001i
\(956\) 0 0
\(957\) 0.256204 0.00828190
\(958\) 0 0
\(959\) 4.37689 + 2.52700i 0.141337 + 0.0816011i
\(960\) 0 0
\(961\) 25.6474 0.827335
\(962\) 0 0
\(963\) −0.998744 + 1.72987i −0.0321841 + 0.0557444i
\(964\) 0 0
\(965\) −13.0759 7.54935i −0.420927 0.243022i
\(966\) 0 0
\(967\) −38.4465 + 22.1971i −1.23636 + 0.713810i −0.968347 0.249606i \(-0.919699\pi\)
−0.268008 + 0.963417i \(0.586365\pi\)
\(968\) 0 0
\(969\) −24.4494 + 4.74699i −0.785429 + 0.152495i
\(970\) 0 0
\(971\) 23.0117 + 39.8575i 0.738482 + 1.27909i 0.953179 + 0.302407i \(0.0977902\pi\)
−0.214697 + 0.976681i \(0.568876\pi\)
\(972\) 0 0
\(973\) 5.42626 9.39855i 0.173958 0.301304i
\(974\) 0 0
\(975\) 13.7662 + 7.94794i 0.440873 + 0.254538i
\(976\) 0 0
\(977\) 21.5927i 0.690811i 0.938454 + 0.345405i \(0.112259\pi\)
−0.938454 + 0.345405i \(0.887741\pi\)
\(978\) 0 0
\(979\) −0.195174 + 0.338051i −0.00623778 + 0.0108042i
\(980\) 0 0
\(981\) 12.8358i 0.409815i
\(982\) 0 0
\(983\) −17.1749 29.7477i −0.547793 0.948805i −0.998425 0.0560956i \(-0.982135\pi\)
0.450632 0.892710i \(-0.351198\pi\)
\(984\) 0 0
\(985\) −10.8648 18.8184i −0.346181 0.599603i
\(986\) 0 0
\(987\) 3.32930 0.105973
\(988\) 0 0
\(989\) 10.0535 0.319684
\(990\) 0 0
\(991\) 13.3954 + 23.2015i 0.425519 + 0.737020i 0.996469 0.0839649i \(-0.0267584\pi\)
−0.570950 + 0.820985i \(0.693425\pi\)
\(992\) 0 0
\(993\) −12.9676 22.4606i −0.411515 0.712766i
\(994\) 0 0
\(995\) 5.38710i 0.170782i
\(996\) 0 0
\(997\) −2.36286 + 4.09260i −0.0748326 + 0.129614i −0.901013 0.433791i \(-0.857176\pi\)
0.826181 + 0.563405i \(0.190509\pi\)
\(998\) 0 0
\(999\) 2.94596i 0.0932060i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.bb.a.31.13 40
4.3 odd 2 1824.2.bb.b.31.13 yes 40
19.8 odd 6 1824.2.bb.b.1471.13 yes 40
76.27 even 6 inner 1824.2.bb.a.1471.13 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.bb.a.31.13 40 1.1 even 1 trivial
1824.2.bb.a.1471.13 yes 40 76.27 even 6 inner
1824.2.bb.b.31.13 yes 40 4.3 odd 2
1824.2.bb.b.1471.13 yes 40 19.8 odd 6