Properties

Label 1824.2.bb.a.31.11
Level $1824$
Weight $2$
Character 1824.31
Analytic conductor $14.565$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(31,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.11
Character \(\chi\) \(=\) 1824.31
Dual form 1824.2.bb.a.1471.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(0.0666287 + 0.115404i) q^{5} +1.13909i q^{7} +(-0.500000 + 0.866025i) q^{9} +2.16381i q^{11} +(-0.470939 - 0.271897i) q^{13} +(0.0666287 - 0.115404i) q^{15} +(-1.34935 - 2.33715i) q^{17} +(-3.12235 - 3.04154i) q^{19} +(0.986479 - 0.569544i) q^{21} +(-6.86977 - 3.96626i) q^{23} +(2.49112 - 4.31475i) q^{25} +1.00000 q^{27} +(2.69803 + 1.55771i) q^{29} +9.07735 q^{31} +(1.87392 - 1.08191i) q^{33} +(-0.131456 + 0.0758959i) q^{35} -4.99731i q^{37} +0.543793i q^{39} +(9.79815 - 5.65696i) q^{41} +(-8.56467 + 4.94482i) q^{43} -0.133257 q^{45} +(3.48636 + 2.01285i) q^{47} +5.70248 q^{49} +(-1.34935 + 2.33715i) q^{51} +(2.89540 + 1.67166i) q^{53} +(-0.249713 + 0.144172i) q^{55} +(-1.07288 + 4.22480i) q^{57} +(-5.90978 - 10.2360i) q^{59} +(3.59876 - 6.23323i) q^{61} +(-0.986479 - 0.569544i) q^{63} -0.0724644i q^{65} +(3.01280 - 5.21833i) q^{67} +7.93253i q^{69} +(2.69279 + 4.66405i) q^{71} +(-4.87607 - 8.44559i) q^{73} -4.98224 q^{75} -2.46477 q^{77} +(-5.57634 - 9.65851i) q^{79} +(-0.500000 - 0.866025i) q^{81} -8.00865i q^{83} +(0.179811 - 0.311442i) q^{85} -3.11541i q^{87} +(-10.5189 - 6.07310i) q^{89} +(0.309714 - 0.536441i) q^{91} +(-4.53868 - 7.86122i) q^{93} +(0.142969 - 0.562986i) q^{95} +(6.55667 - 3.78549i) q^{97} +(-1.87392 - 1.08191i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 20 q^{3} - 20 q^{9} - 12 q^{13} + 8 q^{19} - 12 q^{21} - 20 q^{25} + 40 q^{27} - 40 q^{31} + 24 q^{41} - 12 q^{43} + 24 q^{47} - 16 q^{49} - 24 q^{53} - 4 q^{57} - 4 q^{61} + 12 q^{63} + 4 q^{67}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0.0666287 + 0.115404i 0.0297972 + 0.0516103i 0.880539 0.473973i \(-0.157181\pi\)
−0.850742 + 0.525583i \(0.823847\pi\)
\(6\) 0 0
\(7\) 1.13909i 0.430535i 0.976555 + 0.215267i \(0.0690623\pi\)
−0.976555 + 0.215267i \(0.930938\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.16381i 0.652414i 0.945298 + 0.326207i \(0.105771\pi\)
−0.945298 + 0.326207i \(0.894229\pi\)
\(12\) 0 0
\(13\) −0.470939 0.271897i −0.130615 0.0754106i 0.433269 0.901265i \(-0.357360\pi\)
−0.563884 + 0.825854i \(0.690693\pi\)
\(14\) 0 0
\(15\) 0.0666287 0.115404i 0.0172034 0.0297972i
\(16\) 0 0
\(17\) −1.34935 2.33715i −0.327266 0.566841i 0.654702 0.755887i \(-0.272794\pi\)
−0.981968 + 0.189046i \(0.939461\pi\)
\(18\) 0 0
\(19\) −3.12235 3.04154i −0.716315 0.697777i
\(20\) 0 0
\(21\) 0.986479 0.569544i 0.215267 0.124285i
\(22\) 0 0
\(23\) −6.86977 3.96626i −1.43245 0.827023i −0.435139 0.900363i \(-0.643301\pi\)
−0.997307 + 0.0733405i \(0.976634\pi\)
\(24\) 0 0
\(25\) 2.49112 4.31475i 0.498224 0.862950i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.69803 + 1.55771i 0.501011 + 0.289259i 0.729131 0.684374i \(-0.239925\pi\)
−0.228120 + 0.973633i \(0.573258\pi\)
\(30\) 0 0
\(31\) 9.07735 1.63034 0.815170 0.579221i \(-0.196643\pi\)
0.815170 + 0.579221i \(0.196643\pi\)
\(32\) 0 0
\(33\) 1.87392 1.08191i 0.326207 0.188336i
\(34\) 0 0
\(35\) −0.131456 + 0.0758959i −0.0222200 + 0.0128287i
\(36\) 0 0
\(37\) 4.99731i 0.821553i −0.911736 0.410776i \(-0.865258\pi\)
0.911736 0.410776i \(-0.134742\pi\)
\(38\) 0 0
\(39\) 0.543793i 0.0870766i
\(40\) 0 0
\(41\) 9.79815 5.65696i 1.53021 0.883469i 0.530862 0.847458i \(-0.321868\pi\)
0.999351 0.0360110i \(-0.0114651\pi\)
\(42\) 0 0
\(43\) −8.56467 + 4.94482i −1.30610 + 0.754077i −0.981443 0.191754i \(-0.938582\pi\)
−0.324657 + 0.945832i \(0.605249\pi\)
\(44\) 0 0
\(45\) −0.133257 −0.0198648
\(46\) 0 0
\(47\) 3.48636 + 2.01285i 0.508539 + 0.293605i 0.732233 0.681055i \(-0.238478\pi\)
−0.223694 + 0.974659i \(0.571812\pi\)
\(48\) 0 0
\(49\) 5.70248 0.814640
\(50\) 0 0
\(51\) −1.34935 + 2.33715i −0.188947 + 0.327266i
\(52\) 0 0
\(53\) 2.89540 + 1.67166i 0.397714 + 0.229620i 0.685497 0.728075i \(-0.259585\pi\)
−0.287783 + 0.957696i \(0.592918\pi\)
\(54\) 0 0
\(55\) −0.249713 + 0.144172i −0.0336713 + 0.0194402i
\(56\) 0 0
\(57\) −1.07288 + 4.22480i −0.142106 + 0.559588i
\(58\) 0 0
\(59\) −5.90978 10.2360i −0.769387 1.33262i −0.937896 0.346918i \(-0.887228\pi\)
0.168508 0.985700i \(-0.446105\pi\)
\(60\) 0 0
\(61\) 3.59876 6.23323i 0.460774 0.798083i −0.538226 0.842800i \(-0.680905\pi\)
0.999000 + 0.0447173i \(0.0142387\pi\)
\(62\) 0 0
\(63\) −0.986479 0.569544i −0.124285 0.0717558i
\(64\) 0 0
\(65\) 0.0724644i 0.00898811i
\(66\) 0 0
\(67\) 3.01280 5.21833i 0.368072 0.637520i −0.621192 0.783659i \(-0.713351\pi\)
0.989264 + 0.146138i \(0.0466845\pi\)
\(68\) 0 0
\(69\) 7.93253i 0.954964i
\(70\) 0 0
\(71\) 2.69279 + 4.66405i 0.319575 + 0.553521i 0.980399 0.197020i \(-0.0631264\pi\)
−0.660824 + 0.750541i \(0.729793\pi\)
\(72\) 0 0
\(73\) −4.87607 8.44559i −0.570700 0.988482i −0.996494 0.0836617i \(-0.973338\pi\)
0.425794 0.904820i \(-0.359995\pi\)
\(74\) 0 0
\(75\) −4.98224 −0.575300
\(76\) 0 0
\(77\) −2.46477 −0.280887
\(78\) 0 0
\(79\) −5.57634 9.65851i −0.627388 1.08667i −0.988074 0.153980i \(-0.950791\pi\)
0.360686 0.932687i \(-0.382542\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 8.00865i 0.879063i −0.898227 0.439532i \(-0.855144\pi\)
0.898227 0.439532i \(-0.144856\pi\)
\(84\) 0 0
\(85\) 0.179811 0.311442i 0.0195032 0.0337806i
\(86\) 0 0
\(87\) 3.11541i 0.334007i
\(88\) 0 0
\(89\) −10.5189 6.07310i −1.11500 0.643747i −0.174882 0.984589i \(-0.555954\pi\)
−0.940120 + 0.340843i \(0.889288\pi\)
\(90\) 0 0
\(91\) 0.309714 0.536441i 0.0324669 0.0562343i
\(92\) 0 0
\(93\) −4.53868 7.86122i −0.470639 0.815170i
\(94\) 0 0
\(95\) 0.142969 0.562986i 0.0146683 0.0577611i
\(96\) 0 0
\(97\) 6.55667 3.78549i 0.665729 0.384359i −0.128728 0.991680i \(-0.541089\pi\)
0.794456 + 0.607321i \(0.207756\pi\)
\(98\) 0 0
\(99\) −1.87392 1.08191i −0.188336 0.108736i
\(100\) 0 0
\(101\) −2.18711 + 3.78819i −0.217626 + 0.376939i −0.954082 0.299547i \(-0.903165\pi\)
0.736456 + 0.676486i \(0.236498\pi\)
\(102\) 0 0
\(103\) 5.51718 0.543624 0.271812 0.962350i \(-0.412377\pi\)
0.271812 + 0.962350i \(0.412377\pi\)
\(104\) 0 0
\(105\) 0.131456 + 0.0758959i 0.0128287 + 0.00740668i
\(106\) 0 0
\(107\) −19.9863 −1.93215 −0.966074 0.258264i \(-0.916849\pi\)
−0.966074 + 0.258264i \(0.916849\pi\)
\(108\) 0 0
\(109\) 3.99108 2.30425i 0.382277 0.220707i −0.296532 0.955023i \(-0.595830\pi\)
0.678808 + 0.734316i \(0.262497\pi\)
\(110\) 0 0
\(111\) −4.32780 + 2.49866i −0.410776 + 0.237162i
\(112\) 0 0
\(113\) 5.94873i 0.559609i 0.960057 + 0.279805i \(0.0902697\pi\)
−0.960057 + 0.279805i \(0.909730\pi\)
\(114\) 0 0
\(115\) 1.05707i 0.0985720i
\(116\) 0 0
\(117\) 0.470939 0.271897i 0.0435383 0.0251369i
\(118\) 0 0
\(119\) 2.66221 1.53703i 0.244045 0.140899i
\(120\) 0 0
\(121\) 6.31791 0.574355
\(122\) 0 0
\(123\) −9.79815 5.65696i −0.883469 0.510071i
\(124\) 0 0
\(125\) 1.33021 0.118977
\(126\) 0 0
\(127\) −0.933764 + 1.61733i −0.0828582 + 0.143515i −0.904477 0.426523i \(-0.859738\pi\)
0.821618 + 0.570038i \(0.193072\pi\)
\(128\) 0 0
\(129\) 8.56467 + 4.94482i 0.754077 + 0.435367i
\(130\) 0 0
\(131\) −5.49593 + 3.17307i −0.480181 + 0.277233i −0.720492 0.693463i \(-0.756084\pi\)
0.240311 + 0.970696i \(0.422751\pi\)
\(132\) 0 0
\(133\) 3.46458 3.55663i 0.300417 0.308399i
\(134\) 0 0
\(135\) 0.0666287 + 0.115404i 0.00573448 + 0.00993242i
\(136\) 0 0
\(137\) −4.45094 + 7.70926i −0.380270 + 0.658646i −0.991101 0.133115i \(-0.957502\pi\)
0.610831 + 0.791761i \(0.290835\pi\)
\(138\) 0 0
\(139\) 1.27779 + 0.737735i 0.108381 + 0.0625738i 0.553211 0.833041i \(-0.313402\pi\)
−0.444830 + 0.895615i \(0.646736\pi\)
\(140\) 0 0
\(141\) 4.02571i 0.339026i
\(142\) 0 0
\(143\) 0.588334 1.01902i 0.0491989 0.0852151i
\(144\) 0 0
\(145\) 0.415152i 0.0344765i
\(146\) 0 0
\(147\) −2.85124 4.93849i −0.235166 0.407320i
\(148\) 0 0
\(149\) 4.28808 + 7.42718i 0.351293 + 0.608458i 0.986476 0.163904i \(-0.0524086\pi\)
−0.635183 + 0.772362i \(0.719075\pi\)
\(150\) 0 0
\(151\) 20.0691 1.63320 0.816601 0.577203i \(-0.195856\pi\)
0.816601 + 0.577203i \(0.195856\pi\)
\(152\) 0 0
\(153\) 2.69870 0.218177
\(154\) 0 0
\(155\) 0.604812 + 1.04756i 0.0485797 + 0.0841424i
\(156\) 0 0
\(157\) −6.14060 10.6358i −0.490073 0.848832i 0.509861 0.860257i \(-0.329697\pi\)
−0.999935 + 0.0114245i \(0.996363\pi\)
\(158\) 0 0
\(159\) 3.34332i 0.265143i
\(160\) 0 0
\(161\) 4.51792 7.82527i 0.356062 0.616718i
\(162\) 0 0
\(163\) 1.38088i 0.108159i 0.998537 + 0.0540796i \(0.0172225\pi\)
−0.998537 + 0.0540796i \(0.982778\pi\)
\(164\) 0 0
\(165\) 0.249713 + 0.144172i 0.0194402 + 0.0112238i
\(166\) 0 0
\(167\) 0.788293 1.36536i 0.0609999 0.105655i −0.833913 0.551896i \(-0.813904\pi\)
0.894913 + 0.446241i \(0.147238\pi\)
\(168\) 0 0
\(169\) −6.35214 11.0022i −0.488626 0.846326i
\(170\) 0 0
\(171\) 4.19522 1.18326i 0.320817 0.0904864i
\(172\) 0 0
\(173\) −8.22439 + 4.74835i −0.625289 + 0.361011i −0.778925 0.627117i \(-0.784235\pi\)
0.153636 + 0.988127i \(0.450902\pi\)
\(174\) 0 0
\(175\) 4.91488 + 2.83761i 0.371530 + 0.214503i
\(176\) 0 0
\(177\) −5.90978 + 10.2360i −0.444206 + 0.769387i
\(178\) 0 0
\(179\) −11.4361 −0.854777 −0.427388 0.904068i \(-0.640566\pi\)
−0.427388 + 0.904068i \(0.640566\pi\)
\(180\) 0 0
\(181\) −18.4566 10.6559i −1.37187 0.792047i −0.380703 0.924697i \(-0.624318\pi\)
−0.991163 + 0.132650i \(0.957651\pi\)
\(182\) 0 0
\(183\) −7.19751 −0.532055
\(184\) 0 0
\(185\) 0.576711 0.332964i 0.0424006 0.0244800i
\(186\) 0 0
\(187\) 5.05715 2.91975i 0.369815 0.213513i
\(188\) 0 0
\(189\) 1.13909i 0.0828564i
\(190\) 0 0
\(191\) 21.2564i 1.53806i −0.639213 0.769029i \(-0.720740\pi\)
0.639213 0.769029i \(-0.279260\pi\)
\(192\) 0 0
\(193\) −17.1611 + 9.90794i −1.23528 + 0.713189i −0.968126 0.250465i \(-0.919417\pi\)
−0.267154 + 0.963654i \(0.586083\pi\)
\(194\) 0 0
\(195\) −0.0627561 + 0.0362322i −0.00449405 + 0.00259464i
\(196\) 0 0
\(197\) 25.2387 1.79819 0.899093 0.437758i \(-0.144227\pi\)
0.899093 + 0.437758i \(0.144227\pi\)
\(198\) 0 0
\(199\) 0.237605 + 0.137181i 0.0168434 + 0.00972451i 0.508398 0.861122i \(-0.330238\pi\)
−0.491555 + 0.870847i \(0.663571\pi\)
\(200\) 0 0
\(201\) −6.02561 −0.425013
\(202\) 0 0
\(203\) −1.77436 + 3.07329i −0.124536 + 0.215703i
\(204\) 0 0
\(205\) 1.30568 + 0.753832i 0.0911923 + 0.0526499i
\(206\) 0 0
\(207\) 6.86977 3.96626i 0.477482 0.275674i
\(208\) 0 0
\(209\) 6.58132 6.75618i 0.455240 0.467335i
\(210\) 0 0
\(211\) −3.82416 6.62363i −0.263266 0.455990i 0.703842 0.710356i \(-0.251466\pi\)
−0.967108 + 0.254367i \(0.918133\pi\)
\(212\) 0 0
\(213\) 2.69279 4.66405i 0.184507 0.319575i
\(214\) 0 0
\(215\) −1.14131 0.658933i −0.0778364 0.0449389i
\(216\) 0 0
\(217\) 10.3399i 0.701918i
\(218\) 0 0
\(219\) −4.87607 + 8.44559i −0.329494 + 0.570700i
\(220\) 0 0
\(221\) 1.46754i 0.0987172i
\(222\) 0 0
\(223\) 12.7679 + 22.1146i 0.855001 + 1.48091i 0.876644 + 0.481140i \(0.159777\pi\)
−0.0216423 + 0.999766i \(0.506889\pi\)
\(224\) 0 0
\(225\) 2.49112 + 4.31475i 0.166075 + 0.287650i
\(226\) 0 0
\(227\) −3.95642 −0.262597 −0.131299 0.991343i \(-0.541915\pi\)
−0.131299 + 0.991343i \(0.541915\pi\)
\(228\) 0 0
\(229\) 26.1935 1.73091 0.865457 0.500983i \(-0.167028\pi\)
0.865457 + 0.500983i \(0.167028\pi\)
\(230\) 0 0
\(231\) 1.23239 + 2.13456i 0.0810851 + 0.140444i
\(232\) 0 0
\(233\) 1.09944 + 1.90429i 0.0720270 + 0.124754i 0.899790 0.436324i \(-0.143720\pi\)
−0.827763 + 0.561079i \(0.810387\pi\)
\(234\) 0 0
\(235\) 0.536455i 0.0349945i
\(236\) 0 0
\(237\) −5.57634 + 9.65851i −0.362222 + 0.627388i
\(238\) 0 0
\(239\) 22.7569i 1.47202i 0.676971 + 0.736010i \(0.263292\pi\)
−0.676971 + 0.736010i \(0.736708\pi\)
\(240\) 0 0
\(241\) 13.6648 + 7.88937i 0.880227 + 0.508199i 0.870733 0.491756i \(-0.163645\pi\)
0.00949354 + 0.999955i \(0.496978\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0.379949 + 0.658090i 0.0242740 + 0.0420438i
\(246\) 0 0
\(247\) 0.643450 + 2.28133i 0.0409418 + 0.145158i
\(248\) 0 0
\(249\) −6.93569 + 4.00432i −0.439532 + 0.253764i
\(250\) 0 0
\(251\) −6.83797 3.94790i −0.431609 0.249189i 0.268423 0.963301i \(-0.413497\pi\)
−0.700032 + 0.714112i \(0.746831\pi\)
\(252\) 0 0
\(253\) 8.58225 14.8649i 0.539562 0.934548i
\(254\) 0 0
\(255\) −0.359622 −0.0225204
\(256\) 0 0
\(257\) −9.50522 5.48784i −0.592919 0.342322i 0.173332 0.984863i \(-0.444547\pi\)
−0.766251 + 0.642542i \(0.777880\pi\)
\(258\) 0 0
\(259\) 5.69237 0.353707
\(260\) 0 0
\(261\) −2.69803 + 1.55771i −0.167004 + 0.0964196i
\(262\) 0 0
\(263\) −0.351895 + 0.203167i −0.0216988 + 0.0125278i −0.510810 0.859694i \(-0.670654\pi\)
0.489111 + 0.872221i \(0.337321\pi\)
\(264\) 0 0
\(265\) 0.445522i 0.0273682i
\(266\) 0 0
\(267\) 12.1462i 0.743335i
\(268\) 0 0
\(269\) −23.4610 + 13.5452i −1.43044 + 0.825866i −0.997154 0.0753896i \(-0.975980\pi\)
−0.433288 + 0.901256i \(0.642647\pi\)
\(270\) 0 0
\(271\) 24.8920 14.3714i 1.51208 0.872999i 0.512178 0.858879i \(-0.328839\pi\)
0.999900 0.0141199i \(-0.00449464\pi\)
\(272\) 0 0
\(273\) −0.619428 −0.0374895
\(274\) 0 0
\(275\) 9.33631 + 5.39032i 0.563001 + 0.325049i
\(276\) 0 0
\(277\) −2.31850 −0.139305 −0.0696527 0.997571i \(-0.522189\pi\)
−0.0696527 + 0.997571i \(0.522189\pi\)
\(278\) 0 0
\(279\) −4.53868 + 7.86122i −0.271723 + 0.470639i
\(280\) 0 0
\(281\) −23.1691 13.3767i −1.38215 0.797987i −0.389740 0.920925i \(-0.627435\pi\)
−0.992414 + 0.122938i \(0.960768\pi\)
\(282\) 0 0
\(283\) −0.437764 + 0.252743i −0.0260224 + 0.0150240i −0.512955 0.858416i \(-0.671449\pi\)
0.486932 + 0.873440i \(0.338116\pi\)
\(284\) 0 0
\(285\) −0.559044 + 0.157678i −0.0331149 + 0.00934006i
\(286\) 0 0
\(287\) 6.44378 + 11.1610i 0.380364 + 0.658810i
\(288\) 0 0
\(289\) 4.85850 8.41516i 0.285794 0.495010i
\(290\) 0 0
\(291\) −6.55667 3.78549i −0.384359 0.221910i
\(292\) 0 0
\(293\) 23.9043i 1.39650i 0.715852 + 0.698252i \(0.246039\pi\)
−0.715852 + 0.698252i \(0.753961\pi\)
\(294\) 0 0
\(295\) 0.787521 1.36403i 0.0458513 0.0794167i
\(296\) 0 0
\(297\) 2.16381i 0.125557i
\(298\) 0 0
\(299\) 2.15683 + 3.73573i 0.124733 + 0.216043i
\(300\) 0 0
\(301\) −5.63258 9.75591i −0.324656 0.562322i
\(302\) 0 0
\(303\) 4.37422 0.251293
\(304\) 0 0
\(305\) 0.959121 0.0549191
\(306\) 0 0
\(307\) 11.4005 + 19.7463i 0.650663 + 1.12698i 0.982962 + 0.183807i \(0.0588423\pi\)
−0.332299 + 0.943174i \(0.607824\pi\)
\(308\) 0 0
\(309\) −2.75859 4.77802i −0.156931 0.271812i
\(310\) 0 0
\(311\) 9.59548i 0.544110i −0.962282 0.272055i \(-0.912297\pi\)
0.962282 0.272055i \(-0.0877032\pi\)
\(312\) 0 0
\(313\) 7.38895 12.7980i 0.417648 0.723387i −0.578054 0.815998i \(-0.696188\pi\)
0.995702 + 0.0926108i \(0.0295212\pi\)
\(314\) 0 0
\(315\) 0.151792i 0.00855250i
\(316\) 0 0
\(317\) 7.31434 + 4.22293i 0.410814 + 0.237184i 0.691139 0.722721i \(-0.257109\pi\)
−0.280325 + 0.959905i \(0.590442\pi\)
\(318\) 0 0
\(319\) −3.37059 + 5.83803i −0.188717 + 0.326867i
\(320\) 0 0
\(321\) 9.99315 + 17.3086i 0.557763 + 0.966074i
\(322\) 0 0
\(323\) −2.89537 + 11.4015i −0.161103 + 0.634396i
\(324\) 0 0
\(325\) −2.34633 + 1.35466i −0.130151 + 0.0751427i
\(326\) 0 0
\(327\) −3.99108 2.30425i −0.220707 0.127426i
\(328\) 0 0
\(329\) −2.29282 + 3.97128i −0.126407 + 0.218944i
\(330\) 0 0
\(331\) 18.4435 1.01375 0.506873 0.862021i \(-0.330801\pi\)
0.506873 + 0.862021i \(0.330801\pi\)
\(332\) 0 0
\(333\) 4.32780 + 2.49866i 0.237162 + 0.136925i
\(334\) 0 0
\(335\) 0.802956 0.0438702
\(336\) 0 0
\(337\) 5.40196 3.11882i 0.294264 0.169893i −0.345599 0.938382i \(-0.612324\pi\)
0.639863 + 0.768489i \(0.278991\pi\)
\(338\) 0 0
\(339\) 5.15175 2.97436i 0.279805 0.161545i
\(340\) 0 0
\(341\) 19.6417i 1.06366i
\(342\) 0 0
\(343\) 14.4692i 0.781265i
\(344\) 0 0
\(345\) −0.915447 + 0.528534i −0.0492860 + 0.0284553i
\(346\) 0 0
\(347\) 11.5686 6.67913i 0.621035 0.358555i −0.156237 0.987720i \(-0.549936\pi\)
0.777272 + 0.629165i \(0.216603\pi\)
\(348\) 0 0
\(349\) −27.1040 −1.45084 −0.725422 0.688305i \(-0.758355\pi\)
−0.725422 + 0.688305i \(0.758355\pi\)
\(350\) 0 0
\(351\) −0.470939 0.271897i −0.0251369 0.0145128i
\(352\) 0 0
\(353\) 5.50145 0.292812 0.146406 0.989225i \(-0.453229\pi\)
0.146406 + 0.989225i \(0.453229\pi\)
\(354\) 0 0
\(355\) −0.358834 + 0.621519i −0.0190449 + 0.0329868i
\(356\) 0 0
\(357\) −2.66221 1.53703i −0.140899 0.0813483i
\(358\) 0 0
\(359\) 3.30782 1.90977i 0.174580 0.100794i −0.410164 0.912012i \(-0.634528\pi\)
0.584744 + 0.811218i \(0.301195\pi\)
\(360\) 0 0
\(361\) 0.498096 + 18.9935i 0.0262156 + 0.999656i
\(362\) 0 0
\(363\) −3.15895 5.47147i −0.165802 0.287178i
\(364\) 0 0
\(365\) 0.649771 1.12544i 0.0340106 0.0589081i
\(366\) 0 0
\(367\) 8.60002 + 4.96522i 0.448917 + 0.259183i 0.707373 0.706841i \(-0.249880\pi\)
−0.258455 + 0.966023i \(0.583214\pi\)
\(368\) 0 0
\(369\) 11.3139i 0.588979i
\(370\) 0 0
\(371\) −1.90417 + 3.29812i −0.0988595 + 0.171230i
\(372\) 0 0
\(373\) 2.17673i 0.112707i 0.998411 + 0.0563533i \(0.0179473\pi\)
−0.998411 + 0.0563533i \(0.982053\pi\)
\(374\) 0 0
\(375\) −0.665104 1.15199i −0.0343458 0.0594887i
\(376\) 0 0
\(377\) −0.847070 1.46717i −0.0436263 0.0755630i
\(378\) 0 0
\(379\) 2.19502 0.112751 0.0563753 0.998410i \(-0.482046\pi\)
0.0563753 + 0.998410i \(0.482046\pi\)
\(380\) 0 0
\(381\) 1.86753 0.0956764
\(382\) 0 0
\(383\) 12.1511 + 21.0464i 0.620893 + 1.07542i 0.989320 + 0.145762i \(0.0465632\pi\)
−0.368427 + 0.929657i \(0.620103\pi\)
\(384\) 0 0
\(385\) −0.164225 0.284445i −0.00836966 0.0144967i
\(386\) 0 0
\(387\) 9.88963i 0.502718i
\(388\) 0 0
\(389\) 0.588510 1.01933i 0.0298386 0.0516820i −0.850720 0.525618i \(-0.823834\pi\)
0.880559 + 0.473936i \(0.157167\pi\)
\(390\) 0 0
\(391\) 21.4075i 1.08263i
\(392\) 0 0
\(393\) 5.49593 + 3.17307i 0.277233 + 0.160060i
\(394\) 0 0
\(395\) 0.743088 1.28707i 0.0373888 0.0647594i
\(396\) 0 0
\(397\) −3.58104 6.20254i −0.179727 0.311296i 0.762060 0.647506i \(-0.224188\pi\)
−0.941787 + 0.336210i \(0.890855\pi\)
\(398\) 0 0
\(399\) −4.81242 1.22210i −0.240922 0.0611815i
\(400\) 0 0
\(401\) −12.2094 + 7.04908i −0.609706 + 0.352014i −0.772850 0.634588i \(-0.781170\pi\)
0.163144 + 0.986602i \(0.447836\pi\)
\(402\) 0 0
\(403\) −4.27488 2.46810i −0.212947 0.122945i
\(404\) 0 0
\(405\) 0.0666287 0.115404i 0.00331081 0.00573448i
\(406\) 0 0
\(407\) 10.8132 0.535993
\(408\) 0 0
\(409\) −7.67460 4.43093i −0.379484 0.219095i 0.298110 0.954532i \(-0.403644\pi\)
−0.677594 + 0.735436i \(0.736977\pi\)
\(410\) 0 0
\(411\) 8.90188 0.439097
\(412\) 0 0
\(413\) 11.6597 6.73175i 0.573738 0.331248i
\(414\) 0 0
\(415\) 0.924232 0.533605i 0.0453687 0.0261937i
\(416\) 0 0
\(417\) 1.47547i 0.0722541i
\(418\) 0 0
\(419\) 9.29685i 0.454181i 0.973874 + 0.227090i \(0.0729213\pi\)
−0.973874 + 0.227090i \(0.927079\pi\)
\(420\) 0 0
\(421\) 3.65737 2.11158i 0.178249 0.102912i −0.408221 0.912883i \(-0.633851\pi\)
0.586470 + 0.809971i \(0.300517\pi\)
\(422\) 0 0
\(423\) −3.48636 + 2.01285i −0.169513 + 0.0978683i
\(424\) 0 0
\(425\) −13.4456 −0.652207
\(426\) 0 0
\(427\) 7.10019 + 4.09930i 0.343602 + 0.198379i
\(428\) 0 0
\(429\) −1.17667 −0.0568100
\(430\) 0 0
\(431\) −2.30829 + 3.99808i −0.111186 + 0.192581i −0.916249 0.400610i \(-0.868798\pi\)
0.805062 + 0.593190i \(0.202132\pi\)
\(432\) 0 0
\(433\) −0.122023 0.0704501i −0.00586406 0.00338562i 0.497065 0.867713i \(-0.334411\pi\)
−0.502929 + 0.864328i \(0.667744\pi\)
\(434\) 0 0
\(435\) 0.359532 0.207576i 0.0172382 0.00995250i
\(436\) 0 0
\(437\) 9.38626 + 33.2787i 0.449006 + 1.59194i
\(438\) 0 0
\(439\) −0.422712 0.732158i −0.0201749 0.0349440i 0.855762 0.517370i \(-0.173089\pi\)
−0.875937 + 0.482426i \(0.839756\pi\)
\(440\) 0 0
\(441\) −2.85124 + 4.93849i −0.135773 + 0.235166i
\(442\) 0 0
\(443\) −14.6457 8.45573i −0.695840 0.401744i 0.109956 0.993936i \(-0.464929\pi\)
−0.805796 + 0.592193i \(0.798262\pi\)
\(444\) 0 0
\(445\) 1.61857i 0.0767275i
\(446\) 0 0
\(447\) 4.28808 7.42718i 0.202819 0.351293i
\(448\) 0 0
\(449\) 37.5477i 1.77199i 0.463698 + 0.885993i \(0.346522\pi\)
−0.463698 + 0.885993i \(0.653478\pi\)
\(450\) 0 0
\(451\) 12.2406 + 21.2014i 0.576388 + 0.998333i
\(452\) 0 0
\(453\) −10.0346 17.3804i −0.471465 0.816601i
\(454\) 0 0
\(455\) 0.0825434 0.00386969
\(456\) 0 0
\(457\) −36.3446 −1.70013 −0.850065 0.526677i \(-0.823438\pi\)
−0.850065 + 0.526677i \(0.823438\pi\)
\(458\) 0 0
\(459\) −1.34935 2.33715i −0.0629824 0.109089i
\(460\) 0 0
\(461\) −4.85347 8.40646i −0.226049 0.391528i 0.730585 0.682822i \(-0.239248\pi\)
−0.956634 + 0.291294i \(0.905914\pi\)
\(462\) 0 0
\(463\) 38.8906i 1.80740i −0.428168 0.903699i \(-0.640841\pi\)
0.428168 0.903699i \(-0.359159\pi\)
\(464\) 0 0
\(465\) 0.604812 1.04756i 0.0280475 0.0485797i
\(466\) 0 0
\(467\) 12.8807i 0.596047i 0.954559 + 0.298023i \(0.0963273\pi\)
−0.954559 + 0.298023i \(0.903673\pi\)
\(468\) 0 0
\(469\) 5.94413 + 3.43185i 0.274475 + 0.158468i
\(470\) 0 0
\(471\) −6.14060 + 10.6358i −0.282944 + 0.490073i
\(472\) 0 0
\(473\) −10.6997 18.5324i −0.491971 0.852119i
\(474\) 0 0
\(475\) −20.9016 + 5.89530i −0.959032 + 0.270495i
\(476\) 0 0
\(477\) −2.89540 + 1.67166i −0.132571 + 0.0765401i
\(478\) 0 0
\(479\) −0.967512 0.558593i −0.0442067 0.0255228i 0.477734 0.878505i \(-0.341458\pi\)
−0.521940 + 0.852982i \(0.674792\pi\)
\(480\) 0 0
\(481\) −1.35875 + 2.35343i −0.0619538 + 0.107307i
\(482\) 0 0
\(483\) −9.03584 −0.411145
\(484\) 0 0
\(485\) 0.873724 + 0.504445i 0.0396738 + 0.0229057i
\(486\) 0 0
\(487\) −12.7687 −0.578604 −0.289302 0.957238i \(-0.593423\pi\)
−0.289302 + 0.957238i \(0.593423\pi\)
\(488\) 0 0
\(489\) 1.19588 0.690442i 0.0540796 0.0312228i
\(490\) 0 0
\(491\) 25.2539 14.5803i 1.13969 0.658001i 0.193337 0.981132i \(-0.438069\pi\)
0.946354 + 0.323132i \(0.104736\pi\)
\(492\) 0 0
\(493\) 8.40758i 0.378658i
\(494\) 0 0
\(495\) 0.288344i 0.0129601i
\(496\) 0 0
\(497\) −5.31276 + 3.06732i −0.238310 + 0.137588i
\(498\) 0 0
\(499\) 34.8497 20.1205i 1.56009 0.900716i 0.562839 0.826567i \(-0.309709\pi\)
0.997247 0.0741490i \(-0.0236240\pi\)
\(500\) 0 0
\(501\) −1.57659 −0.0704367
\(502\) 0 0
\(503\) 1.27674 + 0.737124i 0.0569269 + 0.0328667i 0.528193 0.849124i \(-0.322870\pi\)
−0.471266 + 0.881991i \(0.656203\pi\)
\(504\) 0 0
\(505\) −0.582897 −0.0259386
\(506\) 0 0
\(507\) −6.35214 + 11.0022i −0.282109 + 0.488626i
\(508\) 0 0
\(509\) 7.24752 + 4.18436i 0.321241 + 0.185468i 0.651945 0.758266i \(-0.273953\pi\)
−0.330705 + 0.943734i \(0.607286\pi\)
\(510\) 0 0
\(511\) 9.62027 5.55427i 0.425576 0.245706i
\(512\) 0 0
\(513\) −3.12235 3.04154i −0.137855 0.134287i
\(514\) 0 0
\(515\) 0.367602 + 0.636706i 0.0161985 + 0.0280566i
\(516\) 0 0
\(517\) −4.35544 + 7.54384i −0.191552 + 0.331778i
\(518\) 0 0
\(519\) 8.22439 + 4.74835i 0.361011 + 0.208430i
\(520\) 0 0
\(521\) 2.75117i 0.120531i 0.998182 + 0.0602654i \(0.0191947\pi\)
−0.998182 + 0.0602654i \(0.980805\pi\)
\(522\) 0 0
\(523\) −6.03753 + 10.4573i −0.264003 + 0.457266i −0.967302 0.253628i \(-0.918376\pi\)
0.703299 + 0.710894i \(0.251709\pi\)
\(524\) 0 0
\(525\) 5.67521i 0.247687i
\(526\) 0 0
\(527\) −12.2485 21.2151i −0.533555 0.924144i
\(528\) 0 0
\(529\) 19.9625 + 34.5760i 0.867934 + 1.50331i
\(530\) 0 0
\(531\) 11.8196 0.512925
\(532\) 0 0
\(533\) −6.15244 −0.266492
\(534\) 0 0
\(535\) −1.33166 2.30650i −0.0575727 0.0997189i
\(536\) 0 0
\(537\) 5.71807 + 9.90398i 0.246753 + 0.427388i
\(538\) 0 0
\(539\) 12.3391i 0.531483i
\(540\) 0 0
\(541\) −4.75097 + 8.22891i −0.204260 + 0.353789i −0.949897 0.312564i \(-0.898812\pi\)
0.745637 + 0.666353i \(0.232145\pi\)
\(542\) 0 0
\(543\) 21.3118i 0.914578i
\(544\) 0 0
\(545\) 0.531841 + 0.307059i 0.0227816 + 0.0131529i
\(546\) 0 0
\(547\) 12.0308 20.8380i 0.514400 0.890967i −0.485461 0.874259i \(-0.661348\pi\)
0.999860 0.0167082i \(-0.00531862\pi\)
\(548\) 0 0
\(549\) 3.59876 + 6.23323i 0.153591 + 0.266028i
\(550\) 0 0
\(551\) −3.68635 13.0699i −0.157044 0.556794i
\(552\) 0 0
\(553\) 11.0019 6.35194i 0.467848 0.270112i
\(554\) 0 0
\(555\) −0.576711 0.332964i −0.0244800 0.0141335i
\(556\) 0 0
\(557\) −20.7785 + 35.9894i −0.880414 + 1.52492i −0.0295327 + 0.999564i \(0.509402\pi\)
−0.850881 + 0.525358i \(0.823931\pi\)
\(558\) 0 0
\(559\) 5.37792 0.227462
\(560\) 0 0
\(561\) −5.05715 2.91975i −0.213513 0.123272i
\(562\) 0 0
\(563\) 4.78220 0.201546 0.100773 0.994909i \(-0.467868\pi\)
0.100773 + 0.994909i \(0.467868\pi\)
\(564\) 0 0
\(565\) −0.686509 + 0.396356i −0.0288816 + 0.0166748i
\(566\) 0 0
\(567\) 0.986479 0.569544i 0.0414282 0.0239186i
\(568\) 0 0
\(569\) 34.5515i 1.44847i −0.689552 0.724236i \(-0.742193\pi\)
0.689552 0.724236i \(-0.257807\pi\)
\(570\) 0 0
\(571\) 28.6234i 1.19785i 0.800804 + 0.598926i \(0.204406\pi\)
−0.800804 + 0.598926i \(0.795594\pi\)
\(572\) 0 0
\(573\) −18.4086 + 10.6282i −0.769029 + 0.443999i
\(574\) 0 0
\(575\) −34.2269 + 19.7609i −1.42736 + 0.824086i
\(576\) 0 0
\(577\) 10.5896 0.440851 0.220426 0.975404i \(-0.429255\pi\)
0.220426 + 0.975404i \(0.429255\pi\)
\(578\) 0 0
\(579\) 17.1611 + 9.90794i 0.713189 + 0.411760i
\(580\) 0 0
\(581\) 9.12255 0.378467
\(582\) 0 0
\(583\) −3.61716 + 6.26511i −0.149808 + 0.259474i
\(584\) 0 0
\(585\) 0.0627561 + 0.0362322i 0.00259464 + 0.00149802i
\(586\) 0 0
\(587\) 22.9036 13.2234i 0.945335 0.545789i 0.0537062 0.998557i \(-0.482897\pi\)
0.891629 + 0.452767i \(0.149563\pi\)
\(588\) 0 0
\(589\) −28.3426 27.6091i −1.16784 1.13761i
\(590\) 0 0
\(591\) −12.6194 21.8574i −0.519091 0.899093i
\(592\) 0 0
\(593\) 11.6088 20.1070i 0.476714 0.825694i −0.522930 0.852376i \(-0.675161\pi\)
0.999644 + 0.0266823i \(0.00849424\pi\)
\(594\) 0 0
\(595\) 0.354760 + 0.204821i 0.0145437 + 0.00839683i
\(596\) 0 0
\(597\) 0.274362i 0.0112289i
\(598\) 0 0
\(599\) 2.05563 3.56046i 0.0839908 0.145476i −0.820970 0.570971i \(-0.806567\pi\)
0.904961 + 0.425495i \(0.139900\pi\)
\(600\) 0 0
\(601\) 34.5056i 1.40751i 0.710442 + 0.703756i \(0.248495\pi\)
−0.710442 + 0.703756i \(0.751505\pi\)
\(602\) 0 0
\(603\) 3.01280 + 5.21833i 0.122691 + 0.212507i
\(604\) 0 0
\(605\) 0.420954 + 0.729113i 0.0171142 + 0.0296427i
\(606\) 0 0
\(607\) −32.0668 −1.30155 −0.650776 0.759270i \(-0.725556\pi\)
−0.650776 + 0.759270i \(0.725556\pi\)
\(608\) 0 0
\(609\) 3.54873 0.143802
\(610\) 0 0
\(611\) −1.09458 1.89586i −0.0442818 0.0766984i
\(612\) 0 0
\(613\) −12.6969 21.9917i −0.512825 0.888238i −0.999889 0.0148724i \(-0.995266\pi\)
0.487065 0.873366i \(-0.338068\pi\)
\(614\) 0 0
\(615\) 1.50766i 0.0607949i
\(616\) 0 0
\(617\) 18.2525 31.6143i 0.734820 1.27275i −0.219982 0.975504i \(-0.570600\pi\)
0.954802 0.297242i \(-0.0960667\pi\)
\(618\) 0 0
\(619\) 3.93133i 0.158014i −0.996874 0.0790068i \(-0.974825\pi\)
0.996874 0.0790068i \(-0.0251749\pi\)
\(620\) 0 0
\(621\) −6.86977 3.96626i −0.275674 0.159161i
\(622\) 0 0
\(623\) 6.91779 11.9820i 0.277155 0.480047i
\(624\) 0 0
\(625\) −12.3670 21.4202i −0.494679 0.856809i
\(626\) 0 0
\(627\) −9.14168 2.32150i −0.365084 0.0927119i
\(628\) 0 0
\(629\) −11.6794 + 6.74313i −0.465690 + 0.268866i
\(630\) 0 0
\(631\) −8.65919 4.99939i −0.344717 0.199022i 0.317639 0.948212i \(-0.397110\pi\)
−0.662356 + 0.749189i \(0.730443\pi\)
\(632\) 0 0
\(633\) −3.82416 + 6.62363i −0.151997 + 0.263266i
\(634\) 0 0
\(635\) −0.248862 −0.00987578
\(636\) 0 0
\(637\) −2.68552 1.55049i −0.106404 0.0614325i
\(638\) 0 0
\(639\) −5.38558 −0.213050
\(640\) 0 0
\(641\) 13.5929 7.84787i 0.536888 0.309972i −0.206929 0.978356i \(-0.566347\pi\)
0.743817 + 0.668384i \(0.233014\pi\)
\(642\) 0 0
\(643\) −2.43842 + 1.40782i −0.0961619 + 0.0555191i −0.547310 0.836930i \(-0.684348\pi\)
0.451148 + 0.892449i \(0.351015\pi\)
\(644\) 0 0
\(645\) 1.31787i 0.0518909i
\(646\) 0 0
\(647\) 12.5145i 0.491995i 0.969271 + 0.245997i \(0.0791154\pi\)
−0.969271 + 0.245997i \(0.920885\pi\)
\(648\) 0 0
\(649\) 22.1489 12.7877i 0.869419 0.501960i
\(650\) 0 0
\(651\) 8.95462 5.16995i 0.350959 0.202626i
\(652\) 0 0
\(653\) −27.2687 −1.06711 −0.533553 0.845766i \(-0.679144\pi\)
−0.533553 + 0.845766i \(0.679144\pi\)
\(654\) 0 0
\(655\) −0.732373 0.422835i −0.0286162 0.0165215i
\(656\) 0 0
\(657\) 9.75213 0.380467
\(658\) 0 0
\(659\) −3.91399 + 6.77923i −0.152467 + 0.264081i −0.932134 0.362114i \(-0.882055\pi\)
0.779667 + 0.626195i \(0.215389\pi\)
\(660\) 0 0
\(661\) 31.0066 + 17.9017i 1.20602 + 0.696294i 0.961887 0.273449i \(-0.0881644\pi\)
0.244130 + 0.969743i \(0.421498\pi\)
\(662\) 0 0
\(663\) 1.27092 0.733769i 0.0493586 0.0284972i
\(664\) 0 0
\(665\) 0.641290 + 0.162854i 0.0248682 + 0.00631520i
\(666\) 0 0
\(667\) −12.3565 21.4022i −0.478447 0.828695i
\(668\) 0 0
\(669\) 12.7679 22.1146i 0.493635 0.855001i
\(670\) 0 0
\(671\) 13.4875 + 7.78704i 0.520681 + 0.300615i
\(672\) 0 0
\(673\) 10.3482i 0.398895i 0.979908 + 0.199448i \(0.0639148\pi\)
−0.979908 + 0.199448i \(0.936085\pi\)
\(674\) 0 0
\(675\) 2.49112 4.31475i 0.0958833 0.166075i
\(676\) 0 0
\(677\) 35.9710i 1.38248i 0.722626 + 0.691239i \(0.242935\pi\)
−0.722626 + 0.691239i \(0.757065\pi\)
\(678\) 0 0
\(679\) 4.31201 + 7.46862i 0.165480 + 0.286619i
\(680\) 0 0
\(681\) 1.97821 + 3.42636i 0.0758052 + 0.131299i
\(682\) 0 0
\(683\) 33.9887 1.30054 0.650270 0.759703i \(-0.274656\pi\)
0.650270 + 0.759703i \(0.274656\pi\)
\(684\) 0 0
\(685\) −1.18624 −0.0453239
\(686\) 0 0
\(687\) −13.0967 22.6842i −0.499672 0.865457i
\(688\) 0 0
\(689\) −0.909038 1.57450i −0.0346316 0.0599836i
\(690\) 0 0
\(691\) 0.422716i 0.0160809i 0.999968 + 0.00804045i \(0.00255938\pi\)
−0.999968 + 0.00804045i \(0.997441\pi\)
\(692\) 0 0
\(693\) 1.23239 2.13456i 0.0468145 0.0810851i
\(694\) 0 0
\(695\) 0.196617i 0.00745811i
\(696\) 0 0
\(697\) −26.4423 15.2665i −1.00157 0.578259i
\(698\) 0 0
\(699\) 1.09944 1.90429i 0.0415848 0.0720270i
\(700\) 0 0
\(701\) −5.22559 9.05099i −0.197368 0.341851i 0.750306 0.661090i \(-0.229906\pi\)
−0.947674 + 0.319239i \(0.896573\pi\)
\(702\) 0 0
\(703\) −15.1995 + 15.6033i −0.573260 + 0.588491i
\(704\) 0 0
\(705\) 0.464584 0.268228i 0.0174972 0.0101020i
\(706\) 0 0
\(707\) −4.31508 2.49131i −0.162285 0.0936954i
\(708\) 0 0
\(709\) −8.38163 + 14.5174i −0.314779 + 0.545213i −0.979390 0.201976i \(-0.935264\pi\)
0.664612 + 0.747189i \(0.268597\pi\)
\(710\) 0 0
\(711\) 11.1527 0.418258
\(712\) 0 0
\(713\) −62.3593 36.0032i −2.33537 1.34833i
\(714\) 0 0
\(715\) 0.156800 0.00586397
\(716\) 0 0
\(717\) 19.7080 11.3784i 0.736010 0.424935i
\(718\) 0 0
\(719\) −28.0698 + 16.2061i −1.04683 + 0.604387i −0.921760 0.387761i \(-0.873249\pi\)
−0.125069 + 0.992148i \(0.539915\pi\)
\(720\) 0 0
\(721\) 6.28455i 0.234049i
\(722\) 0 0
\(723\) 15.7787i 0.586818i
\(724\) 0 0
\(725\) 13.4422 7.76087i 0.499232 0.288232i
\(726\) 0 0
\(727\) −20.2719 + 11.7040i −0.751845 + 0.434078i −0.826360 0.563142i \(-0.809592\pi\)
0.0745152 + 0.997220i \(0.476259\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 23.1135 + 13.3446i 0.854884 + 0.493568i
\(732\) 0 0
\(733\) 40.4992 1.49587 0.747937 0.663770i \(-0.231045\pi\)
0.747937 + 0.663770i \(0.231045\pi\)
\(734\) 0 0
\(735\) 0.379949 0.658090i 0.0140146 0.0242740i
\(736\) 0 0
\(737\) 11.2915 + 6.51915i 0.415927 + 0.240136i
\(738\) 0 0
\(739\) −2.45801 + 1.41914i −0.0904195 + 0.0522037i −0.544528 0.838743i \(-0.683291\pi\)
0.454108 + 0.890946i \(0.349958\pi\)
\(740\) 0 0
\(741\) 1.65397 1.69791i 0.0607600 0.0623743i
\(742\) 0 0
\(743\) −26.3118 45.5733i −0.965285 1.67192i −0.708847 0.705363i \(-0.750784\pi\)
−0.256439 0.966560i \(-0.582549\pi\)
\(744\) 0 0
\(745\) −0.571418 + 0.989726i −0.0209351 + 0.0362607i
\(746\) 0 0
\(747\) 6.93569 + 4.00432i 0.253764 + 0.146511i
\(748\) 0 0
\(749\) 22.7662i 0.831857i
\(750\) 0 0
\(751\) 0.975634 1.68985i 0.0356014 0.0616634i −0.847676 0.530515i \(-0.821999\pi\)
0.883277 + 0.468851i \(0.155332\pi\)
\(752\) 0 0
\(753\) 7.89580i 0.287739i
\(754\) 0 0
\(755\) 1.33718 + 2.31606i 0.0486649 + 0.0842901i
\(756\) 0 0
\(757\) 26.3408 + 45.6236i 0.957372 + 1.65822i 0.728845 + 0.684679i \(0.240058\pi\)
0.228527 + 0.973538i \(0.426609\pi\)
\(758\) 0 0
\(759\) −17.1645 −0.623032
\(760\) 0 0
\(761\) 34.3255 1.24430 0.622148 0.782899i \(-0.286260\pi\)
0.622148 + 0.782899i \(0.286260\pi\)
\(762\) 0 0
\(763\) 2.62475 + 4.54620i 0.0950222 + 0.164583i
\(764\) 0 0
\(765\) 0.179811 + 0.311442i 0.00650108 + 0.0112602i
\(766\) 0 0
\(767\) 6.42739i 0.232080i
\(768\) 0 0
\(769\) −5.97163 + 10.3432i −0.215343 + 0.372984i −0.953378 0.301777i \(-0.902420\pi\)
0.738036 + 0.674761i \(0.235753\pi\)
\(770\) 0 0
\(771\) 10.9757i 0.395279i
\(772\) 0 0
\(773\) 29.2496 + 16.8873i 1.05204 + 0.607393i 0.923219 0.384275i \(-0.125549\pi\)
0.128817 + 0.991668i \(0.458882\pi\)
\(774\) 0 0
\(775\) 22.6128 39.1665i 0.812275 1.40690i
\(776\) 0 0
\(777\) −2.84619 4.92974i −0.102106 0.176853i
\(778\) 0 0
\(779\) −47.7991 12.1384i −1.71258 0.434905i
\(780\) 0 0
\(781\) −10.0921 + 5.82670i −0.361125 + 0.208496i
\(782\) 0 0
\(783\) 2.69803 + 1.55771i 0.0964196 + 0.0556679i
\(784\) 0 0
\(785\) 0.818280 1.41730i 0.0292057 0.0505857i
\(786\) 0 0
\(787\) −29.0693 −1.03621 −0.518105 0.855317i \(-0.673362\pi\)
−0.518105 + 0.855317i \(0.673362\pi\)
\(788\) 0 0
\(789\) 0.351895 + 0.203167i 0.0125278 + 0.00723293i
\(790\) 0 0
\(791\) −6.77613 −0.240931
\(792\) 0 0
\(793\) −3.38959 + 1.95698i −0.120368 + 0.0694944i
\(794\) 0 0
\(795\) 0.385833 0.222761i 0.0136841 0.00790052i
\(796\) 0 0
\(797\) 4.35049i 0.154102i −0.997027 0.0770511i \(-0.975450\pi\)
0.997027 0.0770511i \(-0.0245505\pi\)
\(798\) 0 0
\(799\) 10.8642i 0.384348i
\(800\) 0 0
\(801\) 10.5189 6.07310i 0.371667 0.214582i
\(802\) 0 0
\(803\) 18.2747 10.5509i 0.644900 0.372333i
\(804\) 0 0
\(805\) 1.20409 0.0424387
\(806\) 0 0
\(807\) 23.4610 + 13.5452i 0.825866 + 0.476814i
\(808\) 0 0
\(809\) −3.33563 −0.117275 −0.0586373 0.998279i \(-0.518676\pi\)
−0.0586373 + 0.998279i \(0.518676\pi\)
\(810\) 0 0
\(811\) 15.6319 27.0752i 0.548909 0.950739i −0.449440 0.893310i \(-0.648377\pi\)
0.998350 0.0574283i \(-0.0182900\pi\)
\(812\) 0 0
\(813\) −24.8920 14.3714i −0.872999 0.504026i
\(814\) 0 0
\(815\) −0.159360 + 0.0920064i −0.00558213 + 0.00322284i
\(816\) 0 0
\(817\) 41.7817 + 10.6103i 1.46176 + 0.371209i
\(818\) 0 0
\(819\) 0.309714 + 0.536441i 0.0108223 + 0.0187448i
\(820\) 0 0
\(821\) 18.1392 31.4179i 0.633061 1.09649i −0.353862 0.935298i \(-0.615132\pi\)
0.986922 0.161196i \(-0.0515351\pi\)
\(822\) 0 0
\(823\) −31.3786 18.1164i −1.09379 0.631499i −0.159206 0.987245i \(-0.550893\pi\)
−0.934582 + 0.355747i \(0.884227\pi\)
\(824\) 0 0
\(825\) 10.7806i 0.375334i
\(826\) 0 0
\(827\) 20.9495 36.2856i 0.728485 1.26177i −0.229038 0.973417i \(-0.573558\pi\)
0.957523 0.288356i \(-0.0931086\pi\)
\(828\) 0 0
\(829\) 6.25554i 0.217264i 0.994082 + 0.108632i \(0.0346470\pi\)
−0.994082 + 0.108632i \(0.965353\pi\)
\(830\) 0 0
\(831\) 1.15925 + 2.00788i 0.0402140 + 0.0696527i
\(832\) 0 0
\(833\) −7.69465 13.3275i −0.266604 0.461771i
\(834\) 0 0
\(835\) 0.210092 0.00727052
\(836\) 0 0
\(837\) 9.07735 0.313759
\(838\) 0 0
\(839\) −28.0867 48.6476i −0.969660 1.67950i −0.696536 0.717521i \(-0.745277\pi\)
−0.273124 0.961979i \(-0.588057\pi\)
\(840\) 0 0
\(841\) −9.64710 16.7093i −0.332659 0.576182i
\(842\) 0 0
\(843\) 26.7534i 0.921436i
\(844\) 0 0
\(845\) 0.846470 1.46613i 0.0291194 0.0504364i
\(846\) 0 0
\(847\) 7.19665i 0.247280i
\(848\) 0 0
\(849\) 0.437764 + 0.252743i 0.0150240 + 0.00867412i
\(850\) 0 0
\(851\) −19.8206 + 34.3304i −0.679443 + 1.17683i
\(852\) 0 0
\(853\) −13.1491 22.7750i −0.450217 0.779800i 0.548182 0.836359i \(-0.315320\pi\)
−0.998399 + 0.0565597i \(0.981987\pi\)
\(854\) 0 0
\(855\) 0.416076 + 0.405307i 0.0142295 + 0.0138612i
\(856\) 0 0
\(857\) 8.91649 5.14794i 0.304581 0.175850i −0.339918 0.940455i \(-0.610399\pi\)
0.644499 + 0.764605i \(0.277066\pi\)
\(858\) 0 0
\(859\) 30.9500 + 17.8690i 1.05600 + 0.609682i 0.924323 0.381611i \(-0.124631\pi\)
0.131677 + 0.991293i \(0.457964\pi\)
\(860\) 0 0
\(861\) 6.44378 11.1610i 0.219603 0.380364i
\(862\) 0 0
\(863\) −39.2657 −1.33662 −0.668310 0.743883i \(-0.732982\pi\)
−0.668310 + 0.743883i \(0.732982\pi\)
\(864\) 0 0
\(865\) −1.09596 0.632753i −0.0372638 0.0215142i
\(866\) 0 0
\(867\) −9.71700 −0.330006
\(868\) 0 0
\(869\) 20.8992 12.0662i 0.708957 0.409317i
\(870\) 0 0
\(871\) −2.83769 + 1.63834i −0.0961515 + 0.0555131i
\(872\) 0 0
\(873\) 7.57099i 0.256239i
\(874\) 0 0
\(875\) 1.51522i 0.0512239i
\(876\) 0 0
\(877\) −44.5622 + 25.7280i −1.50476 + 0.868772i −0.504773 + 0.863252i \(0.668424\pi\)
−0.999985 + 0.00552053i \(0.998243\pi\)
\(878\) 0 0
\(879\) 20.7017 11.9522i 0.698252 0.403136i
\(880\) 0 0
\(881\) 27.8313 0.937661 0.468831 0.883288i \(-0.344675\pi\)
0.468831 + 0.883288i \(0.344675\pi\)
\(882\) 0 0
\(883\) −24.2664 14.0102i −0.816631 0.471482i 0.0326226 0.999468i \(-0.489614\pi\)
−0.849253 + 0.527986i \(0.822947\pi\)
\(884\) 0 0
\(885\) −1.57504 −0.0529445
\(886\) 0 0
\(887\) −23.1470 + 40.0918i −0.777201 + 1.34615i 0.156348 + 0.987702i \(0.450028\pi\)
−0.933549 + 0.358450i \(0.883306\pi\)
\(888\) 0 0
\(889\) −1.84228 1.06364i −0.0617880 0.0356733i
\(890\) 0 0
\(891\) 1.87392 1.08191i 0.0627786 0.0362452i
\(892\) 0 0
\(893\) −4.76347 16.8887i −0.159403 0.565160i
\(894\) 0 0
\(895\) −0.761974 1.31978i −0.0254700 0.0441153i
\(896\) 0 0
\(897\) 2.15683 3.73573i 0.0720144 0.124733i
\(898\) 0 0
\(899\) 24.4909 + 14.1399i 0.816819 + 0.471590i
\(900\) 0 0
\(901\) 9.02263i 0.300587i
\(902\) 0 0
\(903\) −5.63258 + 9.75591i −0.187441 + 0.324656i
\(904\) 0 0
\(905\) 2.83996i 0.0944033i
\(906\) 0 0
\(907\) 5.66770 + 9.81674i 0.188193 + 0.325959i 0.944648 0.328086i \(-0.106404\pi\)
−0.756455 + 0.654046i \(0.773070\pi\)
\(908\) 0 0
\(909\) −2.18711 3.78819i −0.0725419 0.125646i
\(910\) 0 0
\(911\) 36.1154 1.19656 0.598279 0.801288i \(-0.295851\pi\)
0.598279 + 0.801288i \(0.295851\pi\)
\(912\) 0 0
\(913\) 17.3292 0.573513
\(914\) 0 0
\(915\) −0.479561 0.830623i −0.0158538 0.0274596i
\(916\) 0 0
\(917\) −3.61441 6.26034i −0.119358 0.206735i
\(918\) 0 0
\(919\) 3.08334i 0.101710i 0.998706 + 0.0508550i \(0.0161946\pi\)
−0.998706 + 0.0508550i \(0.983805\pi\)
\(920\) 0 0
\(921\) 11.4005 19.7463i 0.375660 0.650663i
\(922\) 0 0
\(923\) 2.92864i 0.0963975i
\(924\) 0 0
\(925\) −21.5621 12.4489i −0.708959 0.409317i
\(926\) 0 0
\(927\) −2.75859 + 4.77802i −0.0906040 + 0.156931i
\(928\) 0 0
\(929\) 4.35429 + 7.54185i 0.142860 + 0.247440i 0.928572 0.371151i \(-0.121037\pi\)
−0.785713 + 0.618592i \(0.787704\pi\)
\(930\) 0 0
\(931\) −17.8051 17.3443i −0.583539 0.568437i
\(932\) 0 0
\(933\) −8.30993 + 4.79774i −0.272055 + 0.157071i
\(934\) 0 0
\(935\) 0.673902 + 0.389078i 0.0220390 + 0.0127242i
\(936\) 0 0
\(937\) −4.56917 + 7.91404i −0.149268 + 0.258540i −0.930957 0.365128i \(-0.881025\pi\)
0.781689 + 0.623668i \(0.214358\pi\)
\(938\) 0 0
\(939\) −14.7779 −0.482258
\(940\) 0 0
\(941\) 10.3359 + 5.96744i 0.336941 + 0.194533i 0.658919 0.752214i \(-0.271014\pi\)
−0.321977 + 0.946747i \(0.604347\pi\)
\(942\) 0 0
\(943\) −89.7480 −2.92260
\(944\) 0 0
\(945\) −0.131456 + 0.0758959i −0.00427625 + 0.00246889i
\(946\) 0 0
\(947\) 24.3207 14.0416i 0.790317 0.456290i −0.0497573 0.998761i \(-0.515845\pi\)
0.840074 + 0.542472i \(0.182511\pi\)
\(948\) 0 0
\(949\) 5.30314i 0.172147i
\(950\) 0 0
\(951\) 8.44587i 0.273876i
\(952\) 0 0
\(953\) 5.58722 3.22578i 0.180988 0.104493i −0.406769 0.913531i \(-0.633345\pi\)
0.587757 + 0.809038i \(0.300011\pi\)
\(954\) 0 0
\(955\) 2.45308 1.41629i 0.0793797 0.0458299i
\(956\) 0 0
\(957\) 6.74117 0.217911
\(958\) 0 0
\(959\) −8.78152 5.07001i −0.283570 0.163719i
\(960\) 0 0
\(961\) 51.3983 1.65801
\(962\) 0 0
\(963\) 9.99315 17.3086i 0.322025 0.557763i
\(964\) 0 0
\(965\) −2.28684 1.32031i −0.0736159 0.0425021i
\(966\) 0 0
\(967\) −22.2852 + 12.8663i −0.716643 + 0.413754i −0.813516 0.581543i \(-0.802449\pi\)
0.0968730 + 0.995297i \(0.469116\pi\)
\(968\) 0 0
\(969\) 11.3217 3.19328i 0.363704 0.102583i
\(970\) 0 0
\(971\) −1.98657 3.44084i −0.0637521 0.110422i 0.832388 0.554194i \(-0.186973\pi\)
−0.896140 + 0.443772i \(0.853640\pi\)
\(972\) 0 0
\(973\) −0.840345 + 1.45552i −0.0269402 + 0.0466618i
\(974\) 0 0
\(975\) 2.34633 + 1.35466i 0.0751427 + 0.0433837i
\(976\) 0 0
\(977\) 20.3592i 0.651349i −0.945482 0.325675i \(-0.894409\pi\)
0.945482 0.325675i \(-0.105591\pi\)
\(978\) 0 0
\(979\) 13.1410 22.7610i 0.419990 0.727444i
\(980\) 0 0
\(981\) 4.60851i 0.147138i
\(982\) 0 0
\(983\) 16.0763 + 27.8450i 0.512755 + 0.888117i 0.999891 + 0.0147910i \(0.00470830\pi\)
−0.487136 + 0.873326i \(0.661958\pi\)
\(984\) 0 0
\(985\) 1.68162 + 2.91266i 0.0535810 + 0.0928050i
\(986\) 0 0
\(987\) 4.58563 0.145962
\(988\) 0 0
\(989\) 78.4498 2.49456
\(990\) 0 0
\(991\) −5.54930 9.61167i −0.176279 0.305325i 0.764324 0.644832i \(-0.223073\pi\)
−0.940603 + 0.339508i \(0.889740\pi\)
\(992\) 0 0
\(993\) −9.22175 15.9725i −0.292643 0.506873i
\(994\) 0 0
\(995\) 0.0365608i 0.00115905i
\(996\) 0 0
\(997\) 20.6751 35.8103i 0.654786 1.13412i −0.327161 0.944968i \(-0.606092\pi\)
0.981947 0.189154i \(-0.0605746\pi\)
\(998\) 0 0
\(999\) 4.99731i 0.158108i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.bb.a.31.11 40
4.3 odd 2 1824.2.bb.b.31.11 yes 40
19.8 odd 6 1824.2.bb.b.1471.11 yes 40
76.27 even 6 inner 1824.2.bb.a.1471.11 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.bb.a.31.11 40 1.1 even 1 trivial
1824.2.bb.a.1471.11 yes 40 76.27 even 6 inner
1824.2.bb.b.31.11 yes 40 4.3 odd 2
1824.2.bb.b.1471.11 yes 40 19.8 odd 6