Properties

Label 1824.2.a.v.1.3
Level $1824$
Weight $2$
Character 1824.1
Self dual yes
Analytic conductor $14.565$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(1,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,5,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.86081\) of defining polynomial
Character \(\chi\) \(=\) 1824.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +4.32340 q^{5} +1.39821 q^{7} +1.00000 q^{9} +1.39821 q^{11} -1.72161 q^{13} +4.32340 q^{15} +0.601793 q^{17} -1.00000 q^{19} +1.39821 q^{21} -8.36842 q^{23} +13.6918 q^{25} +1.00000 q^{27} +4.79641 q^{29} +9.57201 q^{31} +1.39821 q^{33} +6.04502 q^{35} -1.72161 q^{37} -1.72161 q^{39} +6.64681 q^{41} -10.0450 q^{43} +4.32340 q^{45} -9.76663 q^{47} -5.04502 q^{49} +0.601793 q^{51} -7.29362 q^{53} +6.04502 q^{55} -1.00000 q^{57} -12.0900 q^{59} +9.24860 q^{61} +1.39821 q^{63} -7.44322 q^{65} +0.646809 q^{67} -8.36842 q^{69} +12.0900 q^{71} -12.6918 q^{73} +13.6918 q^{75} +1.95498 q^{77} +2.12878 q^{79} +1.00000 q^{81} +2.60179 q^{85} +4.79641 q^{87} +3.59283 q^{89} -2.40717 q^{91} +9.57201 q^{93} -4.32340 q^{95} -5.05398 q^{97} +1.39821 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 5 q^{5} + q^{7} + 3 q^{9} + q^{11} + 6 q^{13} + 5 q^{15} + 5 q^{17} - 3 q^{19} + q^{21} + 2 q^{23} + 6 q^{25} + 3 q^{27} + 8 q^{29} + 8 q^{31} + q^{33} - q^{35} + 6 q^{37} + 6 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 4.32340 1.93349 0.966743 0.255751i \(-0.0823229\pi\)
0.966743 + 0.255751i \(0.0823229\pi\)
\(6\) 0 0
\(7\) 1.39821 0.528473 0.264236 0.964458i \(-0.414880\pi\)
0.264236 + 0.964458i \(0.414880\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.39821 0.421575 0.210788 0.977532i \(-0.432397\pi\)
0.210788 + 0.977532i \(0.432397\pi\)
\(12\) 0 0
\(13\) −1.72161 −0.477489 −0.238745 0.971082i \(-0.576736\pi\)
−0.238745 + 0.971082i \(0.576736\pi\)
\(14\) 0 0
\(15\) 4.32340 1.11630
\(16\) 0 0
\(17\) 0.601793 0.145956 0.0729781 0.997334i \(-0.476750\pi\)
0.0729781 + 0.997334i \(0.476750\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 1.39821 0.305114
\(22\) 0 0
\(23\) −8.36842 −1.74494 −0.872468 0.488671i \(-0.837482\pi\)
−0.872468 + 0.488671i \(0.837482\pi\)
\(24\) 0 0
\(25\) 13.6918 2.73836
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.79641 0.890672 0.445336 0.895364i \(-0.353084\pi\)
0.445336 + 0.895364i \(0.353084\pi\)
\(30\) 0 0
\(31\) 9.57201 1.71918 0.859591 0.510982i \(-0.170718\pi\)
0.859591 + 0.510982i \(0.170718\pi\)
\(32\) 0 0
\(33\) 1.39821 0.243397
\(34\) 0 0
\(35\) 6.04502 1.02179
\(36\) 0 0
\(37\) −1.72161 −0.283031 −0.141516 0.989936i \(-0.545198\pi\)
−0.141516 + 0.989936i \(0.545198\pi\)
\(38\) 0 0
\(39\) −1.72161 −0.275679
\(40\) 0 0
\(41\) 6.64681 1.03806 0.519029 0.854757i \(-0.326294\pi\)
0.519029 + 0.854757i \(0.326294\pi\)
\(42\) 0 0
\(43\) −10.0450 −1.53185 −0.765925 0.642930i \(-0.777719\pi\)
−0.765925 + 0.642930i \(0.777719\pi\)
\(44\) 0 0
\(45\) 4.32340 0.644495
\(46\) 0 0
\(47\) −9.76663 −1.42461 −0.712305 0.701871i \(-0.752348\pi\)
−0.712305 + 0.701871i \(0.752348\pi\)
\(48\) 0 0
\(49\) −5.04502 −0.720717
\(50\) 0 0
\(51\) 0.601793 0.0842678
\(52\) 0 0
\(53\) −7.29362 −1.00186 −0.500928 0.865489i \(-0.667008\pi\)
−0.500928 + 0.865489i \(0.667008\pi\)
\(54\) 0 0
\(55\) 6.04502 0.815110
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −12.0900 −1.57399 −0.786994 0.616961i \(-0.788364\pi\)
−0.786994 + 0.616961i \(0.788364\pi\)
\(60\) 0 0
\(61\) 9.24860 1.18416 0.592081 0.805878i \(-0.298307\pi\)
0.592081 + 0.805878i \(0.298307\pi\)
\(62\) 0 0
\(63\) 1.39821 0.176158
\(64\) 0 0
\(65\) −7.44322 −0.923218
\(66\) 0 0
\(67\) 0.646809 0.0790202 0.0395101 0.999219i \(-0.487420\pi\)
0.0395101 + 0.999219i \(0.487420\pi\)
\(68\) 0 0
\(69\) −8.36842 −1.00744
\(70\) 0 0
\(71\) 12.0900 1.43482 0.717411 0.696650i \(-0.245327\pi\)
0.717411 + 0.696650i \(0.245327\pi\)
\(72\) 0 0
\(73\) −12.6918 −1.48547 −0.742733 0.669588i \(-0.766471\pi\)
−0.742733 + 0.669588i \(0.766471\pi\)
\(74\) 0 0
\(75\) 13.6918 1.58100
\(76\) 0 0
\(77\) 1.95498 0.222791
\(78\) 0 0
\(79\) 2.12878 0.239507 0.119753 0.992804i \(-0.461790\pi\)
0.119753 + 0.992804i \(0.461790\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 2.60179 0.282204
\(86\) 0 0
\(87\) 4.79641 0.514230
\(88\) 0 0
\(89\) 3.59283 0.380839 0.190420 0.981703i \(-0.439015\pi\)
0.190420 + 0.981703i \(0.439015\pi\)
\(90\) 0 0
\(91\) −2.40717 −0.252340
\(92\) 0 0
\(93\) 9.57201 0.992571
\(94\) 0 0
\(95\) −4.32340 −0.443572
\(96\) 0 0
\(97\) −5.05398 −0.513154 −0.256577 0.966524i \(-0.582595\pi\)
−0.256577 + 0.966524i \(0.582595\pi\)
\(98\) 0 0
\(99\) 1.39821 0.140525
\(100\) 0 0
\(101\) 1.07480 0.106947 0.0534735 0.998569i \(-0.482971\pi\)
0.0534735 + 0.998569i \(0.482971\pi\)
\(102\) 0 0
\(103\) −9.57201 −0.943158 −0.471579 0.881824i \(-0.656316\pi\)
−0.471579 + 0.881824i \(0.656316\pi\)
\(104\) 0 0
\(105\) 6.04502 0.589933
\(106\) 0 0
\(107\) 5.20359 0.503050 0.251525 0.967851i \(-0.419068\pi\)
0.251525 + 0.967851i \(0.419068\pi\)
\(108\) 0 0
\(109\) 16.5180 1.58214 0.791070 0.611726i \(-0.209524\pi\)
0.791070 + 0.611726i \(0.209524\pi\)
\(110\) 0 0
\(111\) −1.72161 −0.163408
\(112\) 0 0
\(113\) 1.05398 0.0991500 0.0495750 0.998770i \(-0.484213\pi\)
0.0495750 + 0.998770i \(0.484213\pi\)
\(114\) 0 0
\(115\) −36.1801 −3.37381
\(116\) 0 0
\(117\) −1.72161 −0.159163
\(118\) 0 0
\(119\) 0.841431 0.0771338
\(120\) 0 0
\(121\) −9.04502 −0.822274
\(122\) 0 0
\(123\) 6.64681 0.599323
\(124\) 0 0
\(125\) 37.5783 3.36110
\(126\) 0 0
\(127\) −14.2188 −1.26172 −0.630858 0.775898i \(-0.717297\pi\)
−0.630858 + 0.775898i \(0.717297\pi\)
\(128\) 0 0
\(129\) −10.0450 −0.884414
\(130\) 0 0
\(131\) −3.24860 −0.283832 −0.141916 0.989879i \(-0.545326\pi\)
−0.141916 + 0.989879i \(0.545326\pi\)
\(132\) 0 0
\(133\) −1.39821 −0.121240
\(134\) 0 0
\(135\) 4.32340 0.372099
\(136\) 0 0
\(137\) −7.39821 −0.632072 −0.316036 0.948747i \(-0.602352\pi\)
−0.316036 + 0.948747i \(0.602352\pi\)
\(138\) 0 0
\(139\) −4.75140 −0.403008 −0.201504 0.979488i \(-0.564583\pi\)
−0.201504 + 0.979488i \(0.564583\pi\)
\(140\) 0 0
\(141\) −9.76663 −0.822498
\(142\) 0 0
\(143\) −2.40717 −0.201298
\(144\) 0 0
\(145\) 20.7368 1.72210
\(146\) 0 0
\(147\) −5.04502 −0.416106
\(148\) 0 0
\(149\) 8.97021 0.734868 0.367434 0.930050i \(-0.380236\pi\)
0.367434 + 0.930050i \(0.380236\pi\)
\(150\) 0 0
\(151\) −8.27839 −0.673686 −0.336843 0.941561i \(-0.609359\pi\)
−0.336843 + 0.941561i \(0.609359\pi\)
\(152\) 0 0
\(153\) 0.601793 0.0486520
\(154\) 0 0
\(155\) 41.3836 3.32401
\(156\) 0 0
\(157\) 6.55678 0.523288 0.261644 0.965164i \(-0.415735\pi\)
0.261644 + 0.965164i \(0.415735\pi\)
\(158\) 0 0
\(159\) −7.29362 −0.578421
\(160\) 0 0
\(161\) −11.7008 −0.922151
\(162\) 0 0
\(163\) 1.29362 0.101324 0.0506620 0.998716i \(-0.483867\pi\)
0.0506620 + 0.998716i \(0.483867\pi\)
\(164\) 0 0
\(165\) 6.04502 0.470604
\(166\) 0 0
\(167\) 9.85039 0.762246 0.381123 0.924524i \(-0.375537\pi\)
0.381123 + 0.924524i \(0.375537\pi\)
\(168\) 0 0
\(169\) −10.0361 −0.772004
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 11.8504 0.900969 0.450484 0.892784i \(-0.351251\pi\)
0.450484 + 0.892784i \(0.351251\pi\)
\(174\) 0 0
\(175\) 19.1440 1.44715
\(176\) 0 0
\(177\) −12.0900 −0.908742
\(178\) 0 0
\(179\) 7.70079 0.575584 0.287792 0.957693i \(-0.407079\pi\)
0.287792 + 0.957693i \(0.407079\pi\)
\(180\) 0 0
\(181\) 14.1109 1.04885 0.524426 0.851456i \(-0.324280\pi\)
0.524426 + 0.851456i \(0.324280\pi\)
\(182\) 0 0
\(183\) 9.24860 0.683676
\(184\) 0 0
\(185\) −7.44322 −0.547237
\(186\) 0 0
\(187\) 0.841431 0.0615315
\(188\) 0 0
\(189\) 1.39821 0.101705
\(190\) 0 0
\(191\) 0.473011 0.0342258 0.0171129 0.999854i \(-0.494553\pi\)
0.0171129 + 0.999854i \(0.494553\pi\)
\(192\) 0 0
\(193\) 1.44322 0.103885 0.0519427 0.998650i \(-0.483459\pi\)
0.0519427 + 0.998650i \(0.483459\pi\)
\(194\) 0 0
\(195\) −7.44322 −0.533020
\(196\) 0 0
\(197\) −2.66763 −0.190061 −0.0950305 0.995474i \(-0.530295\pi\)
−0.0950305 + 0.995474i \(0.530295\pi\)
\(198\) 0 0
\(199\) −6.60179 −0.467989 −0.233994 0.972238i \(-0.575180\pi\)
−0.233994 + 0.972238i \(0.575180\pi\)
\(200\) 0 0
\(201\) 0.646809 0.0456224
\(202\) 0 0
\(203\) 6.70638 0.470696
\(204\) 0 0
\(205\) 28.7368 2.00707
\(206\) 0 0
\(207\) −8.36842 −0.581645
\(208\) 0 0
\(209\) −1.39821 −0.0967160
\(210\) 0 0
\(211\) −9.20359 −0.633601 −0.316800 0.948492i \(-0.602609\pi\)
−0.316800 + 0.948492i \(0.602609\pi\)
\(212\) 0 0
\(213\) 12.0900 0.828395
\(214\) 0 0
\(215\) −43.4287 −2.96181
\(216\) 0 0
\(217\) 13.3836 0.908541
\(218\) 0 0
\(219\) −12.6918 −0.857634
\(220\) 0 0
\(221\) −1.03605 −0.0696925
\(222\) 0 0
\(223\) 21.6620 1.45060 0.725299 0.688434i \(-0.241702\pi\)
0.725299 + 0.688434i \(0.241702\pi\)
\(224\) 0 0
\(225\) 13.6918 0.912788
\(226\) 0 0
\(227\) 2.70638 0.179629 0.0898145 0.995959i \(-0.471373\pi\)
0.0898145 + 0.995959i \(0.471373\pi\)
\(228\) 0 0
\(229\) 13.3386 0.881442 0.440721 0.897644i \(-0.354723\pi\)
0.440721 + 0.897644i \(0.354723\pi\)
\(230\) 0 0
\(231\) 1.95498 0.128629
\(232\) 0 0
\(233\) −12.0450 −0.789095 −0.394548 0.918875i \(-0.629099\pi\)
−0.394548 + 0.918875i \(0.629099\pi\)
\(234\) 0 0
\(235\) −42.2251 −2.75446
\(236\) 0 0
\(237\) 2.12878 0.138279
\(238\) 0 0
\(239\) 14.0242 0.907150 0.453575 0.891218i \(-0.350148\pi\)
0.453575 + 0.891218i \(0.350148\pi\)
\(240\) 0 0
\(241\) −14.3476 −0.924210 −0.462105 0.886825i \(-0.652906\pi\)
−0.462105 + 0.886825i \(0.652906\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −21.8116 −1.39349
\(246\) 0 0
\(247\) 1.72161 0.109544
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.6378 1.74449 0.872243 0.489073i \(-0.162665\pi\)
0.872243 + 0.489073i \(0.162665\pi\)
\(252\) 0 0
\(253\) −11.7008 −0.735622
\(254\) 0 0
\(255\) 2.60179 0.162931
\(256\) 0 0
\(257\) −24.4972 −1.52809 −0.764047 0.645161i \(-0.776790\pi\)
−0.764047 + 0.645161i \(0.776790\pi\)
\(258\) 0 0
\(259\) −2.40717 −0.149574
\(260\) 0 0
\(261\) 4.79641 0.296891
\(262\) 0 0
\(263\) 26.1142 1.61027 0.805136 0.593090i \(-0.202092\pi\)
0.805136 + 0.593090i \(0.202092\pi\)
\(264\) 0 0
\(265\) −31.5333 −1.93707
\(266\) 0 0
\(267\) 3.59283 0.219878
\(268\) 0 0
\(269\) 0.149606 0.00912166 0.00456083 0.999990i \(-0.498548\pi\)
0.00456083 + 0.999990i \(0.498548\pi\)
\(270\) 0 0
\(271\) −25.8504 −1.57030 −0.785150 0.619306i \(-0.787414\pi\)
−0.785150 + 0.619306i \(0.787414\pi\)
\(272\) 0 0
\(273\) −2.40717 −0.145689
\(274\) 0 0
\(275\) 19.1440 1.15443
\(276\) 0 0
\(277\) −29.4287 −1.76820 −0.884099 0.467300i \(-0.845227\pi\)
−0.884099 + 0.467300i \(0.845227\pi\)
\(278\) 0 0
\(279\) 9.57201 0.573061
\(280\) 0 0
\(281\) 20.0305 1.19492 0.597458 0.801900i \(-0.296177\pi\)
0.597458 + 0.801900i \(0.296177\pi\)
\(282\) 0 0
\(283\) −6.04502 −0.359339 −0.179669 0.983727i \(-0.557503\pi\)
−0.179669 + 0.983727i \(0.557503\pi\)
\(284\) 0 0
\(285\) −4.32340 −0.256096
\(286\) 0 0
\(287\) 9.29362 0.548585
\(288\) 0 0
\(289\) −16.6378 −0.978697
\(290\) 0 0
\(291\) −5.05398 −0.296269
\(292\) 0 0
\(293\) −26.6468 −1.55672 −0.778362 0.627816i \(-0.783949\pi\)
−0.778362 + 0.627816i \(0.783949\pi\)
\(294\) 0 0
\(295\) −52.2701 −3.04328
\(296\) 0 0
\(297\) 1.39821 0.0811322
\(298\) 0 0
\(299\) 14.4072 0.833188
\(300\) 0 0
\(301\) −14.0450 −0.809541
\(302\) 0 0
\(303\) 1.07480 0.0617458
\(304\) 0 0
\(305\) 39.9854 2.28956
\(306\) 0 0
\(307\) 33.9404 1.93708 0.968541 0.248853i \(-0.0800537\pi\)
0.968541 + 0.248853i \(0.0800537\pi\)
\(308\) 0 0
\(309\) −9.57201 −0.544532
\(310\) 0 0
\(311\) −6.06584 −0.343962 −0.171981 0.985100i \(-0.555017\pi\)
−0.171981 + 0.985100i \(0.555017\pi\)
\(312\) 0 0
\(313\) −1.26316 −0.0713980 −0.0356990 0.999363i \(-0.511366\pi\)
−0.0356990 + 0.999363i \(0.511366\pi\)
\(314\) 0 0
\(315\) 6.04502 0.340598
\(316\) 0 0
\(317\) 9.44322 0.530384 0.265192 0.964196i \(-0.414565\pi\)
0.265192 + 0.964196i \(0.414565\pi\)
\(318\) 0 0
\(319\) 6.70638 0.375485
\(320\) 0 0
\(321\) 5.20359 0.290436
\(322\) 0 0
\(323\) −0.601793 −0.0334846
\(324\) 0 0
\(325\) −23.5720 −1.30754
\(326\) 0 0
\(327\) 16.5180 0.913449
\(328\) 0 0
\(329\) −13.6558 −0.752867
\(330\) 0 0
\(331\) −19.0540 −1.04730 −0.523651 0.851933i \(-0.675430\pi\)
−0.523651 + 0.851933i \(0.675430\pi\)
\(332\) 0 0
\(333\) −1.72161 −0.0943437
\(334\) 0 0
\(335\) 2.79641 0.152784
\(336\) 0 0
\(337\) 22.0900 1.20332 0.601660 0.798752i \(-0.294506\pi\)
0.601660 + 0.798752i \(0.294506\pi\)
\(338\) 0 0
\(339\) 1.05398 0.0572443
\(340\) 0 0
\(341\) 13.3836 0.724765
\(342\) 0 0
\(343\) −16.8414 −0.909352
\(344\) 0 0
\(345\) −36.1801 −1.94787
\(346\) 0 0
\(347\) 30.7819 1.65246 0.826228 0.563335i \(-0.190482\pi\)
0.826228 + 0.563335i \(0.190482\pi\)
\(348\) 0 0
\(349\) −23.8775 −1.27813 −0.639066 0.769152i \(-0.720679\pi\)
−0.639066 + 0.769152i \(0.720679\pi\)
\(350\) 0 0
\(351\) −1.72161 −0.0918928
\(352\) 0 0
\(353\) −20.8864 −1.11167 −0.555837 0.831292i \(-0.687602\pi\)
−0.555837 + 0.831292i \(0.687602\pi\)
\(354\) 0 0
\(355\) 52.2701 2.77421
\(356\) 0 0
\(357\) 0.841431 0.0445332
\(358\) 0 0
\(359\) −14.4134 −0.760712 −0.380356 0.924840i \(-0.624199\pi\)
−0.380356 + 0.924840i \(0.624199\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −9.04502 −0.474740
\(364\) 0 0
\(365\) −54.8719 −2.87213
\(366\) 0 0
\(367\) −27.1440 −1.41691 −0.708453 0.705758i \(-0.750607\pi\)
−0.708453 + 0.705758i \(0.750607\pi\)
\(368\) 0 0
\(369\) 6.64681 0.346019
\(370\) 0 0
\(371\) −10.1980 −0.529453
\(372\) 0 0
\(373\) −8.42799 −0.436385 −0.218193 0.975906i \(-0.570016\pi\)
−0.218193 + 0.975906i \(0.570016\pi\)
\(374\) 0 0
\(375\) 37.5783 1.94053
\(376\) 0 0
\(377\) −8.25756 −0.425286
\(378\) 0 0
\(379\) −11.8325 −0.607793 −0.303897 0.952705i \(-0.598288\pi\)
−0.303897 + 0.952705i \(0.598288\pi\)
\(380\) 0 0
\(381\) −14.2188 −0.728452
\(382\) 0 0
\(383\) 31.2757 1.59811 0.799057 0.601256i \(-0.205333\pi\)
0.799057 + 0.601256i \(0.205333\pi\)
\(384\) 0 0
\(385\) 8.45219 0.430763
\(386\) 0 0
\(387\) −10.0450 −0.510617
\(388\) 0 0
\(389\) −20.9702 −1.06323 −0.531616 0.846985i \(-0.678415\pi\)
−0.531616 + 0.846985i \(0.678415\pi\)
\(390\) 0 0
\(391\) −5.03605 −0.254684
\(392\) 0 0
\(393\) −3.24860 −0.163870
\(394\) 0 0
\(395\) 9.20359 0.463083
\(396\) 0 0
\(397\) 10.1946 0.511653 0.255827 0.966723i \(-0.417652\pi\)
0.255827 + 0.966723i \(0.417652\pi\)
\(398\) 0 0
\(399\) −1.39821 −0.0699979
\(400\) 0 0
\(401\) 21.1440 1.05588 0.527941 0.849281i \(-0.322964\pi\)
0.527941 + 0.849281i \(0.322964\pi\)
\(402\) 0 0
\(403\) −16.4793 −0.820891
\(404\) 0 0
\(405\) 4.32340 0.214832
\(406\) 0 0
\(407\) −2.40717 −0.119319
\(408\) 0 0
\(409\) −9.74244 −0.481732 −0.240866 0.970558i \(-0.577432\pi\)
−0.240866 + 0.970558i \(0.577432\pi\)
\(410\) 0 0
\(411\) −7.39821 −0.364927
\(412\) 0 0
\(413\) −16.9044 −0.831810
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.75140 −0.232677
\(418\) 0 0
\(419\) −30.8448 −1.50687 −0.753433 0.657524i \(-0.771604\pi\)
−0.753433 + 0.657524i \(0.771604\pi\)
\(420\) 0 0
\(421\) −28.5180 −1.38988 −0.694942 0.719066i \(-0.744570\pi\)
−0.694942 + 0.719066i \(0.744570\pi\)
\(422\) 0 0
\(423\) −9.76663 −0.474870
\(424\) 0 0
\(425\) 8.23964 0.399681
\(426\) 0 0
\(427\) 12.9315 0.625797
\(428\) 0 0
\(429\) −2.40717 −0.116219
\(430\) 0 0
\(431\) −30.3297 −1.46093 −0.730464 0.682951i \(-0.760696\pi\)
−0.730464 + 0.682951i \(0.760696\pi\)
\(432\) 0 0
\(433\) −32.4197 −1.55799 −0.778996 0.627029i \(-0.784271\pi\)
−0.778996 + 0.627029i \(0.784271\pi\)
\(434\) 0 0
\(435\) 20.7368 0.994255
\(436\) 0 0
\(437\) 8.36842 0.400316
\(438\) 0 0
\(439\) 9.96125 0.475425 0.237712 0.971336i \(-0.423602\pi\)
0.237712 + 0.971336i \(0.423602\pi\)
\(440\) 0 0
\(441\) −5.04502 −0.240239
\(442\) 0 0
\(443\) 1.00896 0.0479373 0.0239686 0.999713i \(-0.492370\pi\)
0.0239686 + 0.999713i \(0.492370\pi\)
\(444\) 0 0
\(445\) 15.5333 0.736347
\(446\) 0 0
\(447\) 8.97021 0.424277
\(448\) 0 0
\(449\) −27.0844 −1.27819 −0.639097 0.769126i \(-0.720692\pi\)
−0.639097 + 0.769126i \(0.720692\pi\)
\(450\) 0 0
\(451\) 9.29362 0.437619
\(452\) 0 0
\(453\) −8.27839 −0.388953
\(454\) 0 0
\(455\) −10.4072 −0.487896
\(456\) 0 0
\(457\) −18.1530 −0.849160 −0.424580 0.905390i \(-0.639578\pi\)
−0.424580 + 0.905390i \(0.639578\pi\)
\(458\) 0 0
\(459\) 0.601793 0.0280893
\(460\) 0 0
\(461\) 31.8567 1.48371 0.741856 0.670559i \(-0.233946\pi\)
0.741856 + 0.670559i \(0.233946\pi\)
\(462\) 0 0
\(463\) 32.6739 1.51848 0.759242 0.650808i \(-0.225570\pi\)
0.759242 + 0.650808i \(0.225570\pi\)
\(464\) 0 0
\(465\) 41.3836 1.91912
\(466\) 0 0
\(467\) −24.8414 −1.14952 −0.574762 0.818321i \(-0.694905\pi\)
−0.574762 + 0.818321i \(0.694905\pi\)
\(468\) 0 0
\(469\) 0.904373 0.0417600
\(470\) 0 0
\(471\) 6.55678 0.302120
\(472\) 0 0
\(473\) −14.0450 −0.645791
\(474\) 0 0
\(475\) −13.6918 −0.628224
\(476\) 0 0
\(477\) −7.29362 −0.333952
\(478\) 0 0
\(479\) 41.1053 1.87815 0.939074 0.343716i \(-0.111686\pi\)
0.939074 + 0.343716i \(0.111686\pi\)
\(480\) 0 0
\(481\) 2.96395 0.135144
\(482\) 0 0
\(483\) −11.7008 −0.532404
\(484\) 0 0
\(485\) −21.8504 −0.992175
\(486\) 0 0
\(487\) 18.3088 0.829653 0.414827 0.909901i \(-0.363842\pi\)
0.414827 + 0.909901i \(0.363842\pi\)
\(488\) 0 0
\(489\) 1.29362 0.0584994
\(490\) 0 0
\(491\) −17.2936 −0.780450 −0.390225 0.920720i \(-0.627603\pi\)
−0.390225 + 0.920720i \(0.627603\pi\)
\(492\) 0 0
\(493\) 2.88645 0.129999
\(494\) 0 0
\(495\) 6.04502 0.271703
\(496\) 0 0
\(497\) 16.9044 0.758265
\(498\) 0 0
\(499\) 5.74580 0.257217 0.128609 0.991695i \(-0.458949\pi\)
0.128609 + 0.991695i \(0.458949\pi\)
\(500\) 0 0
\(501\) 9.85039 0.440083
\(502\) 0 0
\(503\) −19.3324 −0.861988 −0.430994 0.902355i \(-0.641837\pi\)
−0.430994 + 0.902355i \(0.641837\pi\)
\(504\) 0 0
\(505\) 4.64681 0.206780
\(506\) 0 0
\(507\) −10.0361 −0.445717
\(508\) 0 0
\(509\) −0.239638 −0.0106218 −0.00531089 0.999986i \(-0.501691\pi\)
−0.00531089 + 0.999986i \(0.501691\pi\)
\(510\) 0 0
\(511\) −17.7458 −0.785028
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) −41.3836 −1.82358
\(516\) 0 0
\(517\) −13.6558 −0.600580
\(518\) 0 0
\(519\) 11.8504 0.520175
\(520\) 0 0
\(521\) −16.8864 −0.739809 −0.369904 0.929070i \(-0.620610\pi\)
−0.369904 + 0.929070i \(0.620610\pi\)
\(522\) 0 0
\(523\) −27.8325 −1.21703 −0.608514 0.793543i \(-0.708234\pi\)
−0.608514 + 0.793543i \(0.708234\pi\)
\(524\) 0 0
\(525\) 19.1440 0.835513
\(526\) 0 0
\(527\) 5.76036 0.250925
\(528\) 0 0
\(529\) 47.0305 2.04480
\(530\) 0 0
\(531\) −12.0900 −0.524663
\(532\) 0 0
\(533\) −11.4432 −0.495661
\(534\) 0 0
\(535\) 22.4972 0.972639
\(536\) 0 0
\(537\) 7.70079 0.332314
\(538\) 0 0
\(539\) −7.05398 −0.303836
\(540\) 0 0
\(541\) 5.50617 0.236729 0.118364 0.992970i \(-0.462235\pi\)
0.118364 + 0.992970i \(0.462235\pi\)
\(542\) 0 0
\(543\) 14.1109 0.605555
\(544\) 0 0
\(545\) 71.4141 3.05904
\(546\) 0 0
\(547\) 3.26316 0.139523 0.0697613 0.997564i \(-0.477776\pi\)
0.0697613 + 0.997564i \(0.477776\pi\)
\(548\) 0 0
\(549\) 9.24860 0.394721
\(550\) 0 0
\(551\) −4.79641 −0.204334
\(552\) 0 0
\(553\) 2.97648 0.126573
\(554\) 0 0
\(555\) −7.44322 −0.315947
\(556\) 0 0
\(557\) 35.5574 1.50662 0.753309 0.657667i \(-0.228457\pi\)
0.753309 + 0.657667i \(0.228457\pi\)
\(558\) 0 0
\(559\) 17.2936 0.731442
\(560\) 0 0
\(561\) 0.841431 0.0355252
\(562\) 0 0
\(563\) 2.58723 0.109039 0.0545195 0.998513i \(-0.482637\pi\)
0.0545195 + 0.998513i \(0.482637\pi\)
\(564\) 0 0
\(565\) 4.55678 0.191705
\(566\) 0 0
\(567\) 1.39821 0.0587192
\(568\) 0 0
\(569\) 23.6829 0.992837 0.496419 0.868083i \(-0.334648\pi\)
0.496419 + 0.868083i \(0.334648\pi\)
\(570\) 0 0
\(571\) 23.8809 0.999383 0.499691 0.866204i \(-0.333447\pi\)
0.499691 + 0.866204i \(0.333447\pi\)
\(572\) 0 0
\(573\) 0.473011 0.0197603
\(574\) 0 0
\(575\) −114.579 −4.77827
\(576\) 0 0
\(577\) −6.45219 −0.268608 −0.134304 0.990940i \(-0.542880\pi\)
−0.134304 + 0.990940i \(0.542880\pi\)
\(578\) 0 0
\(579\) 1.44322 0.0599783
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −10.1980 −0.422358
\(584\) 0 0
\(585\) −7.44322 −0.307739
\(586\) 0 0
\(587\) 34.3026 1.41582 0.707909 0.706303i \(-0.249638\pi\)
0.707909 + 0.706303i \(0.249638\pi\)
\(588\) 0 0
\(589\) −9.57201 −0.394408
\(590\) 0 0
\(591\) −2.66763 −0.109732
\(592\) 0 0
\(593\) 6.47928 0.266072 0.133036 0.991111i \(-0.457527\pi\)
0.133036 + 0.991111i \(0.457527\pi\)
\(594\) 0 0
\(595\) 3.63785 0.149137
\(596\) 0 0
\(597\) −6.60179 −0.270193
\(598\) 0 0
\(599\) −7.65240 −0.312669 −0.156334 0.987704i \(-0.549968\pi\)
−0.156334 + 0.987704i \(0.549968\pi\)
\(600\) 0 0
\(601\) −16.5872 −0.676607 −0.338304 0.941037i \(-0.609853\pi\)
−0.338304 + 0.941037i \(0.609853\pi\)
\(602\) 0 0
\(603\) 0.646809 0.0263401
\(604\) 0 0
\(605\) −39.1053 −1.58985
\(606\) 0 0
\(607\) 20.3268 0.825038 0.412519 0.910949i \(-0.364649\pi\)
0.412519 + 0.910949i \(0.364649\pi\)
\(608\) 0 0
\(609\) 6.70638 0.271756
\(610\) 0 0
\(611\) 16.8143 0.680235
\(612\) 0 0
\(613\) 13.8954 0.561230 0.280615 0.959820i \(-0.409462\pi\)
0.280615 + 0.959820i \(0.409462\pi\)
\(614\) 0 0
\(615\) 28.7368 1.15878
\(616\) 0 0
\(617\) −47.0215 −1.89301 −0.946507 0.322683i \(-0.895415\pi\)
−0.946507 + 0.322683i \(0.895415\pi\)
\(618\) 0 0
\(619\) −1.41277 −0.0567839 −0.0283919 0.999597i \(-0.509039\pi\)
−0.0283919 + 0.999597i \(0.509039\pi\)
\(620\) 0 0
\(621\) −8.36842 −0.335813
\(622\) 0 0
\(623\) 5.02352 0.201263
\(624\) 0 0
\(625\) 94.0069 3.76028
\(626\) 0 0
\(627\) −1.39821 −0.0558390
\(628\) 0 0
\(629\) −1.03605 −0.0413101
\(630\) 0 0
\(631\) −22.2251 −0.884766 −0.442383 0.896826i \(-0.645867\pi\)
−0.442383 + 0.896826i \(0.645867\pi\)
\(632\) 0 0
\(633\) −9.20359 −0.365810
\(634\) 0 0
\(635\) −61.4737 −2.43951
\(636\) 0 0
\(637\) 8.68556 0.344134
\(638\) 0 0
\(639\) 12.0900 0.478274
\(640\) 0 0
\(641\) 0.616351 0.0243444 0.0121722 0.999926i \(-0.496125\pi\)
0.0121722 + 0.999926i \(0.496125\pi\)
\(642\) 0 0
\(643\) 3.24860 0.128112 0.0640562 0.997946i \(-0.479596\pi\)
0.0640562 + 0.997946i \(0.479596\pi\)
\(644\) 0 0
\(645\) −43.4287 −1.71000
\(646\) 0 0
\(647\) −15.5270 −0.610429 −0.305214 0.952284i \(-0.598728\pi\)
−0.305214 + 0.952284i \(0.598728\pi\)
\(648\) 0 0
\(649\) −16.9044 −0.663555
\(650\) 0 0
\(651\) 13.3836 0.524547
\(652\) 0 0
\(653\) 30.7431 1.20307 0.601535 0.798846i \(-0.294556\pi\)
0.601535 + 0.798846i \(0.294556\pi\)
\(654\) 0 0
\(655\) −14.0450 −0.548784
\(656\) 0 0
\(657\) −12.6918 −0.495155
\(658\) 0 0
\(659\) 40.0900 1.56169 0.780843 0.624727i \(-0.214790\pi\)
0.780843 + 0.624727i \(0.214790\pi\)
\(660\) 0 0
\(661\) 19.8712 0.772901 0.386450 0.922310i \(-0.373701\pi\)
0.386450 + 0.922310i \(0.373701\pi\)
\(662\) 0 0
\(663\) −1.03605 −0.0402370
\(664\) 0 0
\(665\) −6.04502 −0.234416
\(666\) 0 0
\(667\) −40.1384 −1.55417
\(668\) 0 0
\(669\) 21.6620 0.837503
\(670\) 0 0
\(671\) 12.9315 0.499214
\(672\) 0 0
\(673\) −35.7312 −1.37734 −0.688669 0.725076i \(-0.741805\pi\)
−0.688669 + 0.725076i \(0.741805\pi\)
\(674\) 0 0
\(675\) 13.6918 0.526999
\(676\) 0 0
\(677\) 40.6773 1.56335 0.781677 0.623683i \(-0.214364\pi\)
0.781677 + 0.623683i \(0.214364\pi\)
\(678\) 0 0
\(679\) −7.06651 −0.271188
\(680\) 0 0
\(681\) 2.70638 0.103709
\(682\) 0 0
\(683\) 43.0665 1.64789 0.823947 0.566667i \(-0.191767\pi\)
0.823947 + 0.566667i \(0.191767\pi\)
\(684\) 0 0
\(685\) −31.9854 −1.22210
\(686\) 0 0
\(687\) 13.3386 0.508901
\(688\) 0 0
\(689\) 12.5568 0.478375
\(690\) 0 0
\(691\) 23.8179 0.906076 0.453038 0.891491i \(-0.350340\pi\)
0.453038 + 0.891491i \(0.350340\pi\)
\(692\) 0 0
\(693\) 1.95498 0.0742637
\(694\) 0 0
\(695\) −20.5422 −0.779211
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) −12.0450 −0.455584
\(700\) 0 0
\(701\) −25.5124 −0.963591 −0.481796 0.876284i \(-0.660015\pi\)
−0.481796 + 0.876284i \(0.660015\pi\)
\(702\) 0 0
\(703\) 1.72161 0.0649318
\(704\) 0 0
\(705\) −42.2251 −1.59029
\(706\) 0 0
\(707\) 1.50280 0.0565185
\(708\) 0 0
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) 2.12878 0.0798356
\(712\) 0 0
\(713\) −80.1026 −2.99986
\(714\) 0 0
\(715\) −10.4072 −0.389206
\(716\) 0 0
\(717\) 14.0242 0.523743
\(718\) 0 0
\(719\) −16.0838 −0.599823 −0.299912 0.953967i \(-0.596957\pi\)
−0.299912 + 0.953967i \(0.596957\pi\)
\(720\) 0 0
\(721\) −13.3836 −0.498433
\(722\) 0 0
\(723\) −14.3476 −0.533593
\(724\) 0 0
\(725\) 65.6717 2.43898
\(726\) 0 0
\(727\) −42.1350 −1.56270 −0.781351 0.624092i \(-0.785469\pi\)
−0.781351 + 0.624092i \(0.785469\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −6.04502 −0.223583
\(732\) 0 0
\(733\) 13.4432 0.496537 0.248268 0.968691i \(-0.420139\pi\)
0.248268 + 0.968691i \(0.420139\pi\)
\(734\) 0 0
\(735\) −21.8116 −0.804535
\(736\) 0 0
\(737\) 0.904373 0.0333130
\(738\) 0 0
\(739\) 6.25420 0.230064 0.115032 0.993362i \(-0.463303\pi\)
0.115032 + 0.993362i \(0.463303\pi\)
\(740\) 0 0
\(741\) 1.72161 0.0632450
\(742\) 0 0
\(743\) 28.8269 1.05756 0.528778 0.848760i \(-0.322651\pi\)
0.528778 + 0.848760i \(0.322651\pi\)
\(744\) 0 0
\(745\) 38.7819 1.42086
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.27569 0.265848
\(750\) 0 0
\(751\) 39.6925 1.44840 0.724200 0.689590i \(-0.242209\pi\)
0.724200 + 0.689590i \(0.242209\pi\)
\(752\) 0 0
\(753\) 27.6378 1.00718
\(754\) 0 0
\(755\) −35.7908 −1.30256
\(756\) 0 0
\(757\) 29.1711 1.06024 0.530121 0.847922i \(-0.322147\pi\)
0.530121 + 0.847922i \(0.322147\pi\)
\(758\) 0 0
\(759\) −11.7008 −0.424712
\(760\) 0 0
\(761\) −16.8719 −0.611605 −0.305803 0.952095i \(-0.598925\pi\)
−0.305803 + 0.952095i \(0.598925\pi\)
\(762\) 0 0
\(763\) 23.0956 0.836118
\(764\) 0 0
\(765\) 2.60179 0.0940680
\(766\) 0 0
\(767\) 20.8143 0.751562
\(768\) 0 0
\(769\) −4.30258 −0.155155 −0.0775775 0.996986i \(-0.524719\pi\)
−0.0775775 + 0.996986i \(0.524719\pi\)
\(770\) 0 0
\(771\) −24.4972 −0.882245
\(772\) 0 0
\(773\) −45.6233 −1.64096 −0.820478 0.571678i \(-0.806293\pi\)
−0.820478 + 0.571678i \(0.806293\pi\)
\(774\) 0 0
\(775\) 131.058 4.70775
\(776\) 0 0
\(777\) −2.40717 −0.0863568
\(778\) 0 0
\(779\) −6.64681 −0.238147
\(780\) 0 0
\(781\) 16.9044 0.604886
\(782\) 0 0
\(783\) 4.79641 0.171410
\(784\) 0 0
\(785\) 28.3476 1.01177
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 0 0
\(789\) 26.1142 0.929691
\(790\) 0 0
\(791\) 1.47368 0.0523981
\(792\) 0 0
\(793\) −15.9225 −0.565425
\(794\) 0 0
\(795\) −31.5333 −1.11837
\(796\) 0 0
\(797\) −42.6177 −1.50960 −0.754798 0.655957i \(-0.772265\pi\)
−0.754798 + 0.655957i \(0.772265\pi\)
\(798\) 0 0
\(799\) −5.87748 −0.207930
\(800\) 0 0
\(801\) 3.59283 0.126946
\(802\) 0 0
\(803\) −17.7458 −0.626236
\(804\) 0 0
\(805\) −50.5872 −1.78297
\(806\) 0 0
\(807\) 0.149606 0.00526639
\(808\) 0 0
\(809\) 50.9798 1.79236 0.896178 0.443695i \(-0.146333\pi\)
0.896178 + 0.443695i \(0.146333\pi\)
\(810\) 0 0
\(811\) 20.5568 0.721846 0.360923 0.932596i \(-0.382462\pi\)
0.360923 + 0.932596i \(0.382462\pi\)
\(812\) 0 0
\(813\) −25.8504 −0.906613
\(814\) 0 0
\(815\) 5.59283 0.195908
\(816\) 0 0
\(817\) 10.0450 0.351431
\(818\) 0 0
\(819\) −2.40717 −0.0841133
\(820\) 0 0
\(821\) −4.58097 −0.159877 −0.0799384 0.996800i \(-0.525472\pi\)
−0.0799384 + 0.996800i \(0.525472\pi\)
\(822\) 0 0
\(823\) −32.8123 −1.14377 −0.571883 0.820335i \(-0.693787\pi\)
−0.571883 + 0.820335i \(0.693787\pi\)
\(824\) 0 0
\(825\) 19.1440 0.666509
\(826\) 0 0
\(827\) 20.3892 0.709004 0.354502 0.935055i \(-0.384650\pi\)
0.354502 + 0.935055i \(0.384650\pi\)
\(828\) 0 0
\(829\) −15.2728 −0.530446 −0.265223 0.964187i \(-0.585446\pi\)
−0.265223 + 0.964187i \(0.585446\pi\)
\(830\) 0 0
\(831\) −29.4287 −1.02087
\(832\) 0 0
\(833\) −3.03605 −0.105193
\(834\) 0 0
\(835\) 42.5872 1.47379
\(836\) 0 0
\(837\) 9.57201 0.330857
\(838\) 0 0
\(839\) −24.5277 −0.846789 −0.423394 0.905945i \(-0.639162\pi\)
−0.423394 + 0.905945i \(0.639162\pi\)
\(840\) 0 0
\(841\) −5.99440 −0.206704
\(842\) 0 0
\(843\) 20.0305 0.689886
\(844\) 0 0
\(845\) −43.3899 −1.49266
\(846\) 0 0
\(847\) −12.6468 −0.434549
\(848\) 0 0
\(849\) −6.04502 −0.207464
\(850\) 0 0
\(851\) 14.4072 0.493871
\(852\) 0 0
\(853\) 41.3657 1.41634 0.708168 0.706044i \(-0.249522\pi\)
0.708168 + 0.706044i \(0.249522\pi\)
\(854\) 0 0
\(855\) −4.32340 −0.147857
\(856\) 0 0
\(857\) −5.70079 −0.194735 −0.0973676 0.995248i \(-0.531042\pi\)
−0.0973676 + 0.995248i \(0.531042\pi\)
\(858\) 0 0
\(859\) −8.93146 −0.304738 −0.152369 0.988324i \(-0.548690\pi\)
−0.152369 + 0.988324i \(0.548690\pi\)
\(860\) 0 0
\(861\) 9.29362 0.316726
\(862\) 0 0
\(863\) −5.03605 −0.171429 −0.0857146 0.996320i \(-0.527317\pi\)
−0.0857146 + 0.996320i \(0.527317\pi\)
\(864\) 0 0
\(865\) 51.2340 1.74201
\(866\) 0 0
\(867\) −16.6378 −0.565051
\(868\) 0 0
\(869\) 2.97648 0.100970
\(870\) 0 0
\(871\) −1.11355 −0.0377313
\(872\) 0 0
\(873\) −5.05398 −0.171051
\(874\) 0 0
\(875\) 52.5422 1.77625
\(876\) 0 0
\(877\) −19.9196 −0.672637 −0.336319 0.941748i \(-0.609182\pi\)
−0.336319 + 0.941748i \(0.609182\pi\)
\(878\) 0 0
\(879\) −26.6468 −0.898775
\(880\) 0 0
\(881\) 21.4578 0.722931 0.361466 0.932385i \(-0.382277\pi\)
0.361466 + 0.932385i \(0.382277\pi\)
\(882\) 0 0
\(883\) −7.63785 −0.257034 −0.128517 0.991707i \(-0.541022\pi\)
−0.128517 + 0.991707i \(0.541022\pi\)
\(884\) 0 0
\(885\) −52.2701 −1.75704
\(886\) 0 0
\(887\) 20.8269 0.699298 0.349649 0.936881i \(-0.386301\pi\)
0.349649 + 0.936881i \(0.386301\pi\)
\(888\) 0 0
\(889\) −19.8809 −0.666782
\(890\) 0 0
\(891\) 1.39821 0.0468417
\(892\) 0 0
\(893\) 9.76663 0.326828
\(894\) 0 0
\(895\) 33.2936 1.11288
\(896\) 0 0
\(897\) 14.4072 0.481041
\(898\) 0 0
\(899\) 45.9113 1.53123
\(900\) 0 0
\(901\) −4.38924 −0.146227
\(902\) 0 0
\(903\) −14.0450 −0.467389
\(904\) 0 0
\(905\) 61.0069 2.02794
\(906\) 0 0
\(907\) 2.53885 0.0843012 0.0421506 0.999111i \(-0.486579\pi\)
0.0421506 + 0.999111i \(0.486579\pi\)
\(908\) 0 0
\(909\) 1.07480 0.0356490
\(910\) 0 0
\(911\) −4.64681 −0.153956 −0.0769778 0.997033i \(-0.524527\pi\)
−0.0769778 + 0.997033i \(0.524527\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 39.9854 1.32188
\(916\) 0 0
\(917\) −4.54222 −0.149997
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) 33.9404 1.11838
\(922\) 0 0
\(923\) −20.8143 −0.685112
\(924\) 0 0
\(925\) −23.5720 −0.775043
\(926\) 0 0
\(927\) −9.57201 −0.314386
\(928\) 0 0
\(929\) −47.4320 −1.55619 −0.778097 0.628144i \(-0.783815\pi\)
−0.778097 + 0.628144i \(0.783815\pi\)
\(930\) 0 0
\(931\) 5.04502 0.165344
\(932\) 0 0
\(933\) −6.06584 −0.198587
\(934\) 0 0
\(935\) 3.63785 0.118970
\(936\) 0 0
\(937\) 26.1946 0.855741 0.427871 0.903840i \(-0.359264\pi\)
0.427871 + 0.903840i \(0.359264\pi\)
\(938\) 0 0
\(939\) −1.26316 −0.0412217
\(940\) 0 0
\(941\) −11.0361 −0.359765 −0.179883 0.983688i \(-0.557572\pi\)
−0.179883 + 0.983688i \(0.557572\pi\)
\(942\) 0 0
\(943\) −55.6233 −1.81134
\(944\) 0 0
\(945\) 6.04502 0.196644
\(946\) 0 0
\(947\) 2.40717 0.0782225 0.0391113 0.999235i \(-0.487547\pi\)
0.0391113 + 0.999235i \(0.487547\pi\)
\(948\) 0 0
\(949\) 21.8504 0.709294
\(950\) 0 0
\(951\) 9.44322 0.306217
\(952\) 0 0
\(953\) 42.9169 1.39021 0.695107 0.718906i \(-0.255357\pi\)
0.695107 + 0.718906i \(0.255357\pi\)
\(954\) 0 0
\(955\) 2.04502 0.0661752
\(956\) 0 0
\(957\) 6.70638 0.216787
\(958\) 0 0
\(959\) −10.3442 −0.334033
\(960\) 0 0
\(961\) 60.6233 1.95559
\(962\) 0 0
\(963\) 5.20359 0.167683
\(964\) 0 0
\(965\) 6.23964 0.200861
\(966\) 0 0
\(967\) 56.7368 1.82453 0.912267 0.409596i \(-0.134330\pi\)
0.912267 + 0.409596i \(0.134330\pi\)
\(968\) 0 0
\(969\) −0.601793 −0.0193324
\(970\) 0 0
\(971\) −11.4849 −0.368567 −0.184284 0.982873i \(-0.558996\pi\)
−0.184284 + 0.982873i \(0.558996\pi\)
\(972\) 0 0
\(973\) −6.64344 −0.212979
\(974\) 0 0
\(975\) −23.5720 −0.754908
\(976\) 0 0
\(977\) 24.1496 0.772614 0.386307 0.922370i \(-0.373750\pi\)
0.386307 + 0.922370i \(0.373750\pi\)
\(978\) 0 0
\(979\) 5.02352 0.160552
\(980\) 0 0
\(981\) 16.5180 0.527380
\(982\) 0 0
\(983\) 43.8809 1.39958 0.699791 0.714348i \(-0.253276\pi\)
0.699791 + 0.714348i \(0.253276\pi\)
\(984\) 0 0
\(985\) −11.5333 −0.367480
\(986\) 0 0
\(987\) −13.6558 −0.434668
\(988\) 0 0
\(989\) 84.0609 2.67298
\(990\) 0 0
\(991\) −40.2909 −1.27988 −0.639942 0.768424i \(-0.721041\pi\)
−0.639942 + 0.768424i \(0.721041\pi\)
\(992\) 0 0
\(993\) −19.0540 −0.604660
\(994\) 0 0
\(995\) −28.5422 −0.904849
\(996\) 0 0
\(997\) 44.9619 1.42396 0.711979 0.702201i \(-0.247799\pi\)
0.711979 + 0.702201i \(0.247799\pi\)
\(998\) 0 0
\(999\) −1.72161 −0.0544694
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.a.v.1.3 yes 3
3.2 odd 2 5472.2.a.bn.1.1 3
4.3 odd 2 1824.2.a.t.1.3 3
8.3 odd 2 3648.2.a.by.1.1 3
8.5 even 2 3648.2.a.bw.1.1 3
12.11 even 2 5472.2.a.bm.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.a.t.1.3 3 4.3 odd 2
1824.2.a.v.1.3 yes 3 1.1 even 1 trivial
3648.2.a.bw.1.1 3 8.5 even 2
3648.2.a.by.1.1 3 8.3 odd 2
5472.2.a.bm.1.1 3 12.11 even 2
5472.2.a.bn.1.1 3 3.2 odd 2