Properties

Label 182.8.a.b.1.3
Level $182$
Weight $8$
Character 182.1
Self dual yes
Analytic conductor $56.854$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,8,Mod(1,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 182.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,-29,256,315] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.8540746381\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4737x^{2} + 19603x + 4029734 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-30.0795\) of defining polynomial
Character \(\chi\) \(=\) 182.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +23.0795 q^{3} +64.0000 q^{4} +183.620 q^{5} +184.636 q^{6} -343.000 q^{7} +512.000 q^{8} -1654.34 q^{9} +1468.96 q^{10} -4070.34 q^{11} +1477.09 q^{12} -2197.00 q^{13} -2744.00 q^{14} +4237.86 q^{15} +4096.00 q^{16} -17340.4 q^{17} -13234.7 q^{18} -24058.7 q^{19} +11751.7 q^{20} -7916.26 q^{21} -32562.7 q^{22} -52264.6 q^{23} +11816.7 q^{24} -44408.6 q^{25} -17576.0 q^{26} -88656.1 q^{27} -21952.0 q^{28} +68165.8 q^{29} +33902.9 q^{30} +62020.9 q^{31} +32768.0 q^{32} -93941.3 q^{33} -138723. q^{34} -62981.7 q^{35} -105878. q^{36} -68534.9 q^{37} -192469. q^{38} -50705.6 q^{39} +94013.6 q^{40} +227262. q^{41} -63330.1 q^{42} +660998. q^{43} -260502. q^{44} -303770. q^{45} -418117. q^{46} -653712. q^{47} +94533.5 q^{48} +117649. q^{49} -355269. q^{50} -400208. q^{51} -140608. q^{52} +581219. q^{53} -709249. q^{54} -747397. q^{55} -175616. q^{56} -555262. q^{57} +545326. q^{58} +1.59440e6 q^{59} +271223. q^{60} -1.67570e6 q^{61} +496167. q^{62} +567438. q^{63} +262144. q^{64} -403414. q^{65} -751531. q^{66} -4.07217e6 q^{67} -1.10979e6 q^{68} -1.20624e6 q^{69} -503854. q^{70} +1.01076e6 q^{71} -847021. q^{72} -2.75028e6 q^{73} -548279. q^{74} -1.02493e6 q^{75} -1.53976e6 q^{76} +1.39613e6 q^{77} -405645. q^{78} +4.25906e6 q^{79} +752109. q^{80} +1.57190e6 q^{81} +1.81810e6 q^{82} -7.80046e6 q^{83} -506641. q^{84} -3.18405e6 q^{85} +5.28798e6 q^{86} +1.57323e6 q^{87} -2.08401e6 q^{88} -1.51987e6 q^{89} -2.43016e6 q^{90} +753571. q^{91} -3.34494e6 q^{92} +1.43141e6 q^{93} -5.22970e6 q^{94} -4.41766e6 q^{95} +756268. q^{96} +1.40671e7 q^{97} +941192. q^{98} +6.73372e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} - 29 q^{3} + 256 q^{4} + 315 q^{5} - 232 q^{6} - 1372 q^{7} + 2048 q^{8} + 937 q^{9} + 2520 q^{10} - 2799 q^{11} - 1856 q^{12} - 8788 q^{13} - 10976 q^{14} - 38960 q^{15} + 16384 q^{16} - 47156 q^{17}+ \cdots - 4859772 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 23.0795 0.493516 0.246758 0.969077i \(-0.420635\pi\)
0.246758 + 0.969077i \(0.420635\pi\)
\(4\) 64.0000 0.500000
\(5\) 183.620 0.656940 0.328470 0.944514i \(-0.393467\pi\)
0.328470 + 0.944514i \(0.393467\pi\)
\(6\) 184.636 0.348969
\(7\) −343.000 −0.377964
\(8\) 512.000 0.353553
\(9\) −1654.34 −0.756442
\(10\) 1468.96 0.464527
\(11\) −4070.34 −0.922054 −0.461027 0.887386i \(-0.652519\pi\)
−0.461027 + 0.887386i \(0.652519\pi\)
\(12\) 1477.09 0.246758
\(13\) −2197.00 −0.277350
\(14\) −2744.00 −0.267261
\(15\) 4237.86 0.324211
\(16\) 4096.00 0.250000
\(17\) −17340.4 −0.856028 −0.428014 0.903772i \(-0.640787\pi\)
−0.428014 + 0.903772i \(0.640787\pi\)
\(18\) −13234.7 −0.534885
\(19\) −24058.7 −0.804701 −0.402350 0.915486i \(-0.631807\pi\)
−0.402350 + 0.915486i \(0.631807\pi\)
\(20\) 11751.7 0.328470
\(21\) −7916.26 −0.186532
\(22\) −32562.7 −0.651991
\(23\) −52264.6 −0.895695 −0.447848 0.894110i \(-0.647809\pi\)
−0.447848 + 0.894110i \(0.647809\pi\)
\(24\) 11816.7 0.174484
\(25\) −44408.6 −0.568430
\(26\) −17576.0 −0.196116
\(27\) −88656.1 −0.866833
\(28\) −21952.0 −0.188982
\(29\) 68165.8 0.519007 0.259504 0.965742i \(-0.416441\pi\)
0.259504 + 0.965742i \(0.416441\pi\)
\(30\) 33902.9 0.229251
\(31\) 62020.9 0.373915 0.186957 0.982368i \(-0.440137\pi\)
0.186957 + 0.982368i \(0.440137\pi\)
\(32\) 32768.0 0.176777
\(33\) −93941.3 −0.455049
\(34\) −138723. −0.605303
\(35\) −62981.7 −0.248300
\(36\) −105878. −0.378221
\(37\) −68534.9 −0.222436 −0.111218 0.993796i \(-0.535475\pi\)
−0.111218 + 0.993796i \(0.535475\pi\)
\(38\) −192469. −0.569009
\(39\) −50705.6 −0.136877
\(40\) 94013.6 0.232263
\(41\) 227262. 0.514971 0.257486 0.966282i \(-0.417106\pi\)
0.257486 + 0.966282i \(0.417106\pi\)
\(42\) −63330.1 −0.131898
\(43\) 660998. 1.26783 0.633914 0.773404i \(-0.281447\pi\)
0.633914 + 0.773404i \(0.281447\pi\)
\(44\) −260502. −0.461027
\(45\) −303770. −0.496937
\(46\) −418117. −0.633352
\(47\) −653712. −0.918426 −0.459213 0.888326i \(-0.651868\pi\)
−0.459213 + 0.888326i \(0.651868\pi\)
\(48\) 94533.5 0.123379
\(49\) 117649. 0.142857
\(50\) −355269. −0.401941
\(51\) −400208. −0.422464
\(52\) −140608. −0.138675
\(53\) 581219. 0.536259 0.268130 0.963383i \(-0.413594\pi\)
0.268130 + 0.963383i \(0.413594\pi\)
\(54\) −709249. −0.612943
\(55\) −747397. −0.605734
\(56\) −175616. −0.133631
\(57\) −555262. −0.397133
\(58\) 545326. 0.366994
\(59\) 1.59440e6 1.01068 0.505342 0.862919i \(-0.331366\pi\)
0.505342 + 0.862919i \(0.331366\pi\)
\(60\) 271223. 0.162105
\(61\) −1.67570e6 −0.945239 −0.472620 0.881267i \(-0.656692\pi\)
−0.472620 + 0.881267i \(0.656692\pi\)
\(62\) 496167. 0.264398
\(63\) 567438. 0.285908
\(64\) 262144. 0.125000
\(65\) −403414. −0.182202
\(66\) −751531. −0.321768
\(67\) −4.07217e6 −1.65411 −0.827055 0.562121i \(-0.809985\pi\)
−0.827055 + 0.562121i \(0.809985\pi\)
\(68\) −1.10979e6 −0.428014
\(69\) −1.20624e6 −0.442040
\(70\) −503854. −0.175575
\(71\) 1.01076e6 0.335153 0.167576 0.985859i \(-0.446406\pi\)
0.167576 + 0.985859i \(0.446406\pi\)
\(72\) −847021. −0.267442
\(73\) −2.75028e6 −0.827460 −0.413730 0.910400i \(-0.635774\pi\)
−0.413730 + 0.910400i \(0.635774\pi\)
\(74\) −548279. −0.157286
\(75\) −1.02493e6 −0.280530
\(76\) −1.53976e6 −0.402350
\(77\) 1.39613e6 0.348504
\(78\) −405645. −0.0967865
\(79\) 4.25906e6 0.971895 0.485947 0.873988i \(-0.338475\pi\)
0.485947 + 0.873988i \(0.338475\pi\)
\(80\) 752109. 0.164235
\(81\) 1.57190e6 0.328645
\(82\) 1.81810e6 0.364140
\(83\) −7.80046e6 −1.49743 −0.748715 0.662892i \(-0.769329\pi\)
−0.748715 + 0.662892i \(0.769329\pi\)
\(84\) −506641. −0.0932658
\(85\) −3.18405e6 −0.562359
\(86\) 5.28798e6 0.896490
\(87\) 1.57323e6 0.256139
\(88\) −2.08401e6 −0.325995
\(89\) −1.51987e6 −0.228530 −0.114265 0.993450i \(-0.536451\pi\)
−0.114265 + 0.993450i \(0.536451\pi\)
\(90\) −2.43016e6 −0.351387
\(91\) 753571. 0.104828
\(92\) −3.34494e6 −0.447848
\(93\) 1.43141e6 0.184533
\(94\) −5.22970e6 −0.649425
\(95\) −4.41766e6 −0.528640
\(96\) 756268. 0.0872422
\(97\) 1.40671e7 1.56496 0.782482 0.622673i \(-0.213953\pi\)
0.782482 + 0.622673i \(0.213953\pi\)
\(98\) 941192. 0.101015
\(99\) 6.73372e6 0.697480
\(100\) −2.84215e6 −0.284215
\(101\) −7.11685e6 −0.687327 −0.343663 0.939093i \(-0.611668\pi\)
−0.343663 + 0.939093i \(0.611668\pi\)
\(102\) −3.20166e6 −0.298727
\(103\) −1.71485e7 −1.54630 −0.773152 0.634221i \(-0.781321\pi\)
−0.773152 + 0.634221i \(0.781321\pi\)
\(104\) −1.12486e6 −0.0980581
\(105\) −1.45359e6 −0.122540
\(106\) 4.64976e6 0.379192
\(107\) −2.31239e6 −0.182481 −0.0912407 0.995829i \(-0.529083\pi\)
−0.0912407 + 0.995829i \(0.529083\pi\)
\(108\) −5.67399e6 −0.433416
\(109\) 1.03524e7 0.765681 0.382840 0.923814i \(-0.374946\pi\)
0.382840 + 0.923814i \(0.374946\pi\)
\(110\) −5.97918e6 −0.428319
\(111\) −1.58175e6 −0.109776
\(112\) −1.40493e6 −0.0944911
\(113\) −2.58441e6 −0.168495 −0.0842474 0.996445i \(-0.526849\pi\)
−0.0842474 + 0.996445i \(0.526849\pi\)
\(114\) −4.44209e6 −0.280815
\(115\) −9.59684e6 −0.588418
\(116\) 4.36261e6 0.259504
\(117\) 3.63458e6 0.209799
\(118\) 1.27552e7 0.714662
\(119\) 5.94776e6 0.323548
\(120\) 2.16978e6 0.114626
\(121\) −2.91950e6 −0.149816
\(122\) −1.34056e7 −0.668385
\(123\) 5.24509e6 0.254147
\(124\) 3.96934e6 0.186957
\(125\) −2.24997e7 −1.03036
\(126\) 4.53950e6 0.202168
\(127\) −3.60313e7 −1.56087 −0.780436 0.625236i \(-0.785003\pi\)
−0.780436 + 0.625236i \(0.785003\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 1.52555e7 0.625694
\(130\) −3.22731e6 −0.128836
\(131\) 3.55927e7 1.38328 0.691642 0.722241i \(-0.256888\pi\)
0.691642 + 0.722241i \(0.256888\pi\)
\(132\) −6.01225e6 −0.227524
\(133\) 8.25213e6 0.304148
\(134\) −3.25774e7 −1.16963
\(135\) −1.62790e7 −0.569457
\(136\) −8.87829e6 −0.302652
\(137\) 150722. 0.00500788 0.00250394 0.999997i \(-0.499203\pi\)
0.00250394 + 0.999997i \(0.499203\pi\)
\(138\) −9.64992e6 −0.312570
\(139\) 3.00477e7 0.948984 0.474492 0.880260i \(-0.342632\pi\)
0.474492 + 0.880260i \(0.342632\pi\)
\(140\) −4.03083e6 −0.124150
\(141\) −1.50873e7 −0.453258
\(142\) 8.08606e6 0.236989
\(143\) 8.94254e6 0.255732
\(144\) −6.77617e6 −0.189110
\(145\) 1.25166e7 0.340956
\(146\) −2.20023e7 −0.585103
\(147\) 2.71528e6 0.0705023
\(148\) −4.38623e6 −0.111218
\(149\) −4.75949e7 −1.17871 −0.589357 0.807873i \(-0.700619\pi\)
−0.589357 + 0.807873i \(0.700619\pi\)
\(150\) −8.19942e6 −0.198364
\(151\) −1.39410e7 −0.329515 −0.164758 0.986334i \(-0.552684\pi\)
−0.164758 + 0.986334i \(0.552684\pi\)
\(152\) −1.23180e7 −0.284505
\(153\) 2.86869e7 0.647535
\(154\) 1.11690e7 0.246429
\(155\) 1.13883e7 0.245639
\(156\) −3.24516e6 −0.0684384
\(157\) 6.28960e7 1.29710 0.648551 0.761171i \(-0.275375\pi\)
0.648551 + 0.761171i \(0.275375\pi\)
\(158\) 3.40725e7 0.687233
\(159\) 1.34142e7 0.264653
\(160\) 6.01687e6 0.116132
\(161\) 1.79268e7 0.338541
\(162\) 1.25752e7 0.232387
\(163\) 4.08840e7 0.739430 0.369715 0.929145i \(-0.379455\pi\)
0.369715 + 0.929145i \(0.379455\pi\)
\(164\) 1.45448e7 0.257486
\(165\) −1.72495e7 −0.298940
\(166\) −6.24037e7 −1.05884
\(167\) −3.92235e7 −0.651687 −0.325843 0.945424i \(-0.605648\pi\)
−0.325843 + 0.945424i \(0.605648\pi\)
\(168\) −4.05313e6 −0.0659489
\(169\) 4.82681e6 0.0769231
\(170\) −2.54724e7 −0.397648
\(171\) 3.98012e7 0.608709
\(172\) 4.23039e7 0.633914
\(173\) 2.78247e7 0.408573 0.204286 0.978911i \(-0.434513\pi\)
0.204286 + 0.978911i \(0.434513\pi\)
\(174\) 1.25858e7 0.181117
\(175\) 1.52322e7 0.214846
\(176\) −1.66721e7 −0.230513
\(177\) 3.67979e7 0.498789
\(178\) −1.21590e7 −0.161595
\(179\) −8.40839e7 −1.09579 −0.547895 0.836547i \(-0.684571\pi\)
−0.547895 + 0.836547i \(0.684571\pi\)
\(180\) −1.94413e7 −0.248468
\(181\) −8.32015e7 −1.04293 −0.521466 0.853272i \(-0.674615\pi\)
−0.521466 + 0.853272i \(0.674615\pi\)
\(182\) 6.02857e6 0.0741249
\(183\) −3.86743e7 −0.466491
\(184\) −2.67595e7 −0.316676
\(185\) −1.25844e7 −0.146127
\(186\) 1.14513e7 0.130485
\(187\) 7.05814e7 0.789304
\(188\) −4.18376e7 −0.459213
\(189\) 3.04090e7 0.327632
\(190\) −3.53413e7 −0.373805
\(191\) 1.25390e8 1.30210 0.651051 0.759034i \(-0.274328\pi\)
0.651051 + 0.759034i \(0.274328\pi\)
\(192\) 6.05015e6 0.0616895
\(193\) 1.27244e8 1.27405 0.637024 0.770844i \(-0.280165\pi\)
0.637024 + 0.770844i \(0.280165\pi\)
\(194\) 1.12537e8 1.10660
\(195\) −9.31058e6 −0.0899198
\(196\) 7.52954e6 0.0714286
\(197\) 5.81746e7 0.542127 0.271064 0.962561i \(-0.412625\pi\)
0.271064 + 0.962561i \(0.412625\pi\)
\(198\) 5.38697e7 0.493193
\(199\) 8.24594e7 0.741744 0.370872 0.928684i \(-0.379059\pi\)
0.370872 + 0.928684i \(0.379059\pi\)
\(200\) −2.27372e7 −0.200970
\(201\) −9.39836e7 −0.816330
\(202\) −5.69348e7 −0.486013
\(203\) −2.33809e7 −0.196166
\(204\) −2.56133e7 −0.211232
\(205\) 4.17299e7 0.338305
\(206\) −1.37188e8 −1.09340
\(207\) 8.64633e7 0.677541
\(208\) −8.99891e6 −0.0693375
\(209\) 9.79270e7 0.741977
\(210\) −1.16287e7 −0.0866489
\(211\) 7.07852e7 0.518745 0.259372 0.965777i \(-0.416484\pi\)
0.259372 + 0.965777i \(0.416484\pi\)
\(212\) 3.71980e7 0.268130
\(213\) 2.33278e7 0.165403
\(214\) −1.84991e7 −0.129034
\(215\) 1.21373e8 0.832887
\(216\) −4.53919e7 −0.306472
\(217\) −2.12732e7 −0.141326
\(218\) 8.28191e7 0.541418
\(219\) −6.34751e7 −0.408365
\(220\) −4.78334e7 −0.302867
\(221\) 3.80969e7 0.237420
\(222\) −1.26540e7 −0.0776233
\(223\) −1.04103e8 −0.628632 −0.314316 0.949318i \(-0.601775\pi\)
−0.314316 + 0.949318i \(0.601775\pi\)
\(224\) −1.12394e7 −0.0668153
\(225\) 7.34668e7 0.429984
\(226\) −2.06753e7 −0.119144
\(227\) 6.99445e7 0.396884 0.198442 0.980113i \(-0.436412\pi\)
0.198442 + 0.980113i \(0.436412\pi\)
\(228\) −3.55368e7 −0.198566
\(229\) 1.93775e8 1.06629 0.533143 0.846025i \(-0.321011\pi\)
0.533143 + 0.846025i \(0.321011\pi\)
\(230\) −7.67747e7 −0.416074
\(231\) 3.22219e7 0.171992
\(232\) 3.49009e7 0.183497
\(233\) 3.84808e7 0.199296 0.0996479 0.995023i \(-0.468228\pi\)
0.0996479 + 0.995023i \(0.468228\pi\)
\(234\) 2.90766e7 0.148350
\(235\) −1.20035e8 −0.603350
\(236\) 1.02042e8 0.505342
\(237\) 9.82970e7 0.479646
\(238\) 4.75821e7 0.228783
\(239\) 1.47559e8 0.699154 0.349577 0.936908i \(-0.386325\pi\)
0.349577 + 0.936908i \(0.386325\pi\)
\(240\) 1.73583e7 0.0810526
\(241\) 1.95553e8 0.899924 0.449962 0.893048i \(-0.351438\pi\)
0.449962 + 0.893048i \(0.351438\pi\)
\(242\) −2.33560e7 −0.105936
\(243\) 2.30169e8 1.02902
\(244\) −1.07245e8 −0.472620
\(245\) 2.16027e7 0.0938485
\(246\) 4.19607e7 0.179709
\(247\) 5.28569e7 0.223184
\(248\) 3.17547e7 0.132199
\(249\) −1.80030e8 −0.739007
\(250\) −1.79997e8 −0.728577
\(251\) 1.92972e8 0.770257 0.385129 0.922863i \(-0.374157\pi\)
0.385129 + 0.922863i \(0.374157\pi\)
\(252\) 3.63160e7 0.142954
\(253\) 2.12735e8 0.825880
\(254\) −2.88251e8 −1.10370
\(255\) −7.34862e7 −0.277533
\(256\) 1.67772e7 0.0625000
\(257\) 1.42650e8 0.524211 0.262106 0.965039i \(-0.415583\pi\)
0.262106 + 0.965039i \(0.415583\pi\)
\(258\) 1.22044e8 0.442432
\(259\) 2.35075e7 0.0840730
\(260\) −2.58185e7 −0.0911012
\(261\) −1.12769e8 −0.392599
\(262\) 2.84741e8 0.978129
\(263\) −3.64707e7 −0.123623 −0.0618114 0.998088i \(-0.519688\pi\)
−0.0618114 + 0.998088i \(0.519688\pi\)
\(264\) −4.80980e7 −0.160884
\(265\) 1.06724e8 0.352290
\(266\) 6.60170e7 0.215065
\(267\) −3.50779e7 −0.112783
\(268\) −2.60619e8 −0.827055
\(269\) −7.68527e7 −0.240728 −0.120364 0.992730i \(-0.538406\pi\)
−0.120364 + 0.992730i \(0.538406\pi\)
\(270\) −1.30232e8 −0.402667
\(271\) −2.23561e8 −0.682345 −0.341172 0.940001i \(-0.610824\pi\)
−0.341172 + 0.940001i \(0.610824\pi\)
\(272\) −7.10263e7 −0.214007
\(273\) 1.73920e7 0.0517346
\(274\) 1.20577e6 0.00354110
\(275\) 1.80758e8 0.524123
\(276\) −7.71994e7 −0.221020
\(277\) −3.50922e8 −0.992045 −0.496023 0.868310i \(-0.665207\pi\)
−0.496023 + 0.868310i \(0.665207\pi\)
\(278\) 2.40381e8 0.671033
\(279\) −1.02604e8 −0.282845
\(280\) −3.22467e7 −0.0877873
\(281\) −5.24004e8 −1.40884 −0.704422 0.709781i \(-0.748794\pi\)
−0.704422 + 0.709781i \(0.748794\pi\)
\(282\) −1.20699e8 −0.320502
\(283\) 1.14856e8 0.301232 0.150616 0.988592i \(-0.451874\pi\)
0.150616 + 0.988592i \(0.451874\pi\)
\(284\) 6.46885e7 0.167576
\(285\) −1.01957e8 −0.260892
\(286\) 7.15403e7 0.180830
\(287\) −7.79508e7 −0.194641
\(288\) −5.42093e7 −0.133721
\(289\) −1.09649e8 −0.267216
\(290\) 1.00133e8 0.241093
\(291\) 3.24662e8 0.772335
\(292\) −1.76018e8 −0.413730
\(293\) −2.91385e8 −0.676755 −0.338377 0.941011i \(-0.609878\pi\)
−0.338377 + 0.941011i \(0.609878\pi\)
\(294\) 2.17222e7 0.0498527
\(295\) 2.92764e8 0.663959
\(296\) −3.50899e7 −0.0786431
\(297\) 3.60860e8 0.799267
\(298\) −3.80759e8 −0.833477
\(299\) 1.14825e8 0.248421
\(300\) −6.55954e7 −0.140265
\(301\) −2.26722e8 −0.479194
\(302\) −1.11528e8 −0.233003
\(303\) −1.64253e8 −0.339207
\(304\) −9.85444e7 −0.201175
\(305\) −3.07692e8 −0.620965
\(306\) 2.29495e8 0.457877
\(307\) −2.99232e8 −0.590233 −0.295117 0.955461i \(-0.595359\pi\)
−0.295117 + 0.955461i \(0.595359\pi\)
\(308\) 8.93521e7 0.174252
\(309\) −3.95777e8 −0.763126
\(310\) 9.11064e7 0.173693
\(311\) −4.80712e8 −0.906199 −0.453100 0.891460i \(-0.649682\pi\)
−0.453100 + 0.891460i \(0.649682\pi\)
\(312\) −2.59613e7 −0.0483933
\(313\) −2.88969e7 −0.0532656 −0.0266328 0.999645i \(-0.508478\pi\)
−0.0266328 + 0.999645i \(0.508478\pi\)
\(314\) 5.03168e8 0.917190
\(315\) 1.04193e8 0.187824
\(316\) 2.72580e8 0.485947
\(317\) −5.32897e8 −0.939585 −0.469792 0.882777i \(-0.655671\pi\)
−0.469792 + 0.882777i \(0.655671\pi\)
\(318\) 1.07314e8 0.187138
\(319\) −2.77458e8 −0.478553
\(320\) 4.81349e7 0.0821175
\(321\) −5.33688e7 −0.0900575
\(322\) 1.43414e8 0.239385
\(323\) 4.17187e8 0.688846
\(324\) 1.00602e8 0.164323
\(325\) 9.75657e7 0.157654
\(326\) 3.27072e8 0.522856
\(327\) 2.38928e8 0.377876
\(328\) 1.16358e8 0.182070
\(329\) 2.24223e8 0.347132
\(330\) −1.37996e8 −0.211382
\(331\) −8.20934e8 −1.24426 −0.622129 0.782915i \(-0.713732\pi\)
−0.622129 + 0.782915i \(0.713732\pi\)
\(332\) −4.99229e8 −0.748715
\(333\) 1.13380e8 0.168260
\(334\) −3.13788e8 −0.460812
\(335\) −7.47733e8 −1.08665
\(336\) −3.24250e7 −0.0466329
\(337\) −7.25888e8 −1.03315 −0.516577 0.856241i \(-0.672794\pi\)
−0.516577 + 0.856241i \(0.672794\pi\)
\(338\) 3.86145e7 0.0543928
\(339\) −5.96468e7 −0.0831549
\(340\) −2.03779e8 −0.281180
\(341\) −2.52446e8 −0.344769
\(342\) 3.18410e8 0.430422
\(343\) −4.03536e7 −0.0539949
\(344\) 3.38431e8 0.448245
\(345\) −2.21490e8 −0.290394
\(346\) 2.22598e8 0.288905
\(347\) −1.34610e9 −1.72951 −0.864756 0.502193i \(-0.832527\pi\)
−0.864756 + 0.502193i \(0.832527\pi\)
\(348\) 1.00687e8 0.128069
\(349\) −8.88214e8 −1.11848 −0.559241 0.829005i \(-0.688907\pi\)
−0.559241 + 0.829005i \(0.688907\pi\)
\(350\) 1.21857e8 0.151919
\(351\) 1.94777e8 0.240416
\(352\) −1.33377e8 −0.162998
\(353\) −2.14605e8 −0.259674 −0.129837 0.991535i \(-0.541445\pi\)
−0.129837 + 0.991535i \(0.541445\pi\)
\(354\) 2.94383e8 0.352697
\(355\) 1.85596e8 0.220175
\(356\) −9.72719e7 −0.114265
\(357\) 1.37271e8 0.159676
\(358\) −6.72672e8 −0.774841
\(359\) −9.10135e8 −1.03819 −0.519093 0.854718i \(-0.673730\pi\)
−0.519093 + 0.854718i \(0.673730\pi\)
\(360\) −1.55530e8 −0.175694
\(361\) −3.15051e8 −0.352457
\(362\) −6.65612e8 −0.737464
\(363\) −6.73805e7 −0.0739369
\(364\) 4.82285e7 0.0524142
\(365\) −5.05007e8 −0.543592
\(366\) −3.09394e8 −0.329859
\(367\) 1.40174e9 1.48025 0.740125 0.672469i \(-0.234766\pi\)
0.740125 + 0.672469i \(0.234766\pi\)
\(368\) −2.14076e8 −0.223924
\(369\) −3.75968e8 −0.389546
\(370\) −1.00675e8 −0.103328
\(371\) −1.99358e8 −0.202687
\(372\) 9.16103e7 0.0922665
\(373\) −1.11141e9 −1.10890 −0.554450 0.832217i \(-0.687071\pi\)
−0.554450 + 0.832217i \(0.687071\pi\)
\(374\) 5.64651e8 0.558122
\(375\) −5.19280e8 −0.508502
\(376\) −3.34701e8 −0.324712
\(377\) −1.49760e8 −0.143947
\(378\) 2.43272e8 0.231671
\(379\) 5.31109e8 0.501126 0.250563 0.968100i \(-0.419384\pi\)
0.250563 + 0.968100i \(0.419384\pi\)
\(380\) −2.82730e8 −0.264320
\(381\) −8.31584e8 −0.770316
\(382\) 1.00312e9 0.920726
\(383\) 2.56652e8 0.233425 0.116713 0.993166i \(-0.462764\pi\)
0.116713 + 0.993166i \(0.462764\pi\)
\(384\) 4.84012e7 0.0436211
\(385\) 2.56357e8 0.228946
\(386\) 1.01795e9 0.900887
\(387\) −1.09351e9 −0.959038
\(388\) 9.00296e8 0.782482
\(389\) 1.86807e9 1.60905 0.804527 0.593916i \(-0.202419\pi\)
0.804527 + 0.593916i \(0.202419\pi\)
\(390\) −7.44846e7 −0.0635829
\(391\) 9.06290e8 0.766741
\(392\) 6.02363e7 0.0505076
\(393\) 8.21461e8 0.682673
\(394\) 4.65397e8 0.383342
\(395\) 7.82050e8 0.638476
\(396\) 4.30958e8 0.348740
\(397\) 2.49858e8 0.200413 0.100207 0.994967i \(-0.468050\pi\)
0.100207 + 0.994967i \(0.468050\pi\)
\(398\) 6.59675e8 0.524492
\(399\) 1.90455e8 0.150102
\(400\) −1.81898e8 −0.142108
\(401\) 3.38168e8 0.261895 0.130948 0.991389i \(-0.458198\pi\)
0.130948 + 0.991389i \(0.458198\pi\)
\(402\) −7.51869e8 −0.577233
\(403\) −1.36260e8 −0.103705
\(404\) −4.55479e8 −0.343663
\(405\) 2.88633e8 0.215900
\(406\) −1.87047e8 −0.138711
\(407\) 2.78960e8 0.205098
\(408\) −2.04906e8 −0.149364
\(409\) 2.20948e9 1.59683 0.798415 0.602108i \(-0.205672\pi\)
0.798415 + 0.602108i \(0.205672\pi\)
\(410\) 3.33839e8 0.239218
\(411\) 3.47858e6 0.00247147
\(412\) −1.09750e9 −0.773152
\(413\) −5.46879e8 −0.382003
\(414\) 6.91707e8 0.479094
\(415\) −1.43232e9 −0.983722
\(416\) −7.19913e7 −0.0490290
\(417\) 6.93484e8 0.468339
\(418\) 7.83416e8 0.524657
\(419\) −7.04836e8 −0.468100 −0.234050 0.972225i \(-0.575198\pi\)
−0.234050 + 0.972225i \(0.575198\pi\)
\(420\) −9.30295e7 −0.0612700
\(421\) 1.18814e8 0.0776035 0.0388017 0.999247i \(-0.487646\pi\)
0.0388017 + 0.999247i \(0.487646\pi\)
\(422\) 5.66281e8 0.366808
\(423\) 1.08146e9 0.694735
\(424\) 2.97584e8 0.189596
\(425\) 7.70063e8 0.486592
\(426\) 1.86622e8 0.116958
\(427\) 5.74765e8 0.357267
\(428\) −1.47993e8 −0.0912407
\(429\) 2.06389e8 0.126208
\(430\) 9.70980e8 0.588940
\(431\) −1.67908e9 −1.01019 −0.505094 0.863064i \(-0.668542\pi\)
−0.505094 + 0.863064i \(0.668542\pi\)
\(432\) −3.63135e8 −0.216708
\(433\) 2.56536e9 1.51859 0.759295 0.650747i \(-0.225544\pi\)
0.759295 + 0.650747i \(0.225544\pi\)
\(434\) −1.70185e8 −0.0999329
\(435\) 2.88877e8 0.168268
\(436\) 6.62553e8 0.382840
\(437\) 1.25742e9 0.720767
\(438\) −5.07800e8 −0.288758
\(439\) −1.22677e9 −0.692047 −0.346024 0.938226i \(-0.612468\pi\)
−0.346024 + 0.938226i \(0.612468\pi\)
\(440\) −3.82667e8 −0.214159
\(441\) −1.94631e8 −0.108063
\(442\) 3.04775e8 0.167881
\(443\) −3.42131e9 −1.86973 −0.934867 0.354999i \(-0.884481\pi\)
−0.934867 + 0.354999i \(0.884481\pi\)
\(444\) −1.01232e8 −0.0548880
\(445\) −2.79080e8 −0.150130
\(446\) −8.32824e8 −0.444510
\(447\) −1.09847e9 −0.581715
\(448\) −8.99154e7 −0.0472456
\(449\) 1.79424e9 0.935446 0.467723 0.883875i \(-0.345074\pi\)
0.467723 + 0.883875i \(0.345074\pi\)
\(450\) 5.87735e8 0.304045
\(451\) −9.25033e8 −0.474831
\(452\) −1.65402e8 −0.0842474
\(453\) −3.21752e8 −0.162621
\(454\) 5.59556e8 0.280639
\(455\) 1.38371e8 0.0688660
\(456\) −2.84294e8 −0.140408
\(457\) 1.95376e9 0.957558 0.478779 0.877935i \(-0.341080\pi\)
0.478779 + 0.877935i \(0.341080\pi\)
\(458\) 1.55020e9 0.753978
\(459\) 1.53733e9 0.742033
\(460\) −6.14198e8 −0.294209
\(461\) 2.30832e9 1.09735 0.548673 0.836037i \(-0.315133\pi\)
0.548673 + 0.836037i \(0.315133\pi\)
\(462\) 2.57775e8 0.121617
\(463\) 5.70818e8 0.267279 0.133639 0.991030i \(-0.457334\pi\)
0.133639 + 0.991030i \(0.457334\pi\)
\(464\) 2.79207e8 0.129752
\(465\) 2.62836e8 0.121227
\(466\) 3.07846e8 0.140923
\(467\) −3.04459e9 −1.38331 −0.691656 0.722227i \(-0.743119\pi\)
−0.691656 + 0.722227i \(0.743119\pi\)
\(468\) 2.32613e8 0.104900
\(469\) 1.39676e9 0.625195
\(470\) −9.60278e8 −0.426633
\(471\) 1.45161e9 0.640141
\(472\) 8.16333e8 0.357331
\(473\) −2.69049e9 −1.16901
\(474\) 7.86376e8 0.339161
\(475\) 1.06841e9 0.457416
\(476\) 3.80657e8 0.161774
\(477\) −9.61533e8 −0.405649
\(478\) 1.18047e9 0.494376
\(479\) −8.18399e8 −0.340244 −0.170122 0.985423i \(-0.554416\pi\)
−0.170122 + 0.985423i \(0.554416\pi\)
\(480\) 1.38866e8 0.0573129
\(481\) 1.50571e8 0.0616927
\(482\) 1.56443e9 0.636342
\(483\) 4.13740e8 0.167076
\(484\) −1.86848e8 −0.0749082
\(485\) 2.58301e9 1.02809
\(486\) 1.84136e9 0.727630
\(487\) 2.42158e9 0.950051 0.475025 0.879972i \(-0.342439\pi\)
0.475025 + 0.879972i \(0.342439\pi\)
\(488\) −8.57958e8 −0.334193
\(489\) 9.43582e8 0.364921
\(490\) 1.72822e8 0.0663609
\(491\) 1.68633e9 0.642919 0.321460 0.946923i \(-0.395827\pi\)
0.321460 + 0.946923i \(0.395827\pi\)
\(492\) 3.35685e8 0.127073
\(493\) −1.18202e9 −0.444285
\(494\) 4.22855e8 0.157815
\(495\) 1.23645e9 0.458202
\(496\) 2.54038e8 0.0934786
\(497\) −3.46690e8 −0.126676
\(498\) −1.44024e9 −0.522557
\(499\) −4.20396e9 −1.51463 −0.757315 0.653049i \(-0.773489\pi\)
−0.757315 + 0.653049i \(0.773489\pi\)
\(500\) −1.43998e9 −0.515182
\(501\) −9.05258e8 −0.321618
\(502\) 1.54377e9 0.544654
\(503\) 3.02461e9 1.05970 0.529849 0.848092i \(-0.322249\pi\)
0.529849 + 0.848092i \(0.322249\pi\)
\(504\) 2.90528e8 0.101084
\(505\) −1.30680e9 −0.451532
\(506\) 1.70188e9 0.583985
\(507\) 1.11400e8 0.0379628
\(508\) −2.30600e9 −0.780436
\(509\) 2.45988e8 0.0826803 0.0413402 0.999145i \(-0.486837\pi\)
0.0413402 + 0.999145i \(0.486837\pi\)
\(510\) −5.87890e8 −0.196246
\(511\) 9.43347e8 0.312751
\(512\) 1.34218e8 0.0441942
\(513\) 2.13295e9 0.697541
\(514\) 1.14120e9 0.370673
\(515\) −3.14880e9 −1.01583
\(516\) 9.76351e8 0.312847
\(517\) 2.66083e9 0.846838
\(518\) 1.88060e8 0.0594486
\(519\) 6.42180e8 0.201637
\(520\) −2.06548e8 −0.0644182
\(521\) −1.20695e9 −0.373903 −0.186951 0.982369i \(-0.559861\pi\)
−0.186951 + 0.982369i \(0.559861\pi\)
\(522\) −9.02154e8 −0.277609
\(523\) −3.59991e9 −1.10036 −0.550182 0.835045i \(-0.685442\pi\)
−0.550182 + 0.835045i \(0.685442\pi\)
\(524\) 2.27793e9 0.691642
\(525\) 3.51550e8 0.106030
\(526\) −2.91765e8 −0.0874145
\(527\) −1.07547e9 −0.320081
\(528\) −3.84784e8 −0.113762
\(529\) −6.73235e8 −0.197730
\(530\) 8.53789e8 0.249107
\(531\) −2.63768e9 −0.764523
\(532\) 5.28136e8 0.152074
\(533\) −4.99294e8 −0.142827
\(534\) −2.80623e8 −0.0797497
\(535\) −4.24602e8 −0.119879
\(536\) −2.08495e9 −0.584816
\(537\) −1.94061e9 −0.540790
\(538\) −6.14821e8 −0.170220
\(539\) −4.78871e8 −0.131722
\(540\) −1.04186e9 −0.284728
\(541\) 2.85551e8 0.0775341 0.0387670 0.999248i \(-0.487657\pi\)
0.0387670 + 0.999248i \(0.487657\pi\)
\(542\) −1.78849e9 −0.482491
\(543\) −1.92025e9 −0.514704
\(544\) −5.68211e8 −0.151326
\(545\) 1.90091e9 0.503006
\(546\) 1.39136e8 0.0365819
\(547\) −5.26043e9 −1.37425 −0.687125 0.726539i \(-0.741128\pi\)
−0.687125 + 0.726539i \(0.741128\pi\)
\(548\) 9.64619e6 0.00250394
\(549\) 2.77217e9 0.715018
\(550\) 1.44607e9 0.370611
\(551\) −1.63998e9 −0.417645
\(552\) −6.17595e8 −0.156285
\(553\) −1.46086e9 −0.367342
\(554\) −2.80738e9 −0.701482
\(555\) −2.90441e8 −0.0721162
\(556\) 1.92305e9 0.474492
\(557\) −7.96679e9 −1.95340 −0.976698 0.214620i \(-0.931149\pi\)
−0.976698 + 0.214620i \(0.931149\pi\)
\(558\) −8.20829e8 −0.200001
\(559\) −1.45221e9 −0.351632
\(560\) −2.57973e8 −0.0620750
\(561\) 1.62898e9 0.389535
\(562\) −4.19204e9 −0.996203
\(563\) 7.42023e9 1.75242 0.876209 0.481931i \(-0.160064\pi\)
0.876209 + 0.481931i \(0.160064\pi\)
\(564\) −9.65589e8 −0.226629
\(565\) −4.74550e8 −0.110691
\(566\) 9.18848e8 0.213003
\(567\) −5.39162e8 −0.124216
\(568\) 5.17508e8 0.118494
\(569\) 4.55498e8 0.103656 0.0518279 0.998656i \(-0.483495\pi\)
0.0518279 + 0.998656i \(0.483495\pi\)
\(570\) −8.15659e8 −0.184479
\(571\) −7.92015e9 −1.78036 −0.890178 0.455612i \(-0.849420\pi\)
−0.890178 + 0.455612i \(0.849420\pi\)
\(572\) 5.72322e8 0.127866
\(573\) 2.89393e9 0.642609
\(574\) −6.23607e8 −0.137632
\(575\) 2.32100e9 0.509140
\(576\) −4.33675e8 −0.0945552
\(577\) −8.24075e8 −0.178588 −0.0892938 0.996005i \(-0.528461\pi\)
−0.0892938 + 0.996005i \(0.528461\pi\)
\(578\) −8.77191e8 −0.188950
\(579\) 2.93672e9 0.628763
\(580\) 8.01064e8 0.170478
\(581\) 2.67556e9 0.565976
\(582\) 2.59730e9 0.546124
\(583\) −2.36576e9 −0.494460
\(584\) −1.40814e9 −0.292551
\(585\) 6.67382e8 0.137825
\(586\) −2.33108e9 −0.478538
\(587\) 3.67778e9 0.750502 0.375251 0.926923i \(-0.377556\pi\)
0.375251 + 0.926923i \(0.377556\pi\)
\(588\) 1.73778e8 0.0352512
\(589\) −1.49214e9 −0.300889
\(590\) 2.34211e9 0.469490
\(591\) 1.34264e9 0.267549
\(592\) −2.80719e8 −0.0556091
\(593\) 2.20121e9 0.433481 0.216741 0.976229i \(-0.430457\pi\)
0.216741 + 0.976229i \(0.430457\pi\)
\(594\) 2.88688e9 0.565167
\(595\) 1.09213e9 0.212552
\(596\) −3.04607e9 −0.589357
\(597\) 1.90312e9 0.366063
\(598\) 9.18603e8 0.175660
\(599\) −8.04509e7 −0.0152946 −0.00764728 0.999971i \(-0.502434\pi\)
−0.00764728 + 0.999971i \(0.502434\pi\)
\(600\) −5.24763e8 −0.0991822
\(601\) 1.03902e10 1.95238 0.976192 0.216909i \(-0.0695976\pi\)
0.976192 + 0.216909i \(0.0695976\pi\)
\(602\) −1.81378e9 −0.338841
\(603\) 6.73675e9 1.25124
\(604\) −8.92226e8 −0.164758
\(605\) −5.36079e8 −0.0984204
\(606\) −1.31403e9 −0.239856
\(607\) −5.98662e9 −1.08648 −0.543239 0.839578i \(-0.682802\pi\)
−0.543239 + 0.839578i \(0.682802\pi\)
\(608\) −7.88355e8 −0.142252
\(609\) −5.39618e8 −0.0968113
\(610\) −2.46154e9 −0.439089
\(611\) 1.43621e9 0.254725
\(612\) 1.83596e9 0.323768
\(613\) −6.72220e9 −1.17869 −0.589345 0.807882i \(-0.700614\pi\)
−0.589345 + 0.807882i \(0.700614\pi\)
\(614\) −2.39386e9 −0.417358
\(615\) 9.63104e8 0.166959
\(616\) 7.14817e8 0.123215
\(617\) 9.94486e9 1.70451 0.852257 0.523123i \(-0.175233\pi\)
0.852257 + 0.523123i \(0.175233\pi\)
\(618\) −3.16622e9 −0.539612
\(619\) −1.17899e9 −0.199798 −0.0998992 0.994998i \(-0.531852\pi\)
−0.0998992 + 0.994998i \(0.531852\pi\)
\(620\) 7.28851e8 0.122820
\(621\) 4.63358e9 0.776418
\(622\) −3.84570e9 −0.640780
\(623\) 5.21317e8 0.0863761
\(624\) −2.07690e8 −0.0342192
\(625\) −6.61969e8 −0.108457
\(626\) −2.31175e8 −0.0376644
\(627\) 2.26010e9 0.366178
\(628\) 4.02534e9 0.648551
\(629\) 1.18842e9 0.190412
\(630\) 8.33545e8 0.132812
\(631\) −4.37167e9 −0.692699 −0.346349 0.938106i \(-0.612579\pi\)
−0.346349 + 0.938106i \(0.612579\pi\)
\(632\) 2.18064e9 0.343617
\(633\) 1.63368e9 0.256009
\(634\) −4.26318e9 −0.664387
\(635\) −6.61608e9 −1.02540
\(636\) 8.58511e8 0.132326
\(637\) −2.58475e8 −0.0396214
\(638\) −2.21966e9 −0.338388
\(639\) −1.67213e9 −0.253523
\(640\) 3.85080e8 0.0580658
\(641\) −8.34777e8 −0.125189 −0.0625947 0.998039i \(-0.519938\pi\)
−0.0625947 + 0.998039i \(0.519938\pi\)
\(642\) −4.26951e8 −0.0636803
\(643\) −6.30960e9 −0.935973 −0.467986 0.883736i \(-0.655020\pi\)
−0.467986 + 0.883736i \(0.655020\pi\)
\(644\) 1.14731e9 0.169271
\(645\) 2.80122e9 0.411043
\(646\) 3.33750e9 0.487088
\(647\) −6.30563e9 −0.915300 −0.457650 0.889132i \(-0.651309\pi\)
−0.457650 + 0.889132i \(0.651309\pi\)
\(648\) 8.04813e8 0.116194
\(649\) −6.48975e9 −0.931905
\(650\) 7.80526e8 0.111478
\(651\) −4.90974e8 −0.0697469
\(652\) 2.61658e9 0.369715
\(653\) −3.17943e9 −0.446841 −0.223420 0.974722i \(-0.571722\pi\)
−0.223420 + 0.974722i \(0.571722\pi\)
\(654\) 1.91142e9 0.267199
\(655\) 6.53554e9 0.908734
\(656\) 9.30865e8 0.128743
\(657\) 4.54989e9 0.625925
\(658\) 1.79379e9 0.245460
\(659\) −1.44859e9 −0.197173 −0.0985863 0.995129i \(-0.531432\pi\)
−0.0985863 + 0.995129i \(0.531432\pi\)
\(660\) −1.10397e9 −0.149470
\(661\) 3.27875e9 0.441574 0.220787 0.975322i \(-0.429137\pi\)
0.220787 + 0.975322i \(0.429137\pi\)
\(662\) −6.56747e9 −0.879823
\(663\) 8.79256e8 0.117170
\(664\) −3.99383e9 −0.529422
\(665\) 1.51526e9 0.199807
\(666\) 9.07039e8 0.118978
\(667\) −3.56266e9 −0.464872
\(668\) −2.51030e9 −0.325843
\(669\) −2.40264e9 −0.310240
\(670\) −5.98187e9 −0.768378
\(671\) 6.82067e9 0.871562
\(672\) −2.59400e8 −0.0329745
\(673\) 9.58420e9 1.21200 0.606001 0.795464i \(-0.292773\pi\)
0.606001 + 0.795464i \(0.292773\pi\)
\(674\) −5.80711e9 −0.730550
\(675\) 3.93709e9 0.492734
\(676\) 3.08916e8 0.0384615
\(677\) −1.49888e9 −0.185655 −0.0928277 0.995682i \(-0.529591\pi\)
−0.0928277 + 0.995682i \(0.529591\pi\)
\(678\) −4.77174e8 −0.0587994
\(679\) −4.82502e9 −0.591501
\(680\) −1.63023e9 −0.198824
\(681\) 1.61428e9 0.195869
\(682\) −2.01957e9 −0.243789
\(683\) −1.03529e10 −1.24334 −0.621670 0.783279i \(-0.713545\pi\)
−0.621670 + 0.783279i \(0.713545\pi\)
\(684\) 2.54728e9 0.304354
\(685\) 2.76756e7 0.00328987
\(686\) −3.22829e8 −0.0381802
\(687\) 4.47223e9 0.526230
\(688\) 2.70745e9 0.316957
\(689\) −1.27694e9 −0.148731
\(690\) −1.77192e9 −0.205339
\(691\) 1.59535e9 0.183943 0.0919717 0.995762i \(-0.470683\pi\)
0.0919717 + 0.995762i \(0.470683\pi\)
\(692\) 1.78078e9 0.204286
\(693\) −2.30967e9 −0.263623
\(694\) −1.07688e10 −1.22295
\(695\) 5.51736e9 0.623425
\(696\) 8.05494e8 0.0905587
\(697\) −3.94081e9 −0.440830
\(698\) −7.10572e9 −0.790886
\(699\) 8.88116e8 0.0983557
\(700\) 9.74858e8 0.107423
\(701\) 8.14619e9 0.893185 0.446592 0.894738i \(-0.352637\pi\)
0.446592 + 0.894738i \(0.352637\pi\)
\(702\) 1.55822e9 0.170000
\(703\) 1.64886e9 0.178995
\(704\) −1.06702e9 −0.115257
\(705\) −2.77034e9 −0.297763
\(706\) −1.71684e9 −0.183617
\(707\) 2.44108e9 0.259785
\(708\) 2.35507e9 0.249395
\(709\) −6.58404e9 −0.693794 −0.346897 0.937903i \(-0.612765\pi\)
−0.346897 + 0.937903i \(0.612765\pi\)
\(710\) 1.48476e9 0.155687
\(711\) −7.04593e9 −0.735182
\(712\) −7.78175e8 −0.0807974
\(713\) −3.24150e9 −0.334914
\(714\) 1.09817e9 0.112908
\(715\) 1.64203e9 0.168000
\(716\) −5.38137e9 −0.547895
\(717\) 3.40558e9 0.345044
\(718\) −7.28108e9 −0.734109
\(719\) −4.92336e9 −0.493982 −0.246991 0.969018i \(-0.579442\pi\)
−0.246991 + 0.969018i \(0.579442\pi\)
\(720\) −1.24424e9 −0.124234
\(721\) 5.88192e9 0.584448
\(722\) −2.52041e9 −0.249225
\(723\) 4.51327e9 0.444127
\(724\) −5.32489e9 −0.521466
\(725\) −3.02715e9 −0.295019
\(726\) −5.39044e8 −0.0522813
\(727\) −1.79335e9 −0.173099 −0.0865495 0.996248i \(-0.527584\pi\)
−0.0865495 + 0.996248i \(0.527584\pi\)
\(728\) 3.85828e8 0.0370625
\(729\) 1.87444e9 0.179195
\(730\) −4.04006e9 −0.384377
\(731\) −1.14620e10 −1.08530
\(732\) −2.47515e9 −0.233246
\(733\) 9.81470e8 0.0920478 0.0460239 0.998940i \(-0.485345\pi\)
0.0460239 + 0.998940i \(0.485345\pi\)
\(734\) 1.12139e10 1.04670
\(735\) 4.98580e8 0.0463158
\(736\) −1.71261e9 −0.158338
\(737\) 1.65751e10 1.52518
\(738\) −3.00774e9 −0.275450
\(739\) −1.86858e10 −1.70316 −0.851581 0.524223i \(-0.824356\pi\)
−0.851581 + 0.524223i \(0.824356\pi\)
\(740\) −8.05401e8 −0.0730636
\(741\) 1.21991e9 0.110145
\(742\) −1.59487e9 −0.143321
\(743\) −6.58756e9 −0.589201 −0.294601 0.955620i \(-0.595187\pi\)
−0.294601 + 0.955620i \(0.595187\pi\)
\(744\) 7.32882e8 0.0652423
\(745\) −8.73939e9 −0.774344
\(746\) −8.89126e9 −0.784111
\(747\) 1.29046e10 1.13272
\(748\) 4.51721e9 0.394652
\(749\) 7.93151e8 0.0689715
\(750\) −4.15424e9 −0.359565
\(751\) −1.12906e10 −0.972699 −0.486350 0.873764i \(-0.661672\pi\)
−0.486350 + 0.873764i \(0.661672\pi\)
\(752\) −2.67760e9 −0.229606
\(753\) 4.45369e9 0.380135
\(754\) −1.19808e9 −0.101786
\(755\) −2.55986e9 −0.216472
\(756\) 1.94618e9 0.163816
\(757\) 1.88372e10 1.57827 0.789136 0.614219i \(-0.210529\pi\)
0.789136 + 0.614219i \(0.210529\pi\)
\(758\) 4.24888e9 0.354349
\(759\) 4.90981e9 0.407585
\(760\) −2.26184e9 −0.186902
\(761\) −1.12210e10 −0.922965 −0.461483 0.887149i \(-0.652682\pi\)
−0.461483 + 0.887149i \(0.652682\pi\)
\(762\) −6.65267e9 −0.544695
\(763\) −3.55087e9 −0.289400
\(764\) 8.02495e9 0.651051
\(765\) 5.26749e9 0.425392
\(766\) 2.05321e9 0.165057
\(767\) −3.50290e9 −0.280313
\(768\) 3.87209e8 0.0308448
\(769\) −1.55757e10 −1.23511 −0.617555 0.786528i \(-0.711877\pi\)
−0.617555 + 0.786528i \(0.711877\pi\)
\(770\) 2.05086e9 0.161889
\(771\) 3.29229e9 0.258707
\(772\) 8.14359e9 0.637024
\(773\) 1.31804e10 1.02636 0.513182 0.858280i \(-0.328466\pi\)
0.513182 + 0.858280i \(0.328466\pi\)
\(774\) −8.74811e9 −0.678142
\(775\) −2.75426e9 −0.212544
\(776\) 7.20237e9 0.553298
\(777\) 5.42540e8 0.0414914
\(778\) 1.49446e10 1.13777
\(779\) −5.46762e9 −0.414398
\(780\) −5.95877e8 −0.0449599
\(781\) −4.11413e9 −0.309029
\(782\) 7.25032e9 0.542168
\(783\) −6.04331e9 −0.449892
\(784\) 4.81890e8 0.0357143
\(785\) 1.15490e10 0.852118
\(786\) 6.57168e9 0.482723
\(787\) −4.21715e9 −0.308395 −0.154198 0.988040i \(-0.549279\pi\)
−0.154198 + 0.988040i \(0.549279\pi\)
\(788\) 3.72317e9 0.271064
\(789\) −8.41724e8 −0.0610099
\(790\) 6.25640e9 0.451471
\(791\) 8.86452e8 0.0636850
\(792\) 3.44766e9 0.246596
\(793\) 3.68151e9 0.262162
\(794\) 1.99886e9 0.141713
\(795\) 2.46313e9 0.173861
\(796\) 5.27740e9 0.370872
\(797\) 9.34521e9 0.653860 0.326930 0.945049i \(-0.393986\pi\)
0.326930 + 0.945049i \(0.393986\pi\)
\(798\) 1.52364e9 0.106138
\(799\) 1.13356e10 0.786198
\(800\) −1.45518e9 −0.100485
\(801\) 2.51438e9 0.172869
\(802\) 2.70534e9 0.185188
\(803\) 1.11946e10 0.762963
\(804\) −6.01495e9 −0.408165
\(805\) 3.29172e9 0.222401
\(806\) −1.09008e9 −0.0733307
\(807\) −1.77372e9 −0.118803
\(808\) −3.64383e9 −0.243007
\(809\) 2.34554e10 1.55748 0.778741 0.627345i \(-0.215859\pi\)
0.778741 + 0.627345i \(0.215859\pi\)
\(810\) 2.30906e9 0.152665
\(811\) 6.57070e8 0.0432552 0.0216276 0.999766i \(-0.493115\pi\)
0.0216276 + 0.999766i \(0.493115\pi\)
\(812\) −1.49638e9 −0.0980832
\(813\) −5.15968e9 −0.336748
\(814\) 2.23168e9 0.145026
\(815\) 7.50713e9 0.485761
\(816\) −1.63925e9 −0.105616
\(817\) −1.59027e10 −1.02022
\(818\) 1.76758e10 1.12913
\(819\) −1.24666e9 −0.0792966
\(820\) 2.67071e9 0.169153
\(821\) 2.19235e10 1.38264 0.691319 0.722550i \(-0.257030\pi\)
0.691319 + 0.722550i \(0.257030\pi\)
\(822\) 2.78286e7 0.00174759
\(823\) −1.96884e10 −1.23115 −0.615576 0.788077i \(-0.711077\pi\)
−0.615576 + 0.788077i \(0.711077\pi\)
\(824\) −8.78001e9 −0.546701
\(825\) 4.17180e9 0.258663
\(826\) −4.37504e9 −0.270117
\(827\) 2.04793e10 1.25906 0.629530 0.776976i \(-0.283248\pi\)
0.629530 + 0.776976i \(0.283248\pi\)
\(828\) 5.53365e9 0.338771
\(829\) −8.11646e9 −0.494795 −0.247398 0.968914i \(-0.579575\pi\)
−0.247398 + 0.968914i \(0.579575\pi\)
\(830\) −1.14586e10 −0.695596
\(831\) −8.09910e9 −0.489591
\(832\) −5.75930e8 −0.0346688
\(833\) −2.04008e9 −0.122290
\(834\) 5.54788e9 0.331166
\(835\) −7.20223e9 −0.428119
\(836\) 6.26733e9 0.370989
\(837\) −5.49853e9 −0.324121
\(838\) −5.63869e9 −0.330997
\(839\) 2.90478e10 1.69803 0.849017 0.528366i \(-0.177195\pi\)
0.849017 + 0.528366i \(0.177195\pi\)
\(840\) −7.44236e8 −0.0433245
\(841\) −1.26033e10 −0.730631
\(842\) 9.50514e8 0.0548740
\(843\) −1.20937e10 −0.695288
\(844\) 4.53025e9 0.259372
\(845\) 8.86300e8 0.0505338
\(846\) 8.65168e9 0.491252
\(847\) 1.00139e9 0.0566253
\(848\) 2.38067e9 0.134065
\(849\) 2.65082e9 0.148663
\(850\) 6.16051e9 0.344073
\(851\) 3.58195e9 0.199235
\(852\) 1.49298e9 0.0827017
\(853\) 1.60905e10 0.887661 0.443831 0.896111i \(-0.353619\pi\)
0.443831 + 0.896111i \(0.353619\pi\)
\(854\) 4.59812e9 0.252626
\(855\) 7.30830e9 0.399885
\(856\) −1.18395e9 −0.0645169
\(857\) 3.27784e10 1.77891 0.889457 0.457019i \(-0.151083\pi\)
0.889457 + 0.457019i \(0.151083\pi\)
\(858\) 1.65111e9 0.0892424
\(859\) −3.55834e10 −1.91545 −0.957726 0.287682i \(-0.907115\pi\)
−0.957726 + 0.287682i \(0.907115\pi\)
\(860\) 7.76784e9 0.416443
\(861\) −1.79906e9 −0.0960585
\(862\) −1.34327e10 −0.714311
\(863\) 3.31130e10 1.75372 0.876861 0.480744i \(-0.159633\pi\)
0.876861 + 0.480744i \(0.159633\pi\)
\(864\) −2.90508e9 −0.153236
\(865\) 5.10918e9 0.268408
\(866\) 2.05229e10 1.07380
\(867\) −2.53064e9 −0.131875
\(868\) −1.36148e9 −0.0706632
\(869\) −1.73358e10 −0.896140
\(870\) 2.31102e9 0.118983
\(871\) 8.94656e9 0.458768
\(872\) 5.30042e9 0.270709
\(873\) −2.32718e10 −1.18380
\(874\) 1.00593e10 0.509659
\(875\) 7.71738e9 0.389441
\(876\) −4.06240e9 −0.204183
\(877\) 2.88156e9 0.144254 0.0721272 0.997395i \(-0.477021\pi\)
0.0721272 + 0.997395i \(0.477021\pi\)
\(878\) −9.81412e9 −0.489351
\(879\) −6.72502e9 −0.333989
\(880\) −3.06134e9 −0.151433
\(881\) −2.67484e10 −1.31790 −0.658949 0.752188i \(-0.728999\pi\)
−0.658949 + 0.752188i \(0.728999\pi\)
\(882\) −1.55705e9 −0.0764121
\(883\) −1.93041e9 −0.0943600 −0.0471800 0.998886i \(-0.515023\pi\)
−0.0471800 + 0.998886i \(0.515023\pi\)
\(884\) 2.43820e9 0.118710
\(885\) 6.75685e9 0.327674
\(886\) −2.73705e10 −1.32210
\(887\) 1.20408e10 0.579326 0.289663 0.957129i \(-0.406457\pi\)
0.289663 + 0.957129i \(0.406457\pi\)
\(888\) −8.09856e8 −0.0388117
\(889\) 1.23587e10 0.589954
\(890\) −2.23264e9 −0.106158
\(891\) −6.39817e9 −0.303029
\(892\) −6.66259e9 −0.314316
\(893\) 1.57275e10 0.739058
\(894\) −8.78772e9 −0.411334
\(895\) −1.54395e10 −0.719868
\(896\) −7.19323e8 −0.0334077
\(897\) 2.65011e9 0.122600
\(898\) 1.43539e10 0.661460
\(899\) 4.22771e9 0.194064
\(900\) 4.70188e9 0.214992
\(901\) −1.00786e10 −0.459053
\(902\) −7.40027e9 −0.335757
\(903\) −5.23263e9 −0.236490
\(904\) −1.32322e9 −0.0595719
\(905\) −1.52775e10 −0.685143
\(906\) −2.57401e9 −0.114991
\(907\) −1.58259e10 −0.704275 −0.352137 0.935948i \(-0.614545\pi\)
−0.352137 + 0.935948i \(0.614545\pi\)
\(908\) 4.47645e9 0.198442
\(909\) 1.17737e10 0.519922
\(910\) 1.10697e9 0.0486956
\(911\) −1.52002e9 −0.0666092 −0.0333046 0.999445i \(-0.510603\pi\)
−0.0333046 + 0.999445i \(0.510603\pi\)
\(912\) −2.27435e9 −0.0992832
\(913\) 3.17505e10 1.38071
\(914\) 1.56301e10 0.677096
\(915\) −7.10138e9 −0.306457
\(916\) 1.24016e10 0.533143
\(917\) −1.22083e10 −0.522832
\(918\) 1.22987e10 0.524697
\(919\) −1.82852e10 −0.777133 −0.388567 0.921421i \(-0.627030\pi\)
−0.388567 + 0.921421i \(0.627030\pi\)
\(920\) −4.91358e9 −0.208037
\(921\) −6.90612e9 −0.291290
\(922\) 1.84666e10 0.775941
\(923\) −2.22063e9 −0.0929547
\(924\) 2.06220e9 0.0859961
\(925\) 3.04354e9 0.126440
\(926\) 4.56655e9 0.188995
\(927\) 2.83693e10 1.16969
\(928\) 2.23366e9 0.0917484
\(929\) −2.26030e10 −0.924934 −0.462467 0.886637i \(-0.653036\pi\)
−0.462467 + 0.886637i \(0.653036\pi\)
\(930\) 2.10269e9 0.0857205
\(931\) −2.83048e9 −0.114957
\(932\) 2.46277e9 0.0996479
\(933\) −1.10946e10 −0.447224
\(934\) −2.43567e10 −0.978149
\(935\) 1.29602e10 0.518525
\(936\) 1.86090e9 0.0741752
\(937\) −2.42762e10 −0.964033 −0.482016 0.876162i \(-0.660095\pi\)
−0.482016 + 0.876162i \(0.660095\pi\)
\(938\) 1.11740e10 0.442079
\(939\) −6.66926e8 −0.0262874
\(940\) −7.68222e9 −0.301675
\(941\) 2.43875e10 0.954121 0.477061 0.878870i \(-0.341702\pi\)
0.477061 + 0.878870i \(0.341702\pi\)
\(942\) 1.16129e10 0.452648
\(943\) −1.18778e10 −0.461258
\(944\) 6.53067e9 0.252671
\(945\) 5.58371e9 0.215234
\(946\) −2.15239e10 −0.826612
\(947\) 8.40577e9 0.321627 0.160813 0.986985i \(-0.448588\pi\)
0.160813 + 0.986985i \(0.448588\pi\)
\(948\) 6.29101e9 0.239823
\(949\) 6.04237e9 0.229496
\(950\) 8.54730e9 0.323442
\(951\) −1.22990e10 −0.463700
\(952\) 3.04525e9 0.114392
\(953\) 1.36490e10 0.510827 0.255414 0.966832i \(-0.417788\pi\)
0.255414 + 0.966832i \(0.417788\pi\)
\(954\) −7.69227e9 −0.286837
\(955\) 2.30241e10 0.855403
\(956\) 9.44377e9 0.349577
\(957\) −6.40358e9 −0.236174
\(958\) −6.54720e9 −0.240589
\(959\) −5.16975e7 −0.00189280
\(960\) 1.11093e9 0.0405263
\(961\) −2.36660e10 −0.860188
\(962\) 1.20457e9 0.0436234
\(963\) 3.82548e9 0.138036
\(964\) 1.25154e10 0.449962
\(965\) 2.33645e10 0.836972
\(966\) 3.30992e9 0.118140
\(967\) −3.44474e10 −1.22508 −0.612540 0.790440i \(-0.709852\pi\)
−0.612540 + 0.790440i \(0.709852\pi\)
\(968\) −1.49478e9 −0.0529681
\(969\) 9.62847e9 0.339957
\(970\) 2.06641e10 0.726967
\(971\) −1.08047e10 −0.378743 −0.189372 0.981905i \(-0.560645\pi\)
−0.189372 + 0.981905i \(0.560645\pi\)
\(972\) 1.47308e10 0.514512
\(973\) −1.03064e10 −0.358682
\(974\) 1.93726e10 0.671787
\(975\) 2.25177e9 0.0778049
\(976\) −6.86367e9 −0.236310
\(977\) −1.65062e10 −0.566260 −0.283130 0.959082i \(-0.591373\pi\)
−0.283130 + 0.959082i \(0.591373\pi\)
\(978\) 7.54866e9 0.258038
\(979\) 6.18640e9 0.210717
\(980\) 1.38258e9 0.0469243
\(981\) −1.71263e10 −0.579193
\(982\) 1.34906e10 0.454613
\(983\) −6.42525e9 −0.215751 −0.107876 0.994164i \(-0.534405\pi\)
−0.107876 + 0.994164i \(0.534405\pi\)
\(984\) 2.68548e9 0.0898545
\(985\) 1.06820e10 0.356145
\(986\) −9.45618e9 −0.314157
\(987\) 5.17495e9 0.171315
\(988\) 3.38284e9 0.111592
\(989\) −3.45468e10 −1.13559
\(990\) 9.89158e9 0.323998
\(991\) −3.70850e10 −1.21043 −0.605215 0.796062i \(-0.706913\pi\)
−0.605215 + 0.796062i \(0.706913\pi\)
\(992\) 2.03230e9 0.0660994
\(993\) −1.89467e10 −0.614062
\(994\) −2.77352e9 −0.0895733
\(995\) 1.51412e10 0.487281
\(996\) −1.15220e10 −0.369503
\(997\) −1.82218e10 −0.582316 −0.291158 0.956675i \(-0.594041\pi\)
−0.291158 + 0.956675i \(0.594041\pi\)
\(998\) −3.36317e10 −1.07101
\(999\) 6.07603e9 0.192815
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.8.a.b.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.8.a.b.1.3 4 1.1 even 1 trivial