Properties

Label 1800.3.v.j.1657.1
Level 18001800
Weight 33
Character 1800.1657
Analytic conductor 49.04649.046
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,3,Mod(793,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.793"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Level: N N == 1800=233252 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 1800.v (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-16,0,0,0,8,0,0,0,0,0,16,0,0,0,0,0,48,0,0,0,0,0, 0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 49.046447584949.0464475849
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a49]\Z[a_1, \ldots, a_{49}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Embedding invariants

Embedding label 1657.1
Root 1.224741.22474i1.22474 - 1.22474i of defining polynomial
Character χ\chi == 1800.1657
Dual form 1800.3.v.j.793.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(6.449496.44949i)q7+11.7980q11+(2.449492.44949i)q13+(0.8989790.898979i)q17+33.5959iq19+(21.798021.7980i)q233.59592iq2925.1918q31+(9.14643+9.14643i)q37+60.7878q41+(22.202022.2020i)q43+(4.49490+4.49490i)q47+34.1918iq49+(52.0908+52.0908i)q5386.9898iq59108.384q61+(77.888877.8888i)q67+66.7878q71+(78.696978.6969i)q73+(76.090876.0908i)q7766.0000iq79+(84.090884.0908i)q839.59592iq8931.5959q91+(53.0806+53.0806i)q97+O(q100)q+(-6.44949 - 6.44949i) q^{7} +11.7980 q^{11} +(2.44949 - 2.44949i) q^{13} +(-0.898979 - 0.898979i) q^{17} +33.5959i q^{19} +(21.7980 - 21.7980i) q^{23} -3.59592i q^{29} -25.1918 q^{31} +(9.14643 + 9.14643i) q^{37} +60.7878 q^{41} +(22.2020 - 22.2020i) q^{43} +(4.49490 + 4.49490i) q^{47} +34.1918i q^{49} +(-52.0908 + 52.0908i) q^{53} -86.9898i q^{59} -108.384 q^{61} +(-77.8888 - 77.8888i) q^{67} +66.7878 q^{71} +(78.6969 - 78.6969i) q^{73} +(-76.0908 - 76.0908i) q^{77} -66.0000i q^{79} +(84.0908 - 84.0908i) q^{83} -9.59592i q^{89} -31.5959 q^{91} +(53.0806 + 53.0806i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q7+8q11+16q17+48q23+56q3132q37+8q41+128q4380q4732q53120q6196q67+32q71+256q73128q77+160q8348q91+160q97+O(q100) 4 q - 16 q^{7} + 8 q^{11} + 16 q^{17} + 48 q^{23} + 56 q^{31} - 32 q^{37} + 8 q^{41} + 128 q^{43} - 80 q^{47} - 32 q^{53} - 120 q^{61} - 96 q^{67} + 32 q^{71} + 256 q^{73} - 128 q^{77} + 160 q^{83} - 48 q^{91}+ \cdots - 160 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1800Z)×\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times.

nn 577577 901901 10011001 13511351
χ(n)\chi(n) e(14)e\left(\frac{1}{4}\right) 11 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 0 0
66 0 0
77 −6.44949 6.44949i −0.921356 0.921356i 0.0757697 0.997125i 0.475859π-0.475859\pi
−0.997125 + 0.0757697i 0.975859π0.975859\pi
88 0 0
99 0 0
1010 0 0
1111 11.7980 1.07254 0.536271 0.844046i 0.319833π-0.319833\pi
0.536271 + 0.844046i 0.319833π0.319833\pi
1212 0 0
1313 2.44949 2.44949i 0.188422 0.188422i −0.606591 0.795014i 0.707464π-0.707464\pi
0.795014 + 0.606591i 0.207464π0.207464\pi
1414 0 0
1515 0 0
1616 0 0
1717 −0.898979 0.898979i −0.0528811 0.0528811i 0.680172 0.733053i 0.261905π-0.261905\pi
−0.733053 + 0.680172i 0.761905π0.761905\pi
1818 0 0
1919 33.5959i 1.76821i 0.467292 + 0.884103i 0.345230π0.345230\pi
−0.467292 + 0.884103i 0.654770π0.654770\pi
2020 0 0
2121 0 0
2222 0 0
2323 21.7980 21.7980i 0.947737 0.947737i −0.0509632 0.998701i 0.516229π-0.516229\pi
0.998701 + 0.0509632i 0.0162291π0.0162291\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 3.59592i 0.123997i −0.998076 0.0619986i 0.980253π-0.980253\pi
0.998076 0.0619986i 0.0197474π-0.0197474\pi
3030 0 0
3131 −25.1918 −0.812640 −0.406320 0.913731i 0.633188π-0.633188\pi
−0.406320 + 0.913731i 0.633188π0.633188\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 9.14643 + 9.14643i 0.247201 + 0.247201i 0.819821 0.572620i 0.194073π-0.194073\pi
−0.572620 + 0.819821i 0.694073π0.694073\pi
3838 0 0
3939 0 0
4040 0 0
4141 60.7878 1.48263 0.741314 0.671158i 0.234203π-0.234203\pi
0.741314 + 0.671158i 0.234203π0.234203\pi
4242 0 0
4343 22.2020 22.2020i 0.516327 0.516327i −0.400131 0.916458i 0.631035π-0.631035\pi
0.916458 + 0.400131i 0.131035π0.131035\pi
4444 0 0
4545 0 0
4646 0 0
4747 4.49490 + 4.49490i 0.0956361 + 0.0956361i 0.753306 0.657670i 0.228458π-0.228458\pi
−0.657670 + 0.753306i 0.728458π0.728458\pi
4848 0 0
4949 34.1918i 0.697793i
5050 0 0
5151 0 0
5252 0 0
5353 −52.0908 + 52.0908i −0.982846 + 0.982846i −0.999855 0.0170098i 0.994585π-0.994585\pi
0.0170098 + 0.999855i 0.494585π0.494585\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 86.9898i 1.47440i −0.675673 0.737202i 0.736147π-0.736147\pi
0.675673 0.737202i 0.263853π-0.263853\pi
6060 0 0
6161 −108.384 −1.77678 −0.888391 0.459088i 0.848176π-0.848176\pi
−0.888391 + 0.459088i 0.848176π0.848176\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 −77.8888 77.8888i −1.16252 1.16252i −0.983922 0.178597i 0.942844π-0.942844\pi
−0.178597 0.983922i 0.557156π-0.557156\pi
6868 0 0
6969 0 0
7070 0 0
7171 66.7878 0.940673 0.470336 0.882487i 0.344133π-0.344133\pi
0.470336 + 0.882487i 0.344133π0.344133\pi
7272 0 0
7373 78.6969 78.6969i 1.07804 1.07804i 0.0813551 0.996685i 0.474075π-0.474075\pi
0.996685 0.0813551i 0.0259248π-0.0259248\pi
7474 0 0
7575 0 0
7676 0 0
7777 −76.0908 76.0908i −0.988192 0.988192i
7878 0 0
7979 66.0000i 0.835443i −0.908575 0.417722i 0.862829π-0.862829\pi
0.908575 0.417722i 0.137171π-0.137171\pi
8080 0 0
8181 0 0
8282 0 0
8383 84.0908 84.0908i 1.01314 1.01314i 0.0132299 0.999912i 0.495789π-0.495789\pi
0.999912 0.0132299i 0.00421132π-0.00421132\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 9.59592i 0.107819i −0.998546 0.0539097i 0.982832π-0.982832\pi
0.998546 0.0539097i 0.0171683π-0.0171683\pi
9090 0 0
9191 −31.5959 −0.347208
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 53.0806 + 53.0806i 0.547223 + 0.547223i 0.925637 0.378414i 0.123530π-0.123530\pi
−0.378414 + 0.925637i 0.623530π0.623530\pi
9898 0 0
9999 0 0
100100 0 0
101101 −155.192 −1.53655 −0.768276 0.640118i 0.778885π-0.778885\pi
−0.768276 + 0.640118i 0.778885π0.778885\pi
102102 0 0
103103 42.3587 42.3587i 0.411249 0.411249i −0.470924 0.882174i 0.656080π-0.656080\pi
0.882174 + 0.470924i 0.156080π0.156080\pi
104104 0 0
105105 0 0
106106 0 0
107107 29.8888 + 29.8888i 0.279334 + 0.279334i 0.832843 0.553509i 0.186712π-0.186712\pi
−0.553509 + 0.832843i 0.686712π0.686712\pi
108108 0 0
109109 17.1918i 0.157723i −0.996886 0.0788616i 0.974871π-0.974871\pi
0.996886 0.0788616i 0.0251285π-0.0251285\pi
110110 0 0
111111 0 0
112112 0 0
113113 134.293 134.293i 1.18843 1.18843i 0.210932 0.977501i 0.432350π-0.432350\pi
0.977501 0.210932i 0.0676497π-0.0676497\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 11.5959i 0.0974447i
120120 0 0
121121 18.1918 0.150346
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −153.237 153.237i −1.20659 1.20659i −0.972124 0.234469i 0.924665π-0.924665\pi
−0.234469 0.972124i 0.575335π-0.575335\pi
128128 0 0
129129 0 0
130130 0 0
131131 196.606 1.50081 0.750405 0.660978i 0.229858π-0.229858\pi
0.750405 + 0.660978i 0.229858π0.229858\pi
132132 0 0
133133 216.677 216.677i 1.62915 1.62915i
134134 0 0
135135 0 0
136136 0 0
137137 −81.0806 81.0806i −0.591829 0.591829i 0.346296 0.938125i 0.387439π-0.387439\pi
−0.938125 + 0.346296i 0.887439π0.887439\pi
138138 0 0
139139 37.1918i 0.267567i −0.991011 0.133784i 0.957287π-0.957287\pi
0.991011 0.133784i 0.0427127π-0.0427127\pi
140140 0 0
141141 0 0
142142 0 0
143143 28.8990 28.8990i 0.202091 0.202091i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 86.7878i 0.582468i 0.956652 + 0.291234i 0.0940658π0.0940658\pi
−0.956652 + 0.291234i 0.905934π0.905934\pi
150150 0 0
151151 266.767 1.76667 0.883336 0.468741i 0.155292π-0.155292\pi
0.883336 + 0.468741i 0.155292π0.155292\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −203.439 203.439i −1.29579 1.29579i −0.931147 0.364645i 0.881190π-0.881190\pi
−0.364645 0.931147i 0.618810π-0.618810\pi
158158 0 0
159159 0 0
160160 0 0
161161 −281.171 −1.74641
162162 0 0
163163 29.2122 29.2122i 0.179216 0.179216i −0.611798 0.791014i 0.709553π-0.709553\pi
0.791014 + 0.611798i 0.209553π0.209553\pi
164164 0 0
165165 0 0
166166 0 0
167167 116.182 + 116.182i 0.695698 + 0.695698i 0.963480 0.267781i 0.0862905π-0.0862905\pi
−0.267781 + 0.963480i 0.586290π0.586290\pi
168168 0 0
169169 157.000i 0.928994i
170170 0 0
171171 0 0
172172 0 0
173173 −60.2724 + 60.2724i −0.348396 + 0.348396i −0.859512 0.511116i 0.829232π-0.829232\pi
0.511116 + 0.859512i 0.329232π0.329232\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 176.161i 0.984141i 0.870555 + 0.492070i 0.163760π0.163760\pi
−0.870555 + 0.492070i 0.836240π0.836240\pi
180180 0 0
181181 161.959 0.894802 0.447401 0.894333i 0.352350π-0.352350\pi
0.447401 + 0.894333i 0.352350π0.352350\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −10.6061 10.6061i −0.0567172 0.0567172i
188188 0 0
189189 0 0
190190 0 0
191191 −250.747 −1.31281 −0.656406 0.754408i 0.727924π-0.727924\pi
−0.656406 + 0.754408i 0.727924π0.727924\pi
192192 0 0
193193 8.62653 8.62653i 0.0446971 0.0446971i −0.684405 0.729102i 0.739938π-0.739938\pi
0.729102 + 0.684405i 0.239938π0.239938\pi
194194 0 0
195195 0 0
196196 0 0
197197 −182.202 182.202i −0.924883 0.924883i 0.0724860 0.997369i 0.476907π-0.476907\pi
−0.997369 + 0.0724860i 0.976907π0.976907\pi
198198 0 0
199199 81.1918i 0.407999i −0.978971 0.204000i 0.934606π-0.934606\pi
0.978971 0.204000i 0.0653941π-0.0653941\pi
200200 0 0
201201 0 0
202202 0 0
203203 −23.1918 + 23.1918i −0.114245 + 0.114245i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 396.363i 1.89647i
210210 0 0
211211 199.576 0.945855 0.472928 0.881101i 0.343197π-0.343197\pi
0.472928 + 0.881101i 0.343197π0.343197\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 162.474 + 162.474i 0.748730 + 0.748730i
218218 0 0
219219 0 0
220220 0 0
221221 −4.40408 −0.0199280
222222 0 0
223223 134.944 134.944i 0.605132 0.605132i −0.336538 0.941670i 0.609256π-0.609256\pi
0.941670 + 0.336538i 0.109256π0.109256\pi
224224 0 0
225225 0 0
226226 0 0
227227 −60.8990 60.8990i −0.268277 0.268277i 0.560128 0.828406i 0.310752π-0.310752\pi
−0.828406 + 0.560128i 0.810752π0.810752\pi
228228 0 0
229229 138.767i 0.605971i −0.952995 0.302985i 0.902017π-0.902017\pi
0.952995 0.302985i 0.0979834π-0.0979834\pi
230230 0 0
231231 0 0
232232 0 0
233233 254.656 254.656i 1.09294 1.09294i 0.0977319 0.995213i 0.468841π-0.468841\pi
0.995213 0.0977319i 0.0311588π-0.0311588\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 422.788i 1.76899i −0.466553 0.884493i 0.654504π-0.654504\pi
0.466553 0.884493i 0.345496π-0.345496\pi
240240 0 0
241241 10.7673 0.0446778 0.0223389 0.999750i 0.492889π-0.492889\pi
0.0223389 + 0.999750i 0.492889π0.492889\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 82.2929 + 82.2929i 0.333169 + 0.333169i
248248 0 0
249249 0 0
250250 0 0
251251 177.818 0.708440 0.354220 0.935162i 0.384746π-0.384746\pi
0.354220 + 0.935162i 0.384746π0.384746\pi
252252 0 0
253253 257.171 257.171i 1.01649 1.01649i
254254 0 0
255255 0 0
256256 0 0
257257 142.293 + 142.293i 0.553669 + 0.553669i 0.927498 0.373829i 0.121955π-0.121955\pi
−0.373829 + 0.927498i 0.621955π0.621955\pi
258258 0 0
259259 117.980i 0.455520i
260260 0 0
261261 0 0
262262 0 0
263263 36.0000 36.0000i 0.136882 0.136882i −0.635346 0.772228i 0.719142π-0.719142\pi
0.772228 + 0.635346i 0.219142π0.219142\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 38.8286i 0.144344i 0.997392 + 0.0721721i 0.0229931π0.0229931\pi
−0.997392 + 0.0721721i 0.977007π0.977007\pi
270270 0 0
271271 −11.5755 −0.0427141 −0.0213570 0.999772i 0.506799π-0.506799\pi
−0.0213570 + 0.999772i 0.506799π0.506799\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −282.499 282.499i −1.01985 1.01985i −0.999799 0.0200549i 0.993616π-0.993616\pi
−0.0200549 0.999799i 0.506384π-0.506384\pi
278278 0 0
279279 0 0
280280 0 0
281281 −432.384 −1.53873 −0.769366 0.638808i 0.779428π-0.779428\pi
−0.769366 + 0.638808i 0.779428π0.779428\pi
282282 0 0
283283 223.868 223.868i 0.791054 0.791054i −0.190611 0.981666i 0.561047π-0.561047\pi
0.981666 + 0.190611i 0.0610470π0.0610470\pi
284284 0 0
285285 0 0
286286 0 0
287287 −392.050 392.050i −1.36603 1.36603i
288288 0 0
289289 287.384i 0.994407i
290290 0 0
291291 0 0
292292 0 0
293293 −196.767 + 196.767i −0.671561 + 0.671561i −0.958076 0.286515i 0.907503π-0.907503\pi
0.286515 + 0.958076i 0.407503π0.407503\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 106.788i 0.357150i
300300 0 0
301301 −286.384 −0.951441
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 −141.707 141.707i −0.461587 0.461587i 0.437589 0.899175i 0.355833π-0.355833\pi
−0.899175 + 0.437589i 0.855833π0.855833\pi
308308 0 0
309309 0 0
310310 0 0
311311 411.555 1.32333 0.661664 0.749800i 0.269850π-0.269850\pi
0.661664 + 0.749800i 0.269850π0.269850\pi
312312 0 0
313313 −365.939 + 365.939i −1.16913 + 1.16913i −0.186720 + 0.982413i 0.559786π0.559786\pi
−0.982413 + 0.186720i 0.940214π0.940214\pi
314314 0 0
315315 0 0
316316 0 0
317317 338.343 + 338.343i 1.06733 + 1.06733i 0.997564 + 0.0697641i 0.0222247π0.0222247\pi
0.0697641 + 0.997564i 0.477775π0.477775\pi
318318 0 0
319319 42.4245i 0.132992i
320320 0 0
321321 0 0
322322 0 0
323323 30.2020 30.2020i 0.0935048 0.0935048i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 57.9796i 0.176230i
330330 0 0
331331 −97.5551 −0.294728 −0.147364 0.989082i 0.547079π-0.547079\pi
−0.147364 + 0.989082i 0.547079π0.547079\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −72.4949 72.4949i −0.215118 0.215118i 0.591319 0.806438i 0.298607π-0.298607\pi
−0.806438 + 0.591319i 0.798607π0.798607\pi
338338 0 0
339339 0 0
340340 0 0
341341 −297.212 −0.871590
342342 0 0
343343 −95.5051 + 95.5051i −0.278441 + 0.278441i
344344 0 0
345345 0 0
346346 0 0
347347 −40.8582 40.8582i −0.117747 0.117747i 0.645778 0.763525i 0.276533π-0.276533\pi
−0.763525 + 0.645778i 0.776533π0.776533\pi
348348 0 0
349349 332.343i 0.952272i 0.879372 + 0.476136i 0.157963π0.157963\pi
−0.879372 + 0.476136i 0.842037π0.842037\pi
350350 0 0
351351 0 0
352352 0 0
353353 260.232 260.232i 0.737200 0.737200i −0.234835 0.972035i 0.575455π-0.575455\pi
0.972035 + 0.234835i 0.0754550π0.0754550\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 332.000i 0.924791i −0.886674 0.462396i 0.846990π-0.846990\pi
0.886674 0.462396i 0.153010π-0.153010\pi
360360 0 0
361361 −767.686 −2.12655
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 210.409 + 210.409i 0.573321 + 0.573321i 0.933055 0.359734i 0.117133π-0.117133\pi
−0.359734 + 0.933055i 0.617133π0.617133\pi
368368 0 0
369369 0 0
370370 0 0
371371 671.918 1.81110
372372 0 0
373373 −222.672 + 222.672i −0.596976 + 0.596976i −0.939507 0.342531i 0.888716π-0.888716\pi
0.342531 + 0.939507i 0.388716π0.388716\pi
374374 0 0
375375 0 0
376376 0 0
377377 −8.80816 8.80816i −0.0233638 0.0233638i
378378 0 0
379379 222.767i 0.587777i 0.955840 + 0.293888i 0.0949494π0.0949494\pi
−0.955840 + 0.293888i 0.905051π0.905051\pi
380380 0 0
381381 0 0
382382 0 0
383383 120.717 120.717i 0.315189 0.315189i −0.531727 0.846916i 0.678457π-0.678457\pi
0.846916 + 0.531727i 0.178457π0.178457\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 80.8082i 0.207733i 0.994591 + 0.103867i 0.0331215π0.0331215\pi
−0.994591 + 0.103867i 0.966879π0.966879\pi
390390 0 0
391391 −39.1918 −0.100235
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 21.9954 + 21.9954i 0.0554041 + 0.0554041i 0.734266 0.678862i 0.237527π-0.237527\pi
−0.678862 + 0.734266i 0.737527π0.737527\pi
398398 0 0
399399 0 0
400400 0 0
401401 267.131 0.666161 0.333081 0.942898i 0.391912π-0.391912\pi
0.333081 + 0.942898i 0.391912π0.391912\pi
402402 0 0
403403 −61.7071 + 61.7071i −0.153119 + 0.153119i
404404 0 0
405405 0 0
406406 0 0
407407 107.909 + 107.909i 0.265133 + 0.265133i
408408 0 0
409409 510.767i 1.24882i 0.781097 + 0.624410i 0.214661π0.214661\pi
−0.781097 + 0.624410i 0.785339π0.785339\pi
410410 0 0
411411 0 0
412412 0 0
413413 −561.040 + 561.040i −1.35845 + 1.35845i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 40.1204i 0.0957527i −0.998853 0.0478764i 0.984755π-0.984755\pi
0.998853 0.0478764i 0.0152454π-0.0152454\pi
420420 0 0
421421 −132.343 −0.314354 −0.157177 0.987570i 0.550239π-0.550239\pi
−0.157177 + 0.987570i 0.550239π0.550239\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 699.019 + 699.019i 1.63705 + 1.63705i
428428 0 0
429429 0 0
430430 0 0
431431 510.343 1.18409 0.592045 0.805905i 0.298321π-0.298321\pi
0.592045 + 0.805905i 0.298321π0.298321\pi
432432 0 0
433433 −443.828 + 443.828i −1.02501 + 1.02501i −0.0253266 + 0.999679i 0.508063π0.508063\pi
−0.999679 + 0.0253266i 0.991937π0.991937\pi
434434 0 0
435435 0 0
436436 0 0
437437 732.322 + 732.322i 1.67580 + 1.67580i
438438 0 0
439439 306.808i 0.698880i −0.936959 0.349440i 0.886372π-0.886372\pi
0.936959 0.349440i 0.113628π-0.113628\pi
440440 0 0
441441 0 0
442442 0 0
443443 −443.646 + 443.646i −1.00146 + 1.00146i −0.00145911 + 0.999999i 0.500464π0.500464\pi
−0.999999 + 0.00145911i 0.999536π0.999536\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 230.727i 0.513868i −0.966429 0.256934i 0.917288π-0.917288\pi
0.966429 0.256934i 0.0827122π-0.0827122\pi
450450 0 0
451451 717.171 1.59018
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −27.2827 27.2827i −0.0596995 0.0596995i 0.676627 0.736326i 0.263441π-0.263441\pi
−0.736326 + 0.676627i 0.763441π0.763441\pi
458458 0 0
459459 0 0
460460 0 0
461461 256.322 0.556014 0.278007 0.960579i 0.410326π-0.410326\pi
0.278007 + 0.960579i 0.410326π0.410326\pi
462462 0 0
463463 173.196 173.196i 0.374074 0.374074i −0.494884 0.868959i 0.664790π-0.664790\pi
0.868959 + 0.494884i 0.164790π0.164790\pi
464464 0 0
465465 0 0
466466 0 0
467467 −285.707 285.707i −0.611793 0.611793i 0.331620 0.943413i 0.392405π-0.392405\pi
−0.943413 + 0.331620i 0.892405π0.892405\pi
468468 0 0
469469 1004.69i 2.14219i
470470 0 0
471471 0 0
472472 0 0
473473 261.939 261.939i 0.553782 0.553782i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 356.404i 0.744059i −0.928221 0.372029i 0.878662π-0.878662\pi
0.928221 0.372029i 0.121338π-0.121338\pi
480480 0 0
481481 44.8082 0.0931563
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 −55.6209 55.6209i −0.114211 0.114211i 0.647691 0.761903i 0.275735π-0.275735\pi
−0.761903 + 0.647691i 0.775735π0.775735\pi
488488 0 0
489489 0 0
490490 0 0
491491 −106.141 −0.216173 −0.108086 0.994142i 0.534472π-0.534472\pi
−0.108086 + 0.994142i 0.534472π0.534472\pi
492492 0 0
493493 −3.23266 + 3.23266i −0.00655711 + 0.00655711i
494494 0 0
495495 0 0
496496 0 0
497497 −430.747 430.747i −0.866694 0.866694i
498498 0 0
499499 298.363i 0.597922i 0.954265 + 0.298961i 0.0966401π0.0966401\pi
−0.954265 + 0.298961i 0.903360π0.903360\pi
500500 0 0
501501 0 0
502502 0 0
503503 −655.101 + 655.101i −1.30239 + 1.30239i −0.375610 + 0.926778i 0.622567π0.622567\pi
−0.926778 + 0.375610i 0.877433π0.877433\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 683.110i 1.34206i 0.741429 + 0.671032i 0.234149π0.234149\pi
−0.741429 + 0.671032i 0.765851π0.765851\pi
510510 0 0
511511 −1015.11 −1.98652
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 53.0306 + 53.0306i 0.102574 + 0.102574i
518518 0 0
519519 0 0
520520 0 0
521521 6.76734 0.0129891 0.00649457 0.999979i 0.497933π-0.497933\pi
0.00649457 + 0.999979i 0.497933π0.497933\pi
522522 0 0
523523 −600.990 + 600.990i −1.14912 + 1.14912i −0.162394 + 0.986726i 0.551922π0.551922\pi
−0.986726 + 0.162394i 0.948078π0.948078\pi
524524 0 0
525525 0 0
526526 0 0
527527 22.6469 + 22.6469i 0.0429733 + 0.0429733i
528528 0 0
529529 421.302i 0.796412i
530530 0 0
531531 0 0
532532 0 0
533533 148.899 148.899i 0.279360 0.279360i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 403.394i 0.748412i
540540 0 0
541541 177.110 0.327376 0.163688 0.986512i 0.447661π-0.447661\pi
0.163688 + 0.986512i 0.447661π0.447661\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −35.3326 35.3326i −0.0645935 0.0645935i 0.674072 0.738666i 0.264544π-0.264544\pi
−0.738666 + 0.674072i 0.764544π0.764544\pi
548548 0 0
549549 0 0
550550 0 0
551551 120.808 0.219253
552552 0 0
553553 −425.666 + 425.666i −0.769740 + 0.769740i
554554 0 0
555555 0 0
556556 0 0
557557 −121.930 121.930i −0.218904 0.218904i 0.589132 0.808037i 0.299470π-0.299470\pi
−0.808037 + 0.589132i 0.799470π0.799470\pi
558558 0 0
559559 108.767i 0.194575i
560560 0 0
561561 0 0
562562 0 0
563563 436.636 436.636i 0.775552 0.775552i −0.203519 0.979071i 0.565238π-0.565238\pi
0.979071 + 0.203519i 0.0652379π0.0652379\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 394.363i 0.693081i −0.938035 0.346541i 0.887356π-0.887356\pi
0.938035 0.346541i 0.112644π-0.112644\pi
570570 0 0
571571 32.0612 0.0561493 0.0280746 0.999606i 0.491062π-0.491062\pi
0.0280746 + 0.999606i 0.491062π0.491062\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 545.848 + 545.848i 0.946010 + 0.946010i 0.998615 0.0526051i 0.0167524π-0.0167524\pi
−0.0526051 + 0.998615i 0.516752π0.516752\pi
578578 0 0
579579 0 0
580580 0 0
581581 −1084.69 −1.86693
582582 0 0
583583 −614.565 + 614.565i −1.05414 + 1.05414i
584584 0 0
585585 0 0
586586 0 0
587587 307.728 + 307.728i 0.524238 + 0.524238i 0.918848 0.394611i 0.129121π-0.129121\pi
−0.394611 + 0.918848i 0.629121π0.629121\pi
588588 0 0
589589 846.343i 1.43691i
590590 0 0
591591 0 0
592592 0 0
593593 −228.940 + 228.940i −0.386070 + 0.386070i −0.873283 0.487213i 0.838014π-0.838014\pi
0.487213 + 0.873283i 0.338014π0.338014\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 345.657i 0.577057i −0.957471 0.288529i 0.906834π-0.906834\pi
0.957471 0.288529i 0.0931660π-0.0931660\pi
600600 0 0
601601 893.069 1.48597 0.742986 0.669307i 0.233409π-0.233409\pi
0.742986 + 0.669307i 0.233409π0.233409\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 560.974 + 560.974i 0.924175 + 0.924175i 0.997321 0.0731466i 0.0233041π-0.0233041\pi
−0.0731466 + 0.997321i 0.523304π0.523304\pi
608608 0 0
609609 0 0
610610 0 0
611611 22.0204 0.0360400
612612 0 0
613613 439.448 439.448i 0.716882 0.716882i −0.251084 0.967965i 0.580787π-0.580787\pi
0.967965 + 0.251084i 0.0807869π0.0807869\pi
614614 0 0
615615 0 0
616616 0 0
617617 −199.201 199.201i −0.322854 0.322854i 0.527007 0.849861i 0.323314π-0.323314\pi
−0.849861 + 0.527007i 0.823314π0.823314\pi
618618 0 0
619619 121.151i 0.195721i 0.995200 + 0.0978603i 0.0311998π0.0311998\pi
−0.995200 + 0.0978603i 0.968800π0.968800\pi
620620 0 0
621621 0 0
622622 0 0
623623 −61.8888 + 61.8888i −0.0993399 + 0.0993399i
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 16.4449i 0.0261445i
630630 0 0
631631 247.494 0.392225 0.196112 0.980581i 0.437168π-0.437168\pi
0.196112 + 0.980581i 0.437168π0.437168\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 83.7526 + 83.7526i 0.131480 + 0.131480i
638638 0 0
639639 0 0
640640 0 0
641641 −70.6857 −0.110274 −0.0551371 0.998479i 0.517560π-0.517560\pi
−0.0551371 + 0.998479i 0.517560π0.517560\pi
642642 0 0
643643 −231.373 + 231.373i −0.359834 + 0.359834i −0.863752 0.503917i 0.831892π-0.831892\pi
0.503917 + 0.863752i 0.331892π0.331892\pi
644644 0 0
645645 0 0
646646 0 0
647647 500.958 + 500.958i 0.774278 + 0.774278i 0.978851 0.204573i 0.0655805π-0.0655805\pi
−0.204573 + 0.978851i 0.565581π0.565581\pi
648648 0 0
649649 1026.30i 1.58136i
650650 0 0
651651 0 0
652652 0 0
653653 261.031 261.031i 0.399741 0.399741i −0.478401 0.878142i 0.658783π-0.658783\pi
0.878142 + 0.478401i 0.158783π0.158783\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 800.524i 1.21476i 0.794413 + 0.607378i 0.207779π0.207779\pi
−0.794413 + 0.607378i 0.792221π0.792221\pi
660660 0 0
661661 −313.192 −0.473815 −0.236908 0.971532i 0.576134π-0.576134\pi
−0.236908 + 0.971532i 0.576134π0.576134\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 −78.3837 78.3837i −0.117517 0.117517i
668668 0 0
669669 0 0
670670 0 0
671671 −1278.71 −1.90567
672672 0 0
673673 −688.677 + 688.677i −1.02329 + 1.02329i −0.0235713 + 0.999722i 0.507504π0.507504\pi
−0.999722 + 0.0235713i 0.992496π0.992496\pi
674674 0 0
675675 0 0
676676 0 0
677677 660.767 + 660.767i 0.976023 + 0.976023i 0.999719 0.0236965i 0.00754355π-0.00754355\pi
−0.0236965 + 0.999719i 0.507544π0.507544\pi
678678 0 0
679679 684.686i 1.00837i
680680 0 0
681681 0 0
682682 0 0
683683 −952.232 + 952.232i −1.39419 + 1.39419i −0.578525 + 0.815664i 0.696372π0.696372\pi
−0.815664 + 0.578525i 0.803628π0.803628\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 255.192i 0.370380i
690690 0 0
691691 568.665 0.822960 0.411480 0.911419i 0.365012π-0.365012\pi
0.411480 + 0.911419i 0.365012π0.365012\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −54.6469 54.6469i −0.0784031 0.0784031i
698698 0 0
699699 0 0
700700 0 0
701701 125.698 0.179312 0.0896562 0.995973i 0.471423π-0.471423\pi
0.0896562 + 0.995973i 0.471423π0.471423\pi
702702 0 0
703703 −307.283 + 307.283i −0.437102 + 0.437102i
704704 0 0
705705 0 0
706706 0 0
707707 1000.91 + 1000.91i 1.41571 + 1.41571i
708708 0 0
709709 201.069i 0.283596i −0.989896 0.141798i 0.954712π-0.954712\pi
0.989896 0.141798i 0.0452883π-0.0452883\pi
710710 0 0
711711 0 0
712712 0 0
713713 −549.131 + 549.131i −0.770169 + 0.770169i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 785.576i 1.09259i −0.837591 0.546297i 0.816037π-0.816037\pi
0.837591 0.546297i 0.183963π-0.183963\pi
720720 0 0
721721 −546.384 −0.757814
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −282.459 282.459i −0.388526 0.388526i 0.485635 0.874162i 0.338588π-0.338588\pi
−0.874162 + 0.485635i 0.838588π0.838588\pi
728728 0 0
729729 0 0
730730 0 0
731731 −39.9184 −0.0546079
732732 0 0
733733 54.9036 54.9036i 0.0749025 0.0749025i −0.668663 0.743566i 0.733133π-0.733133\pi
0.743566 + 0.668663i 0.233133π0.233133\pi
734734 0 0
735735 0 0
736736 0 0
737737 −918.929 918.929i −1.24685 1.24685i
738738 0 0
739739 276.624i 0.374323i −0.982329 0.187161i 0.940071π-0.940071\pi
0.982329 0.187161i 0.0599287π-0.0599287\pi
740740 0 0
741741 0 0
742742 0 0
743743 143.101 143.101i 0.192599 0.192599i −0.604219 0.796818i 0.706515π-0.706515\pi
0.796818 + 0.604219i 0.206515π0.206515\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 385.535i 0.514733i
750750 0 0
751751 871.453 1.16039 0.580195 0.814478i 0.302976π-0.302976\pi
0.580195 + 0.814478i 0.302976π0.302976\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 304.702 + 304.702i 0.402512 + 0.402512i 0.879117 0.476605i 0.158133π-0.158133\pi
−0.476605 + 0.879117i 0.658133π0.658133\pi
758758 0 0
759759 0 0
760760 0 0
761761 −613.959 −0.806779 −0.403390 0.915028i 0.632168π-0.632168\pi
−0.403390 + 0.915028i 0.632168π0.632168\pi
762762 0 0
763763 −110.879 + 110.879i −0.145319 + 0.145319i
764764 0 0
765765 0 0
766766 0 0
767767 −213.081 213.081i −0.277810 0.277810i
768768 0 0
769769 887.412i 1.15398i 0.816750 + 0.576991i 0.195773π0.195773\pi
−0.816750 + 0.576991i 0.804227π0.804227\pi
770770 0 0
771771 0 0
772772 0 0
773773 −605.757 + 605.757i −0.783644 + 0.783644i −0.980444 0.196799i 0.936945π-0.936945\pi
0.196799 + 0.980444i 0.436945π0.436945\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 2042.22i 2.62159i
780780 0 0
781781 787.959 1.00891
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −616.463 616.463i −0.783308 0.783308i 0.197080 0.980387i 0.436854π-0.436854\pi
−0.980387 + 0.197080i 0.936854π0.936854\pi
788788 0 0
789789 0 0
790790 0 0
791791 −1732.24 −2.18994
792792 0 0
793793 −265.485 + 265.485i −0.334785 + 0.334785i
794794 0 0
795795 0 0
796796 0 0
797797 247.768 + 247.768i 0.310876 + 0.310876i 0.845249 0.534373i 0.179452π-0.179452\pi
−0.534373 + 0.845249i 0.679452π0.679452\pi
798798 0 0
799799 8.08164i 0.0101147i
800800 0 0
801801 0 0
802802 0 0
803803 928.463 928.463i 1.15624 1.15624i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1556.10i 1.92348i 0.273958 + 0.961742i 0.411667π0.411667\pi
−0.273958 + 0.961742i 0.588333π0.588333\pi
810810 0 0
811811 277.192 0.341790 0.170895 0.985289i 0.445334π-0.445334\pi
0.170895 + 0.985289i 0.445334π0.445334\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 745.898 + 745.898i 0.912972 + 0.912972i
818818 0 0
819819 0 0
820820 0 0
821821 1485.86 1.80981 0.904907 0.425610i 0.139940π-0.139940\pi
0.904907 + 0.425610i 0.139940π0.139940\pi
822822 0 0
823823 −809.519 + 809.519i −0.983620 + 0.983620i −0.999868 0.0162485i 0.994828π-0.994828\pi
0.0162485 + 0.999868i 0.494828π0.494828\pi
824824 0 0
825825 0 0
826826 0 0
827827 −1122.66 1122.66i −1.35750 1.35750i −0.876983 0.480521i 0.840447π-0.840447\pi
−0.480521 0.876983i 0.659553π-0.659553\pi
828828 0 0
829829 849.151i 1.02431i −0.858894 0.512154i 0.828848π-0.828848\pi
0.858894 0.512154i 0.171152π-0.171152\pi
830830 0 0
831831 0 0
832832 0 0
833833 30.7378 30.7378i 0.0369001 0.0369001i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 1606.26i 1.91449i −0.289270 0.957247i 0.593413π-0.593413\pi
0.289270 0.957247i 0.406587π-0.406587\pi
840840 0 0
841841 828.069 0.984625
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 −117.328 117.328i −0.138522 0.138522i
848848 0 0
849849 0 0
850850 0 0
851851 398.747 0.468563
852852 0 0
853853 632.702 632.702i 0.741737 0.741737i −0.231175 0.972912i 0.574257π-0.574257\pi
0.972912 + 0.231175i 0.0742571π0.0742571\pi
854854 0 0
855855 0 0
856856 0 0
857857 −258.879 258.879i −0.302075 0.302075i 0.539750 0.841825i 0.318519π-0.318519\pi
−0.841825 + 0.539750i 0.818519π0.818519\pi
858858 0 0
859859 534.082i 0.621748i 0.950451 + 0.310874i 0.100622π0.100622\pi
−0.950451 + 0.310874i 0.899378π0.899378\pi
860860 0 0
861861 0 0
862862 0 0
863863 711.878 711.878i 0.824887 0.824887i −0.161917 0.986804i 0.551768π-0.551768\pi
0.986804 + 0.161917i 0.0517678π0.0517678\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 778.665i 0.896048i
870870 0 0
871871 −381.576 −0.438089
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 742.590 + 742.590i 0.846739 + 0.846739i 0.989725 0.142986i 0.0456702π-0.0456702\pi
−0.142986 + 0.989725i 0.545670π0.545670\pi
878878 0 0
879879 0 0
880880 0 0
881881 1000.75 1.13592 0.567961 0.823056i 0.307733π-0.307733\pi
0.567961 + 0.823056i 0.307733π0.307733\pi
882882 0 0
883883 546.788 546.788i 0.619239 0.619239i −0.326097 0.945336i 0.605734π-0.605734\pi
0.945336 + 0.326097i 0.105734π0.105734\pi
884884 0 0
885885 0 0
886886 0 0
887887 1138.48 + 1138.48i 1.28352 + 1.28352i 0.938650 + 0.344872i 0.112078π0.112078\pi
0.344872 + 0.938650i 0.387922π0.387922\pi
888888 0 0
889889 1976.60i 2.22340i
890890 0 0
891891 0 0
892892 0 0
893893 −151.010 + 151.010i −0.169104 + 0.169104i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 90.5878i 0.100765i
900900 0 0
901901 93.6571 0.103948
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 162.706 + 162.706i 0.179389 + 0.179389i 0.791090 0.611700i 0.209514π-0.209514\pi
−0.611700 + 0.791090i 0.709514π0.709514\pi
908908 0 0
909909 0 0
910910 0 0
911911 386.988 0.424794 0.212397 0.977183i 0.431873π-0.431873\pi
0.212397 + 0.977183i 0.431873π0.431873\pi
912912 0 0
913913 992.100 992.100i 1.08664 1.08664i
914914 0 0
915915 0 0
916916 0 0
917917 −1268.01 1268.01i −1.38278 1.38278i
918918 0 0
919919 1101.80i 1.19891i 0.800409 + 0.599454i 0.204615π0.204615\pi
−0.800409 + 0.599454i 0.795385π0.795385\pi
920920 0 0
921921 0 0
922922 0 0
923923 163.596 163.596i 0.177244 0.177244i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 261.273i 0.281242i −0.990064 0.140621i 0.955090π-0.955090\pi
0.990064 0.140621i 0.0449098π-0.0449098\pi
930930 0 0
931931 −1148.71 −1.23384
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −57.7980 57.7980i −0.0616841 0.0616841i 0.675592 0.737276i 0.263888π-0.263888\pi
−0.737276 + 0.675592i 0.763888π0.763888\pi
938938 0 0
939939 0 0
940940 0 0
941941 −399.837 −0.424906 −0.212453 0.977171i 0.568145π-0.568145\pi
−0.212453 + 0.977171i 0.568145π0.568145\pi
942942 0 0
943943 1325.05 1325.05i 1.40514 1.40514i
944944 0 0
945945 0 0
946946 0 0
947947 464.958 + 464.958i 0.490980 + 0.490980i 0.908615 0.417635i 0.137141π-0.137141\pi
−0.417635 + 0.908615i 0.637141π0.637141\pi
948948 0 0
949949 385.535i 0.406254i
950950 0 0
951951 0 0
952952 0 0
953953 −627.242 + 627.242i −0.658176 + 0.658176i −0.954948 0.296772i 0.904090π-0.904090\pi
0.296772 + 0.954948i 0.404090π0.404090\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 1045.86i 1.09057i
960960 0 0
961961 −326.371 −0.339616
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −1334.02 1334.02i −1.37955 1.37955i −0.845375 0.534173i 0.820623π-0.820623\pi
−0.534173 0.845375i 0.679377π-0.679377\pi
968968 0 0
969969 0 0
970970 0 0
971971 1489.17 1.53365 0.766823 0.641859i 0.221837π-0.221837\pi
0.766823 + 0.641859i 0.221837π0.221837\pi
972972 0 0
973973 −239.868 + 239.868i −0.246525 + 0.246525i
974974 0 0
975975 0 0
976976 0 0
977977 1134.66 + 1134.66i 1.16137 + 1.16137i 0.984176 + 0.177191i 0.0567011π0.0567011\pi
0.177191 + 0.984176i 0.443299π0.443299\pi
978978 0 0
979979 113.212i 0.115641i
980980 0 0
981981 0 0
982982 0 0
983983 261.485 261.485i 0.266007 0.266007i −0.561482 0.827489i 0.689769π-0.689769\pi
0.827489 + 0.561482i 0.189769π0.189769\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 967.918i 0.978684i
990990 0 0
991991 −950.645 −0.959278 −0.479639 0.877466i 0.659232π-0.659232\pi
−0.479639 + 0.877466i 0.659232π0.659232\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −96.0566 96.0566i −0.0963457 0.0963457i 0.657291 0.753637i 0.271702π-0.271702\pi
−0.753637 + 0.657291i 0.771702π0.771702\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.3.v.j.1657.1 4
3.2 odd 2 600.3.u.a.457.2 yes 4
5.2 odd 4 1800.3.v.q.793.2 4
5.3 odd 4 inner 1800.3.v.j.793.1 4
5.4 even 2 1800.3.v.q.1657.2 4
12.11 even 2 1200.3.bg.m.1057.1 4
15.2 even 4 600.3.u.f.193.1 yes 4
15.8 even 4 600.3.u.a.193.2 4
15.14 odd 2 600.3.u.f.457.1 yes 4
60.23 odd 4 1200.3.bg.m.193.1 4
60.47 odd 4 1200.3.bg.b.193.2 4
60.59 even 2 1200.3.bg.b.1057.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.3.u.a.193.2 4 15.8 even 4
600.3.u.a.457.2 yes 4 3.2 odd 2
600.3.u.f.193.1 yes 4 15.2 even 4
600.3.u.f.457.1 yes 4 15.14 odd 2
1200.3.bg.b.193.2 4 60.47 odd 4
1200.3.bg.b.1057.2 4 60.59 even 2
1200.3.bg.m.193.1 4 60.23 odd 4
1200.3.bg.m.1057.1 4 12.11 even 2
1800.3.v.j.793.1 4 5.3 odd 4 inner
1800.3.v.j.1657.1 4 1.1 even 1 trivial
1800.3.v.q.793.2 4 5.2 odd 4
1800.3.v.q.1657.2 4 5.4 even 2