Properties

Label 1800.3.v
Level $1800$
Weight $3$
Character orbit 1800.v
Rep. character $\chi_{1800}(793,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $90$
Newform subspaces $22$
Sturm bound $1080$
Trace bound $31$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.v (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 22 \)
Sturm bound: \(1080\)
Trace bound: \(31\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1800, [\chi])\).

Total New Old
Modular forms 1536 90 1446
Cusp forms 1344 90 1254
Eisenstein series 192 0 192

Trace form

\( 90 q + 8 q^{7} + 16 q^{11} + 22 q^{13} + 14 q^{17} - 32 q^{31} - 70 q^{37} - 64 q^{41} - 48 q^{43} - 160 q^{47} - 78 q^{53} - 312 q^{61} + 224 q^{67} + 608 q^{71} + 106 q^{73} + 312 q^{77} + 424 q^{83}+ \cdots - 118 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1800.3.v.a 1800.v 5.c $2$ $49.046$ \(\Q(\sqrt{-1}) \) None 200.3.l.a \(0\) \(0\) \(0\) \(-14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-7 i-7)q^{7}+4 q^{11}+(12 i-12)q^{13}+\cdots\)
1800.3.v.b 1800.v 5.c $2$ $49.046$ \(\Q(\sqrt{-1}) \) None 1800.3.v.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4 i-4)q^{7}-16 q^{11}+(-12 i+12)q^{13}+\cdots\)
1800.3.v.c 1800.v 5.c $2$ $49.046$ \(\Q(\sqrt{-1}) \) None 1800.3.v.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4 i-4)q^{7}+16 q^{11}+(-12 i+12)q^{13}+\cdots\)
1800.3.v.d 1800.v 5.c $2$ $49.046$ \(\Q(\sqrt{-1}) \) None 40.3.l.a \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q+(3 i+3)q^{7}+14 q^{11}+(-3 i+3)q^{13}+\cdots\)
1800.3.v.e 1800.v 5.c $2$ $49.046$ \(\Q(\sqrt{-1}) \) None 1800.3.v.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4 i+4)q^{7}-16 q^{11}+(12 i-12)q^{13}+\cdots\)
1800.3.v.f 1800.v 5.c $2$ $49.046$ \(\Q(\sqrt{-1}) \) None 1800.3.v.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4 i+4)q^{7}+16 q^{11}+(12 i-12)q^{13}+\cdots\)
1800.3.v.g 1800.v 5.c $2$ $49.046$ \(\Q(\sqrt{-1}) \) None 200.3.l.a \(0\) \(0\) \(0\) \(14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(7 i+7)q^{7}+4 q^{11}+(-12 i+12)q^{13}+\cdots\)
1800.3.v.h 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 200.3.l.d \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4+4\beta _{1}-4\beta _{2})q^{7}+(-5-6\beta _{1}+\cdots)q^{11}+\cdots\)
1800.3.v.i 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 600.3.u.b \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4+4\beta _{2}+3\beta _{3})q^{7}+(2-4\beta _{1}+\cdots)q^{11}+\cdots\)
1800.3.v.j 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 600.3.u.a \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4+4\beta _{2}+\beta _{3})q^{7}+(2+2\beta _{1}-2\beta _{3})q^{11}+\cdots\)
1800.3.v.k 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{41})\) None 40.3.l.b \(0\) \(0\) \(0\) \(-14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-3+3\beta _{1}+\beta _{3})q^{7}+(-6+\beta _{1}+\cdots)q^{11}+\cdots\)
1800.3.v.l 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 600.3.u.c \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2+2\beta _{2}+\beta _{3})q^{7}+(2+2\beta _{1}-2\beta _{3})q^{11}+\cdots\)
1800.3.v.m 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 600.3.u.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2-2\beta _{2}+\beta _{3})q^{7}+(2-2\beta _{1}+2\beta _{3})q^{11}+\cdots\)
1800.3.v.n 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 120.3.u.a \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(3-3\beta _{1}+\beta _{2}-\beta _{3})q^{7}+(4-\beta _{3})q^{11}+\cdots\)
1800.3.v.o 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 200.3.l.d \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4+4\beta _{1}+4\beta _{2})q^{7}+(-5+6\beta _{1}+\cdots)q^{11}+\cdots\)
1800.3.v.p 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 600.3.u.b \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4-4\beta _{2}-3\beta _{3})q^{7}+(2-4\beta _{1}+4\beta _{3})q^{11}+\cdots\)
1800.3.v.q 1800.v 5.c $4$ $49.046$ \(\Q(i, \sqrt{6})\) None 600.3.u.a \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4-4\beta _{2}+\beta _{3})q^{7}+(2-2\beta _{1}+2\beta _{3})q^{11}+\cdots\)
1800.3.v.r 1800.v 5.c $6$ $49.046$ 6.0.4315964416.1 None 360.3.v.d \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}+\beta _{2})q^{7}+(-4+\beta _{4})q^{11}+\cdots\)
1800.3.v.s 1800.v 5.c $6$ $49.046$ 6.0.4315964416.1 None 360.3.v.d \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}+\beta _{2})q^{7}+(4-\beta _{4})q^{11}+(2+\cdots)q^{13}+\cdots\)
1800.3.v.t 1800.v 5.c $8$ $49.046$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 120.3.u.b \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{4})q^{7}+(-4+\beta _{2}-\beta _{3}+\beta _{5}+\cdots)q^{11}+\cdots\)
1800.3.v.u 1800.v 5.c $8$ $49.046$ 8.0.\(\cdots\).28 None 1800.3.v.u \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2\beta _{1}+\beta _{3})q^{7}+(-3\beta _{1}+\beta _{3}+3\beta _{5}+\cdots)q^{11}+\cdots\)
1800.3.v.v 1800.v 5.c $8$ $49.046$ 8.0.\(\cdots\).28 None 1800.3.v.u \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2\beta _{1}+\beta _{3})q^{7}+(3\beta _{1}-\beta _{3}-3\beta _{5}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)