Properties

Label 1800.3.c.a.449.1
Level $1800$
Weight $3$
Character 1800.449
Analytic conductor $49.046$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,3,Mod(449,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1800.449
Dual form 1800.3.c.a.449.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.0000i q^{7} -5.65685i q^{11} -8.00000i q^{13} +9.89949 q^{17} +16.0000 q^{19} +39.5980 q^{23} +29.6985i q^{29} -4.00000 q^{31} -30.0000i q^{37} -21.2132i q^{41} -8.00000i q^{43} -16.9706 q^{47} -95.0000 q^{49} -49.4975 q^{53} -79.1960i q^{59} -14.0000 q^{61} +88.0000i q^{67} -28.2843i q^{71} -80.0000i q^{73} -67.8823 q^{77} -100.000 q^{79} +130.108 q^{83} -148.492i q^{89} -96.0000 q^{91} +112.000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 64 q^{19} - 16 q^{31} - 380 q^{49} - 56 q^{61} - 400 q^{79} - 384 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 12.0000i − 1.71429i −0.515079 0.857143i \(-0.672237\pi\)
0.515079 0.857143i \(-0.327763\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.65685i − 0.514259i −0.966377 0.257130i \(-0.917223\pi\)
0.966377 0.257130i \(-0.0827768\pi\)
\(12\) 0 0
\(13\) − 8.00000i − 0.615385i −0.951486 0.307692i \(-0.900443\pi\)
0.951486 0.307692i \(-0.0995567\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 9.89949 0.582323 0.291162 0.956674i \(-0.405958\pi\)
0.291162 + 0.956674i \(0.405958\pi\)
\(18\) 0 0
\(19\) 16.0000 0.842105 0.421053 0.907036i \(-0.361661\pi\)
0.421053 + 0.907036i \(0.361661\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 39.5980 1.72165 0.860826 0.508900i \(-0.169948\pi\)
0.860826 + 0.508900i \(0.169948\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 29.6985i 1.02409i 0.858960 + 0.512043i \(0.171111\pi\)
−0.858960 + 0.512043i \(0.828889\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.129032 −0.0645161 0.997917i \(-0.520550\pi\)
−0.0645161 + 0.997917i \(0.520550\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 30.0000i − 0.810811i −0.914137 0.405405i \(-0.867130\pi\)
0.914137 0.405405i \(-0.132870\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 21.2132i − 0.517395i −0.965958 0.258698i \(-0.916707\pi\)
0.965958 0.258698i \(-0.0832933\pi\)
\(42\) 0 0
\(43\) − 8.00000i − 0.186047i −0.995664 0.0930233i \(-0.970347\pi\)
0.995664 0.0930233i \(-0.0296531\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −16.9706 −0.361076 −0.180538 0.983568i \(-0.557784\pi\)
−0.180538 + 0.983568i \(0.557784\pi\)
\(48\) 0 0
\(49\) −95.0000 −1.93878
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −49.4975 −0.933915 −0.466957 0.884280i \(-0.654650\pi\)
−0.466957 + 0.884280i \(0.654650\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 79.1960i − 1.34230i −0.741320 0.671152i \(-0.765800\pi\)
0.741320 0.671152i \(-0.234200\pi\)
\(60\) 0 0
\(61\) −14.0000 −0.229508 −0.114754 0.993394i \(-0.536608\pi\)
−0.114754 + 0.993394i \(0.536608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 88.0000i 1.31343i 0.754138 + 0.656716i \(0.228055\pi\)
−0.754138 + 0.656716i \(0.771945\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 28.2843i − 0.398370i −0.979962 0.199185i \(-0.936171\pi\)
0.979962 0.199185i \(-0.0638295\pi\)
\(72\) 0 0
\(73\) − 80.0000i − 1.09589i −0.836514 0.547945i \(-0.815410\pi\)
0.836514 0.547945i \(-0.184590\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −67.8823 −0.881588
\(78\) 0 0
\(79\) −100.000 −1.26582 −0.632911 0.774224i \(-0.718140\pi\)
−0.632911 + 0.774224i \(0.718140\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 130.108 1.56756 0.783781 0.621037i \(-0.213288\pi\)
0.783781 + 0.621037i \(0.213288\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 148.492i − 1.66845i −0.551421 0.834227i \(-0.685914\pi\)
0.551421 0.834227i \(-0.314086\pi\)
\(90\) 0 0
\(91\) −96.0000 −1.05495
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 112.000i 1.15464i 0.816518 + 0.577320i \(0.195901\pi\)
−0.816518 + 0.577320i \(0.804099\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 63.6396i 0.630095i 0.949076 + 0.315048i \(0.102020\pi\)
−0.949076 + 0.315048i \(0.897980\pi\)
\(102\) 0 0
\(103\) − 44.0000i − 0.427184i −0.976923 0.213592i \(-0.931484\pi\)
0.976923 0.213592i \(-0.0685164\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −136.000 −1.24771 −0.623853 0.781542i \(-0.714434\pi\)
−0.623853 + 0.781542i \(0.714434\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 21.2132 0.187727 0.0938637 0.995585i \(-0.470078\pi\)
0.0938637 + 0.995585i \(0.470078\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 118.794i − 0.998268i
\(120\) 0 0
\(121\) 89.0000 0.735537
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 20.0000i 0.157480i 0.996895 + 0.0787402i \(0.0250897\pi\)
−0.996895 + 0.0787402i \(0.974910\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 56.5685i 0.431821i 0.976413 + 0.215910i \(0.0692719\pi\)
−0.976413 + 0.215910i \(0.930728\pi\)
\(132\) 0 0
\(133\) − 192.000i − 1.44361i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 89.0955 0.650332 0.325166 0.945657i \(-0.394580\pi\)
0.325166 + 0.945657i \(0.394580\pi\)
\(138\) 0 0
\(139\) −120.000 −0.863309 −0.431655 0.902039i \(-0.642070\pi\)
−0.431655 + 0.902039i \(0.642070\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −45.2548 −0.316467
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 128.693i − 0.863714i −0.901942 0.431857i \(-0.857858\pi\)
0.901942 0.431857i \(-0.142142\pi\)
\(150\) 0 0
\(151\) −196.000 −1.29801 −0.649007 0.760783i \(-0.724815\pi\)
−0.649007 + 0.760783i \(0.724815\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 238.000i − 1.51592i −0.652299 0.757962i \(-0.726195\pi\)
0.652299 0.757962i \(-0.273805\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 475.176i − 2.95140i
\(162\) 0 0
\(163\) − 168.000i − 1.03067i −0.856987 0.515337i \(-0.827667\pi\)
0.856987 0.515337i \(-0.172333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 169.706 1.01620 0.508101 0.861298i \(-0.330348\pi\)
0.508101 + 0.861298i \(0.330348\pi\)
\(168\) 0 0
\(169\) 105.000 0.621302
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 207.889 1.20167 0.600836 0.799372i \(-0.294834\pi\)
0.600836 + 0.799372i \(0.294834\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 203.647i 1.13769i 0.822444 + 0.568846i \(0.192610\pi\)
−0.822444 + 0.568846i \(0.807390\pi\)
\(180\) 0 0
\(181\) −216.000 −1.19337 −0.596685 0.802475i \(-0.703516\pi\)
−0.596685 + 0.802475i \(0.703516\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 56.0000i − 0.299465i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 373.352i 1.95472i 0.211573 + 0.977362i \(0.432141\pi\)
−0.211573 + 0.977362i \(0.567859\pi\)
\(192\) 0 0
\(193\) − 178.000i − 0.922280i −0.887327 0.461140i \(-0.847441\pi\)
0.887327 0.461140i \(-0.152559\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −207.889 −1.05528 −0.527638 0.849469i \(-0.676922\pi\)
−0.527638 + 0.849469i \(0.676922\pi\)
\(198\) 0 0
\(199\) −196.000 −0.984925 −0.492462 0.870334i \(-0.663903\pi\)
−0.492462 + 0.870334i \(0.663903\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 356.382 1.75558
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 90.5097i − 0.433061i
\(210\) 0 0
\(211\) −56.0000 −0.265403 −0.132701 0.991156i \(-0.542365\pi\)
−0.132701 + 0.991156i \(0.542365\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 48.0000i 0.221198i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 79.1960i − 0.358353i
\(222\) 0 0
\(223\) 28.0000i 0.125561i 0.998027 + 0.0627803i \(0.0199967\pi\)
−0.998027 + 0.0627803i \(0.980003\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 84.8528 0.373801 0.186900 0.982379i \(-0.440156\pi\)
0.186900 + 0.982379i \(0.440156\pi\)
\(228\) 0 0
\(229\) −184.000 −0.803493 −0.401747 0.915751i \(-0.631597\pi\)
−0.401747 + 0.915751i \(0.631597\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −304.056 −1.30496 −0.652481 0.757806i \(-0.726272\pi\)
−0.652481 + 0.757806i \(0.726272\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 226.274i − 0.946754i −0.880860 0.473377i \(-0.843035\pi\)
0.880860 0.473377i \(-0.156965\pi\)
\(240\) 0 0
\(241\) 384.000 1.59336 0.796680 0.604401i \(-0.206587\pi\)
0.796680 + 0.604401i \(0.206587\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 128.000i − 0.518219i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 197.990i − 0.788804i −0.918938 0.394402i \(-0.870952\pi\)
0.918938 0.394402i \(-0.129048\pi\)
\(252\) 0 0
\(253\) − 224.000i − 0.885375i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −91.9239 −0.357680 −0.178840 0.983878i \(-0.557235\pi\)
−0.178840 + 0.983878i \(0.557235\pi\)
\(258\) 0 0
\(259\) −360.000 −1.38996
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 395.980 1.50563 0.752813 0.658234i \(-0.228696\pi\)
0.752813 + 0.658234i \(0.228696\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 83.4386i 0.310181i 0.987900 + 0.155090i \(0.0495669\pi\)
−0.987900 + 0.155090i \(0.950433\pi\)
\(270\) 0 0
\(271\) 140.000 0.516605 0.258303 0.966064i \(-0.416837\pi\)
0.258303 + 0.966064i \(0.416837\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 248.000i 0.895307i 0.894207 + 0.447653i \(0.147740\pi\)
−0.894207 + 0.447653i \(0.852260\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 168.291i − 0.598902i −0.954112 0.299451i \(-0.903197\pi\)
0.954112 0.299451i \(-0.0968035\pi\)
\(282\) 0 0
\(283\) 368.000i 1.30035i 0.759783 + 0.650177i \(0.225305\pi\)
−0.759783 + 0.650177i \(0.774695\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −254.558 −0.886963
\(288\) 0 0
\(289\) −191.000 −0.660900
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −207.889 −0.709520 −0.354760 0.934957i \(-0.615437\pi\)
−0.354760 + 0.934957i \(0.615437\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 316.784i − 1.05948i
\(300\) 0 0
\(301\) −96.0000 −0.318937
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 552.000i 1.79805i 0.437902 + 0.899023i \(0.355722\pi\)
−0.437902 + 0.899023i \(0.644278\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 33.9411i 0.109135i 0.998510 + 0.0545677i \(0.0173781\pi\)
−0.998510 + 0.0545677i \(0.982622\pi\)
\(312\) 0 0
\(313\) − 222.000i − 0.709265i −0.935006 0.354633i \(-0.884606\pi\)
0.935006 0.354633i \(-0.115394\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −445.477 −1.40529 −0.702646 0.711540i \(-0.747998\pi\)
−0.702646 + 0.711540i \(0.747998\pi\)
\(318\) 0 0
\(319\) 168.000 0.526646
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 158.392 0.490377
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 203.647i 0.618987i
\(330\) 0 0
\(331\) −520.000 −1.57100 −0.785498 0.618864i \(-0.787593\pi\)
−0.785498 + 0.618864i \(0.787593\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 48.0000i − 0.142433i −0.997461 0.0712166i \(-0.977312\pi\)
0.997461 0.0712166i \(-0.0226882\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.6274i 0.0663561i
\(342\) 0 0
\(343\) 552.000i 1.60933i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 356.382 1.02704 0.513518 0.858079i \(-0.328342\pi\)
0.513518 + 0.858079i \(0.328342\pi\)
\(348\) 0 0
\(349\) −210.000 −0.601719 −0.300860 0.953668i \(-0.597274\pi\)
−0.300860 + 0.953668i \(0.597274\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −272.943 −0.773210 −0.386605 0.922245i \(-0.626352\pi\)
−0.386605 + 0.922245i \(0.626352\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 593.970i − 1.65451i −0.561825 0.827256i \(-0.689901\pi\)
0.561825 0.827256i \(-0.310099\pi\)
\(360\) 0 0
\(361\) −105.000 −0.290859
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 172.000i − 0.468665i −0.972157 0.234332i \(-0.924710\pi\)
0.972157 0.234332i \(-0.0752904\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 593.970i 1.60100i
\(372\) 0 0
\(373\) 2.00000i 0.00536193i 0.999996 + 0.00268097i \(0.000853379\pi\)
−0.999996 + 0.00268097i \(0.999147\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 237.588 0.630207
\(378\) 0 0
\(379\) 736.000 1.94195 0.970976 0.239176i \(-0.0768773\pi\)
0.970976 + 0.239176i \(0.0768773\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 459.619i 1.18154i 0.806840 + 0.590770i \(0.201176\pi\)
−0.806840 + 0.590770i \(0.798824\pi\)
\(390\) 0 0
\(391\) 392.000 1.00256
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 338.000i − 0.851385i −0.904868 0.425693i \(-0.860030\pi\)
0.904868 0.425693i \(-0.139970\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 148.492i − 0.370305i −0.982710 0.185153i \(-0.940722\pi\)
0.982710 0.185153i \(-0.0592780\pi\)
\(402\) 0 0
\(403\) 32.0000i 0.0794045i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −169.706 −0.416967
\(408\) 0 0
\(409\) −144.000 −0.352078 −0.176039 0.984383i \(-0.556329\pi\)
−0.176039 + 0.984383i \(0.556329\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −950.352 −2.30109
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 763.675i 1.82261i 0.411727 + 0.911307i \(0.364926\pi\)
−0.411727 + 0.911307i \(0.635074\pi\)
\(420\) 0 0
\(421\) 680.000 1.61520 0.807601 0.589729i \(-0.200766\pi\)
0.807601 + 0.589729i \(0.200766\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 168.000i 0.393443i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.65685i 0.0131250i 0.999978 + 0.00656248i \(0.00208892\pi\)
−0.999978 + 0.00656248i \(0.997911\pi\)
\(432\) 0 0
\(433\) − 482.000i − 1.11316i −0.830793 0.556582i \(-0.812113\pi\)
0.830793 0.556582i \(-0.187887\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 633.568 1.44981
\(438\) 0 0
\(439\) 756.000 1.72210 0.861048 0.508524i \(-0.169809\pi\)
0.861048 + 0.508524i \(0.169809\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 197.990 0.446930 0.223465 0.974712i \(-0.428263\pi\)
0.223465 + 0.974712i \(0.428263\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 77.7817i 0.173233i 0.996242 + 0.0866166i \(0.0276055\pi\)
−0.996242 + 0.0866166i \(0.972394\pi\)
\(450\) 0 0
\(451\) −120.000 −0.266075
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 464.000i − 1.01532i −0.861558 0.507659i \(-0.830511\pi\)
0.861558 0.507659i \(-0.169489\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 49.4975i 0.107370i 0.998558 + 0.0536849i \(0.0170967\pi\)
−0.998558 + 0.0536849i \(0.982903\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.0431965i 0.999767 + 0.0215983i \(0.00687548\pi\)
−0.999767 + 0.0215983i \(0.993125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 695.793 1.48992 0.744960 0.667109i \(-0.232468\pi\)
0.744960 + 0.667109i \(0.232468\pi\)
\(468\) 0 0
\(469\) 1056.00 2.25160
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −45.2548 −0.0956762
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 673.166i 1.40536i 0.711508 + 0.702678i \(0.248013\pi\)
−0.711508 + 0.702678i \(0.751987\pi\)
\(480\) 0 0
\(481\) −240.000 −0.498960
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 388.000i − 0.796715i −0.917230 0.398357i \(-0.869580\pi\)
0.917230 0.398357i \(-0.130420\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 294.000i 0.596349i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −339.411 −0.682920
\(498\) 0 0
\(499\) −96.0000 −0.192385 −0.0961924 0.995363i \(-0.530666\pi\)
−0.0961924 + 0.995363i \(0.530666\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 424.264 0.843467 0.421734 0.906720i \(-0.361422\pi\)
0.421734 + 0.906720i \(0.361422\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 309.713i − 0.608473i −0.952597 0.304237i \(-0.901599\pi\)
0.952597 0.304237i \(-0.0984013\pi\)
\(510\) 0 0
\(511\) −960.000 −1.87867
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 96.0000i 0.185687i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 722.663i 1.38707i 0.720423 + 0.693535i \(0.243948\pi\)
−0.720423 + 0.693535i \(0.756052\pi\)
\(522\) 0 0
\(523\) 352.000i 0.673040i 0.941676 + 0.336520i \(0.109250\pi\)
−0.941676 + 0.336520i \(0.890750\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −39.5980 −0.0751385
\(528\) 0 0
\(529\) 1039.00 1.96408
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −169.706 −0.318397
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 537.401i 0.997034i
\(540\) 0 0
\(541\) 936.000 1.73013 0.865065 0.501660i \(-0.167277\pi\)
0.865065 + 0.501660i \(0.167277\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 56.0000i − 0.102377i −0.998689 0.0511883i \(-0.983699\pi\)
0.998689 0.0511883i \(-0.0163009\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 475.176i 0.862388i
\(552\) 0 0
\(553\) 1200.00i 2.16998i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 321.026 0.576349 0.288175 0.957578i \(-0.406952\pi\)
0.288175 + 0.957578i \(0.406952\pi\)
\(558\) 0 0
\(559\) −64.0000 −0.114490
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −469.519 −0.833959 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 408.708i 0.718291i 0.933282 + 0.359146i \(0.116932\pi\)
−0.933282 + 0.359146i \(0.883068\pi\)
\(570\) 0 0
\(571\) 816.000 1.42907 0.714536 0.699599i \(-0.246638\pi\)
0.714536 + 0.699599i \(0.246638\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 242.000i − 0.419411i −0.977765 0.209705i \(-0.932750\pi\)
0.977765 0.209705i \(-0.0672505\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 1561.29i − 2.68725i
\(582\) 0 0
\(583\) 280.000i 0.480274i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −395.980 −0.674582 −0.337291 0.941400i \(-0.609511\pi\)
−0.337291 + 0.941400i \(0.609511\pi\)
\(588\) 0 0
\(589\) −64.0000 −0.108659
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 205.061 0.345803 0.172901 0.984939i \(-0.444686\pi\)
0.172901 + 0.984939i \(0.444686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 593.970i − 0.991602i −0.868436 0.495801i \(-0.834875\pi\)
0.868436 0.495801i \(-0.165125\pi\)
\(600\) 0 0
\(601\) 286.000 0.475874 0.237937 0.971281i \(-0.423529\pi\)
0.237937 + 0.971281i \(0.423529\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 100.000i 0.164745i 0.996602 + 0.0823723i \(0.0262497\pi\)
−0.996602 + 0.0823723i \(0.973750\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 135.765i 0.222200i
\(612\) 0 0
\(613\) 770.000i 1.25612i 0.778166 + 0.628059i \(0.216150\pi\)
−0.778166 + 0.628059i \(0.783850\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −869.741 −1.40963 −0.704815 0.709391i \(-0.748970\pi\)
−0.704815 + 0.709391i \(0.748970\pi\)
\(618\) 0 0
\(619\) −256.000 −0.413570 −0.206785 0.978386i \(-0.566300\pi\)
−0.206785 + 0.978386i \(0.566300\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1781.91 −2.86021
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 296.985i − 0.472154i
\(630\) 0 0
\(631\) 196.000 0.310618 0.155309 0.987866i \(-0.450363\pi\)
0.155309 + 0.987866i \(0.450363\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 760.000i 1.19309i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 643.467i 1.00385i 0.864911 + 0.501924i \(0.167374\pi\)
−0.864911 + 0.501924i \(0.832626\pi\)
\(642\) 0 0
\(643\) 120.000i 0.186625i 0.995637 + 0.0933126i \(0.0297456\pi\)
−0.995637 + 0.0933126i \(0.970254\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −707.107 −1.09290 −0.546450 0.837491i \(-0.684021\pi\)
−0.546450 + 0.837491i \(0.684021\pi\)
\(648\) 0 0
\(649\) −448.000 −0.690293
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −131.522 −0.201412 −0.100706 0.994916i \(-0.532110\pi\)
−0.100706 + 0.994916i \(0.532110\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1187.94i 1.80264i 0.433154 + 0.901320i \(0.357400\pi\)
−0.433154 + 0.901320i \(0.642600\pi\)
\(660\) 0 0
\(661\) −130.000 −0.196672 −0.0983359 0.995153i \(-0.531352\pi\)
−0.0983359 + 0.995153i \(0.531352\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1176.00i 1.76312i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 79.1960i 0.118027i
\(672\) 0 0
\(673\) 610.000i 0.906389i 0.891412 + 0.453195i \(0.149716\pi\)
−0.891412 + 0.453195i \(0.850284\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −603.869 −0.891978 −0.445989 0.895038i \(-0.647148\pi\)
−0.445989 + 0.895038i \(0.647148\pi\)
\(678\) 0 0
\(679\) 1344.00 1.97938
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 989.949 1.44941 0.724707 0.689057i \(-0.241975\pi\)
0.724707 + 0.689057i \(0.241975\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 395.980i 0.574717i
\(690\) 0 0
\(691\) 632.000 0.914616 0.457308 0.889308i \(-0.348814\pi\)
0.457308 + 0.889308i \(0.348814\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 210.000i − 0.301291i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 29.6985i − 0.0423659i −0.999776 0.0211829i \(-0.993257\pi\)
0.999776 0.0211829i \(-0.00674324\pi\)
\(702\) 0 0
\(703\) − 480.000i − 0.682788i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 763.675 1.08016
\(708\) 0 0
\(709\) −56.0000 −0.0789845 −0.0394922 0.999220i \(-0.512574\pi\)
−0.0394922 + 0.999220i \(0.512574\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −158.392 −0.222149
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 616.597i 0.857576i 0.903405 + 0.428788i \(0.141059\pi\)
−0.903405 + 0.428788i \(0.858941\pi\)
\(720\) 0 0
\(721\) −528.000 −0.732316
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 372.000i − 0.511692i −0.966718 0.255846i \(-0.917646\pi\)
0.966718 0.255846i \(-0.0823540\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 79.1960i − 0.108339i
\(732\) 0 0
\(733\) − 520.000i − 0.709413i −0.934978 0.354707i \(-0.884581\pi\)
0.934978 0.354707i \(-0.115419\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 497.803 0.675445
\(738\) 0 0
\(739\) −1040.00 −1.40731 −0.703654 0.710543i \(-0.748449\pi\)
−0.703654 + 0.710543i \(0.748449\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −622.254 −0.837489 −0.418744 0.908104i \(-0.637530\pi\)
−0.418744 + 0.908104i \(0.637530\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −180.000 −0.239680 −0.119840 0.992793i \(-0.538238\pi\)
−0.119840 + 0.992793i \(0.538238\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 152.000i − 0.200793i −0.994948 0.100396i \(-0.967989\pi\)
0.994948 0.100396i \(-0.0320111\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 544.472i 0.715469i 0.933823 + 0.357735i \(0.116451\pi\)
−0.933823 + 0.357735i \(0.883549\pi\)
\(762\) 0 0
\(763\) 1632.00i 2.13893i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −633.568 −0.826033
\(768\) 0 0
\(769\) 526.000 0.684005 0.342003 0.939699i \(-0.388895\pi\)
0.342003 + 0.939699i \(0.388895\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1421.28 1.83866 0.919330 0.393487i \(-0.128731\pi\)
0.919330 + 0.393487i \(0.128731\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 339.411i − 0.435701i
\(780\) 0 0
\(781\) −160.000 −0.204866
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1072.00i − 1.36213i −0.732221 0.681067i \(-0.761516\pi\)
0.732221 0.681067i \(-0.238484\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 254.558i − 0.321819i
\(792\) 0 0
\(793\) 112.000i 0.141236i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1534.42 1.92525 0.962623 0.270843i \(-0.0873026\pi\)
0.962623 + 0.270843i \(0.0873026\pi\)
\(798\) 0 0
\(799\) −168.000 −0.210263
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −452.548 −0.563572
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 134.350i 0.166070i 0.996547 + 0.0830348i \(0.0264613\pi\)
−0.996547 + 0.0830348i \(0.973539\pi\)
\(810\) 0 0
\(811\) 544.000 0.670777 0.335388 0.942080i \(-0.391132\pi\)
0.335388 + 0.942080i \(0.391132\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 128.000i − 0.156671i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 878.227i 1.06970i 0.844946 + 0.534852i \(0.179633\pi\)
−0.844946 + 0.534852i \(0.820367\pi\)
\(822\) 0 0
\(823\) − 868.000i − 1.05468i −0.849655 0.527339i \(-0.823190\pi\)
0.849655 0.527339i \(-0.176810\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1414.21 1.71005 0.855026 0.518585i \(-0.173541\pi\)
0.855026 + 0.518585i \(0.173541\pi\)
\(828\) 0 0
\(829\) 1208.00 1.45718 0.728589 0.684952i \(-0.240177\pi\)
0.728589 + 0.684952i \(0.240177\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −940.452 −1.12899
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1069.15i − 1.27431i −0.770736 0.637155i \(-0.780111\pi\)
0.770736 0.637155i \(-0.219889\pi\)
\(840\) 0 0
\(841\) −41.0000 −0.0487515
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 1068.00i − 1.26092i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 1187.94i − 1.39593i
\(852\) 0 0
\(853\) − 1282.00i − 1.50293i −0.659772 0.751465i \(-0.729347\pi\)
0.659772 0.751465i \(-0.270653\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1039.45 −1.21289 −0.606445 0.795125i \(-0.707405\pi\)
−0.606445 + 0.795125i \(0.707405\pi\)
\(858\) 0 0
\(859\) 1032.00 1.20140 0.600698 0.799476i \(-0.294889\pi\)
0.600698 + 0.799476i \(0.294889\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 56.5685 0.0655487 0.0327744 0.999463i \(-0.489566\pi\)
0.0327744 + 0.999463i \(0.489566\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 565.685i 0.650961i
\(870\) 0 0
\(871\) 704.000 0.808266
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 462.000i 0.526796i 0.964687 + 0.263398i \(0.0848432\pi\)
−0.964687 + 0.263398i \(0.915157\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 247.487i 0.280916i 0.990087 + 0.140458i \(0.0448576\pi\)
−0.990087 + 0.140458i \(0.955142\pi\)
\(882\) 0 0
\(883\) 8.00000i 0.00906002i 0.999990 + 0.00453001i \(0.00144195\pi\)
−0.999990 + 0.00453001i \(0.998558\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −893.783 −1.00765 −0.503824 0.863807i \(-0.668074\pi\)
−0.503824 + 0.863807i \(0.668074\pi\)
\(888\) 0 0
\(889\) 240.000 0.269966
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −271.529 −0.304064
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 118.794i − 0.132140i
\(900\) 0 0
\(901\) −490.000 −0.543840
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 200.000i 0.220507i 0.993903 + 0.110254i \(0.0351663\pi\)
−0.993903 + 0.110254i \(0.964834\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 79.1960i 0.0869330i 0.999055 + 0.0434665i \(0.0138402\pi\)
−0.999055 + 0.0434665i \(0.986160\pi\)
\(912\) 0 0
\(913\) − 736.000i − 0.806134i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 678.823 0.740264
\(918\) 0 0
\(919\) 884.000 0.961915 0.480958 0.876744i \(-0.340289\pi\)
0.480958 + 0.876744i \(0.340289\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −226.274 −0.245151
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1076.22i 1.15847i 0.815161 + 0.579234i \(0.196648\pi\)
−0.815161 + 0.579234i \(0.803352\pi\)
\(930\) 0 0
\(931\) −1520.00 −1.63265
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 78.0000i − 0.0832444i −0.999133 0.0416222i \(-0.986747\pi\)
0.999133 0.0416222i \(-0.0132526\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 267.286i − 0.284045i −0.989863 0.142023i \(-0.954639\pi\)
0.989863 0.142023i \(-0.0453605\pi\)
\(942\) 0 0
\(943\) − 840.000i − 0.890774i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 576.999 0.609292 0.304646 0.952466i \(-0.401462\pi\)
0.304646 + 0.952466i \(0.401462\pi\)
\(948\) 0 0
\(949\) −640.000 −0.674394
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1336.43 1.40234 0.701171 0.712993i \(-0.252661\pi\)
0.701171 + 0.712993i \(0.252661\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1069.15i − 1.11485i
\(960\) 0 0
\(961\) −945.000 −0.983351
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 20.0000i − 0.0206825i −0.999947 0.0103413i \(-0.996708\pi\)
0.999947 0.0103413i \(-0.00329178\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 118.794i 0.122342i 0.998127 + 0.0611709i \(0.0194835\pi\)
−0.998127 + 0.0611709i \(0.980517\pi\)
\(972\) 0 0
\(973\) 1440.00i 1.47996i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 420.021 0.429909 0.214955 0.976624i \(-0.431040\pi\)
0.214955 + 0.976624i \(0.431040\pi\)
\(978\) 0 0
\(979\) −840.000 −0.858018
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1187.94 1.20848 0.604242 0.796801i \(-0.293476\pi\)
0.604242 + 0.796801i \(0.293476\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 316.784i − 0.320307i
\(990\) 0 0
\(991\) −116.000 −0.117053 −0.0585267 0.998286i \(-0.518640\pi\)
−0.0585267 + 0.998286i \(0.518640\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 130.000i − 0.130391i −0.997873 0.0651956i \(-0.979233\pi\)
0.997873 0.0651956i \(-0.0207671\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.3.c.a.449.1 4
3.2 odd 2 inner 1800.3.c.a.449.2 4
4.3 odd 2 3600.3.c.c.449.4 4
5.2 odd 4 72.3.e.a.17.2 yes 2
5.3 odd 4 1800.3.l.a.1601.1 2
5.4 even 2 inner 1800.3.c.a.449.3 4
12.11 even 2 3600.3.c.c.449.3 4
15.2 even 4 72.3.e.a.17.1 2
15.8 even 4 1800.3.l.a.1601.2 2
15.14 odd 2 inner 1800.3.c.a.449.4 4
20.3 even 4 3600.3.l.l.1601.2 2
20.7 even 4 144.3.e.a.17.2 2
20.19 odd 2 3600.3.c.c.449.2 4
35.27 even 4 3528.3.d.a.1961.1 2
40.27 even 4 576.3.e.a.449.1 2
40.37 odd 4 576.3.e.h.449.1 2
45.2 even 12 648.3.m.a.377.2 4
45.7 odd 12 648.3.m.a.377.1 4
45.22 odd 12 648.3.m.a.593.2 4
45.32 even 12 648.3.m.a.593.1 4
60.23 odd 4 3600.3.l.l.1601.1 2
60.47 odd 4 144.3.e.a.17.1 2
60.59 even 2 3600.3.c.c.449.1 4
80.27 even 4 2304.3.h.h.2177.2 4
80.37 odd 4 2304.3.h.a.2177.2 4
80.67 even 4 2304.3.h.h.2177.3 4
80.77 odd 4 2304.3.h.a.2177.3 4
105.62 odd 4 3528.3.d.a.1961.2 2
120.77 even 4 576.3.e.h.449.2 2
120.107 odd 4 576.3.e.a.449.2 2
180.7 even 12 1296.3.q.k.1025.1 4
180.47 odd 12 1296.3.q.k.1025.2 4
180.67 even 12 1296.3.q.k.593.2 4
180.167 odd 12 1296.3.q.k.593.1 4
240.77 even 4 2304.3.h.a.2177.1 4
240.107 odd 4 2304.3.h.h.2177.4 4
240.197 even 4 2304.3.h.a.2177.4 4
240.227 odd 4 2304.3.h.h.2177.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.3.e.a.17.1 2 15.2 even 4
72.3.e.a.17.2 yes 2 5.2 odd 4
144.3.e.a.17.1 2 60.47 odd 4
144.3.e.a.17.2 2 20.7 even 4
576.3.e.a.449.1 2 40.27 even 4
576.3.e.a.449.2 2 120.107 odd 4
576.3.e.h.449.1 2 40.37 odd 4
576.3.e.h.449.2 2 120.77 even 4
648.3.m.a.377.1 4 45.7 odd 12
648.3.m.a.377.2 4 45.2 even 12
648.3.m.a.593.1 4 45.32 even 12
648.3.m.a.593.2 4 45.22 odd 12
1296.3.q.k.593.1 4 180.167 odd 12
1296.3.q.k.593.2 4 180.67 even 12
1296.3.q.k.1025.1 4 180.7 even 12
1296.3.q.k.1025.2 4 180.47 odd 12
1800.3.c.a.449.1 4 1.1 even 1 trivial
1800.3.c.a.449.2 4 3.2 odd 2 inner
1800.3.c.a.449.3 4 5.4 even 2 inner
1800.3.c.a.449.4 4 15.14 odd 2 inner
1800.3.l.a.1601.1 2 5.3 odd 4
1800.3.l.a.1601.2 2 15.8 even 4
2304.3.h.a.2177.1 4 240.77 even 4
2304.3.h.a.2177.2 4 80.37 odd 4
2304.3.h.a.2177.3 4 80.77 odd 4
2304.3.h.a.2177.4 4 240.197 even 4
2304.3.h.h.2177.1 4 240.227 odd 4
2304.3.h.h.2177.2 4 80.27 even 4
2304.3.h.h.2177.3 4 80.67 even 4
2304.3.h.h.2177.4 4 240.107 odd 4
3528.3.d.a.1961.1 2 35.27 even 4
3528.3.d.a.1961.2 2 105.62 odd 4
3600.3.c.c.449.1 4 60.59 even 2
3600.3.c.c.449.2 4 20.19 odd 2
3600.3.c.c.449.3 4 12.11 even 2
3600.3.c.c.449.4 4 4.3 odd 2
3600.3.l.l.1601.1 2 60.23 odd 4
3600.3.l.l.1601.2 2 20.3 even 4