Properties

Label 1800.3.c
Level $1800$
Weight $3$
Character orbit 1800.c
Rep. character $\chi_{1800}(449,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $5$
Sturm bound $1080$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(1080\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1800, [\chi])\).

Total New Old
Modular forms 768 36 732
Cusp forms 672 36 636
Eisenstein series 96 0 96

Trace form

\( 36 q - 112 q^{31} - 492 q^{49} + 120 q^{61} + 208 q^{79} - 544 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1800.3.c.a 1800.c 15.d $4$ $49.046$ \(\Q(\zeta_{8})\) None 72.3.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-6\beta_1 q^{7}-4\beta_{2} q^{11}-4\beta_1 q^{13}+\cdots\)
1800.3.c.b 1800.c 15.d $8$ $49.046$ 8.0.40960000.1 None 360.3.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(4\beta _{1}-\beta _{5})q^{7}+(-\beta _{2}-3\beta _{4})q^{11}+\cdots\)
1800.3.c.c 1800.c 15.d $8$ $49.046$ 8.0.8540717056.1 None 1800.3.l.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{4})q^{7}+\beta _{2}q^{11}+(-5\beta _{1}-2\beta _{4}+\cdots)q^{13}+\cdots\)
1800.3.c.d 1800.c 15.d $8$ $49.046$ 8.0.40960000.1 None 360.3.l.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{7}+(\beta _{2}-\beta _{4})q^{11}+(\beta _{1}+\beta _{5}+\cdots)q^{13}+\cdots\)
1800.3.c.e 1800.c 15.d $8$ $49.046$ 8.0.40960000.1 None 1800.3.l.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(3\beta _{1}-\beta _{6})q^{7}+(-\beta _{2}-2\beta _{5})q^{11}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)