Defining parameters
| Level: | \( N \) | \(=\) | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1800.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(1080\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1800, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 768 | 36 | 732 |
| Cusp forms | 672 | 36 | 636 |
| Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1800.3.c.a | $4$ | $49.046$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-6\beta_1 q^{7}-4\beta_{2} q^{11}-4\beta_1 q^{13}+\cdots\) |
| 1800.3.c.b | $8$ | $49.046$ | 8.0.40960000.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(4\beta _{1}-\beta _{5})q^{7}+(-\beta _{2}-3\beta _{4})q^{11}+\cdots\) |
| 1800.3.c.c | $8$ | $49.046$ | 8.0.8540717056.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}+\beta _{4})q^{7}+\beta _{2}q^{11}+(-5\beta _{1}-2\beta _{4}+\cdots)q^{13}+\cdots\) |
| 1800.3.c.d | $8$ | $49.046$ | 8.0.40960000.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{7}+(\beta _{2}-\beta _{4})q^{11}+(\beta _{1}+\beta _{5}+\cdots)q^{13}+\cdots\) |
| 1800.3.c.e | $8$ | $49.046$ | 8.0.40960000.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(3\beta _{1}-\beta _{6})q^{7}+(-\beta _{2}-2\beta _{5})q^{11}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)