Properties

Label 180.5.l.a
Level $180$
Weight $5$
Character orbit 180.l
Analytic conductor $18.607$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,5,Mod(37,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.37"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 180.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6065933551\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{241})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 121x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 2 \beta_{2} - 6 \beta_1 + 3) q^{5} + (3 \beta_{3} - 29 \beta_1 + 29) q^{7} + ( - 5 \beta_{3} + 5 \beta_{2} + \cdots + 70) q^{11} + ( - 6 \beta_{2} - 93 \beta_1 - 87) q^{13} + (14 \beta_{3} + 233 \beta_1 - 233) q^{17}+ \cdots + ( - 1032 \beta_{3} + 1311 \beta_1 - 1311) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{5} + 110 q^{7} + 300 q^{11} - 360 q^{13} - 960 q^{17} + 810 q^{23} + 1856 q^{25} - 836 q^{31} + 2562 q^{35} - 660 q^{37} - 2964 q^{41} + 3270 q^{43} + 2250 q^{47} - 1980 q^{53} - 6780 q^{55}+ \cdots - 3180 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 121x^{2} + 3600 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 61\nu ) / 60 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu + 61 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 60\nu^{2} + 121\nu - 3660 ) / 60 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} + \beta _1 - 122 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -61\beta_{3} - 61\beta_{2} + 181\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
7.26209i
8.26209i
7.26209i
8.26209i
0 0 0 −21.7863 + 12.2621i 0 4.21374 + 4.21374i 0 0 0
37.2 0 0 0 24.7863 3.26209i 0 50.7863 + 50.7863i 0 0 0
73.1 0 0 0 −21.7863 12.2621i 0 4.21374 4.21374i 0 0 0
73.2 0 0 0 24.7863 + 3.26209i 0 50.7863 50.7863i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 180.5.l.a 4
3.b odd 2 1 20.5.f.a 4
5.b even 2 1 900.5.l.a 4
5.c odd 4 1 inner 180.5.l.a 4
5.c odd 4 1 900.5.l.a 4
12.b even 2 1 80.5.p.e 4
15.d odd 2 1 100.5.f.c 4
15.e even 4 1 20.5.f.a 4
15.e even 4 1 100.5.f.c 4
24.f even 2 1 320.5.p.l 4
24.h odd 2 1 320.5.p.m 4
60.h even 2 1 400.5.p.h 4
60.l odd 4 1 80.5.p.e 4
60.l odd 4 1 400.5.p.h 4
120.q odd 4 1 320.5.p.l 4
120.w even 4 1 320.5.p.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.5.f.a 4 3.b odd 2 1
20.5.f.a 4 15.e even 4 1
80.5.p.e 4 12.b even 2 1
80.5.p.e 4 60.l odd 4 1
100.5.f.c 4 15.d odd 2 1
100.5.f.c 4 15.e even 4 1
180.5.l.a 4 1.a even 1 1 trivial
180.5.l.a 4 5.c odd 4 1 inner
320.5.p.l 4 24.f even 2 1
320.5.p.l 4 120.q odd 4 1
320.5.p.m 4 24.h odd 2 1
320.5.p.m 4 120.w even 4 1
400.5.p.h 4 60.h even 2 1
400.5.p.h 4 60.l odd 4 1
900.5.l.a 4 5.b even 2 1
900.5.l.a 4 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 110T_{7}^{3} + 6050T_{7}^{2} - 47080T_{7} + 183184 \) acting on \(S_{5}^{\mathrm{new}}(180, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 6 T^{3} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( T^{4} - 110 T^{3} + \cdots + 183184 \) Copy content Toggle raw display
$11$ \( (T^{2} - 150 T - 400)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 360 T^{3} + \cdots + 140707044 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 8387262724 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 45392859136 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 2226707344 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 6544162816 \) Copy content Toggle raw display
$31$ \( (T^{2} + 418 T - 1311944)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 1825368527844 \) Copy content Toggle raw display
$41$ \( (T^{2} + 1482 T + 543056)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 3270 T^{3} + \cdots + 65610000 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 1883558615184 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 156481954084 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 341649975218176 \) Copy content Toggle raw display
$61$ \( (T^{2} - 7914 T + 9096624)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 5826179407504 \) Copy content Toggle raw display
$71$ \( (T^{2} - 2994 T - 946216)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 266084019174724 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 189577209839616 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 498765926292624 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 356802481094656 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 16\!\cdots\!64 \) Copy content Toggle raw display
show more
show less