Properties

Label 180.4.k.e.163.2
Level $180$
Weight $4$
Character 180.163
Analytic conductor $10.620$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,4,Mod(127,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.127"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 180.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6203438010\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 44x^{8} - 156x^{6} + 704x^{4} - 1792x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.2
Root \(-1.83244 + 0.801352i\) of defining polynomial
Character \(\chi\) \(=\) 180.163
Dual form 180.4.k.e.127.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03109 - 2.63379i) q^{2} +(-5.87372 + 5.43134i) q^{4} +(10.4994 - 3.84216i) q^{5} +(-1.14202 - 1.14202i) q^{7} +(20.3613 + 9.86997i) q^{8} +(-20.9453 - 23.6917i) q^{10} +27.0350i q^{11} +(40.4777 + 40.4777i) q^{13} +(-1.83032 + 4.18535i) q^{14} +(5.00116 - 63.8043i) q^{16} +(36.2735 - 36.2735i) q^{17} +56.8829 q^{19} +(-40.8026 + 79.5936i) q^{20} +(71.2046 - 27.8754i) q^{22} +(54.9839 - 54.9839i) q^{23} +(95.4757 - 80.6808i) q^{25} +(64.8739 - 148.346i) q^{26} +(12.9106 + 0.505208i) q^{28} -57.1173i q^{29} -190.845i q^{31} +(-173.204 + 52.6158i) q^{32} +(-132.938 - 58.1357i) q^{34} +(-16.3783 - 7.60271i) q^{35} +(-50.4605 + 50.4605i) q^{37} +(-58.6513 - 149.818i) q^{38} +(251.704 + 25.3976i) q^{40} +71.5197 q^{41} +(-66.9381 + 66.9381i) q^{43} +(-146.836 - 158.796i) q^{44} +(-201.509 - 88.1229i) q^{46} +(343.017 + 343.017i) q^{47} -340.392i q^{49} +(-310.940 - 168.274i) q^{50} +(-457.603 - 17.9066i) q^{52} +(-240.148 - 240.148i) q^{53} +(103.873 + 283.852i) q^{55} +(-11.9813 - 34.5247i) q^{56} +(-150.435 + 58.8929i) q^{58} +738.207 q^{59} -187.952 q^{61} +(-502.645 + 196.777i) q^{62} +(317.167 + 401.932i) q^{64} +(580.515 + 269.471i) q^{65} +(576.434 + 576.434i) q^{67} +(-16.0468 + 410.074i) q^{68} +(-3.13647 + 50.9761i) q^{70} +157.380i q^{71} +(180.613 + 180.613i) q^{73} +(184.932 + 80.8733i) q^{74} +(-334.114 + 308.950i) q^{76} +(30.8744 - 30.8744i) q^{77} -55.6778 q^{79} +(-192.637 - 689.123i) q^{80} +(-73.7430 - 188.368i) q^{82} +(-858.601 + 858.601i) q^{83} +(241.482 - 520.219i) q^{85} +(245.320 + 107.282i) q^{86} +(-266.835 + 550.468i) q^{88} +158.689i q^{89} -92.4525i q^{91} +(-24.3239 + 621.596i) q^{92} +(549.756 - 1257.12i) q^{94} +(597.238 - 218.553i) q^{95} +(-1117.12 + 1117.12i) q^{97} +(-896.521 + 350.973i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 12 q^{8} - 110 q^{10} + 116 q^{13} + 312 q^{16} + 332 q^{17} - 140 q^{20} + 360 q^{22} + 340 q^{25} + 164 q^{26} - 880 q^{28} + 376 q^{32} + 508 q^{37} - 1600 q^{38} + 1420 q^{40} + 656 q^{41}+ \cdots - 1698 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03109 2.63379i −0.364544 0.931186i
\(3\) 0 0
\(4\) −5.87372 + 5.43134i −0.734215 + 0.678917i
\(5\) 10.4994 3.84216i 0.939097 0.343653i
\(6\) 0 0
\(7\) −1.14202 1.14202i −0.0616631 0.0616631i 0.675603 0.737266i \(-0.263883\pi\)
−0.737266 + 0.675603i \(0.763883\pi\)
\(8\) 20.3613 + 9.86997i 0.899852 + 0.436195i
\(9\) 0 0
\(10\) −20.9453 23.6917i −0.662347 0.749197i
\(11\) 27.0350i 0.741033i 0.928826 + 0.370516i \(0.120819\pi\)
−0.928826 + 0.370516i \(0.879181\pi\)
\(12\) 0 0
\(13\) 40.4777 + 40.4777i 0.863577 + 0.863577i 0.991752 0.128174i \(-0.0409117\pi\)
−0.128174 + 0.991752i \(0.540912\pi\)
\(14\) −1.83032 + 4.18535i −0.0349409 + 0.0798988i
\(15\) 0 0
\(16\) 5.00116 63.8043i 0.0781431 0.996942i
\(17\) 36.2735 36.2735i 0.517507 0.517507i −0.399309 0.916816i \(-0.630750\pi\)
0.916816 + 0.399309i \(0.130750\pi\)
\(18\) 0 0
\(19\) 56.8829 0.686834 0.343417 0.939183i \(-0.388416\pi\)
0.343417 + 0.939183i \(0.388416\pi\)
\(20\) −40.8026 + 79.5936i −0.456187 + 0.889884i
\(21\) 0 0
\(22\) 71.2046 27.8754i 0.690039 0.270139i
\(23\) 54.9839 54.9839i 0.498475 0.498475i −0.412488 0.910963i \(-0.635340\pi\)
0.910963 + 0.412488i \(0.135340\pi\)
\(24\) 0 0
\(25\) 95.4757 80.6808i 0.763805 0.645447i
\(26\) 64.8739 148.346i 0.489339 1.11896i
\(27\) 0 0
\(28\) 12.9106 + 0.505208i 0.0871381 + 0.00340983i
\(29\) 57.1173i 0.365739i −0.983137 0.182869i \(-0.941461\pi\)
0.983137 0.182869i \(-0.0585385\pi\)
\(30\) 0 0
\(31\) 190.845i 1.10570i −0.833281 0.552850i \(-0.813540\pi\)
0.833281 0.552850i \(-0.186460\pi\)
\(32\) −173.204 + 52.6158i −0.956825 + 0.290664i
\(33\) 0 0
\(34\) −132.938 58.1357i −0.670549 0.293241i
\(35\) −16.3783 7.60271i −0.0790983 0.0367169i
\(36\) 0 0
\(37\) −50.4605 + 50.4605i −0.224207 + 0.224207i −0.810267 0.586060i \(-0.800678\pi\)
0.586060 + 0.810267i \(0.300678\pi\)
\(38\) −58.6513 149.818i −0.250381 0.639570i
\(39\) 0 0
\(40\) 251.704 + 25.3976i 0.994948 + 0.100393i
\(41\) 71.5197 0.272427 0.136213 0.990680i \(-0.456507\pi\)
0.136213 + 0.990680i \(0.456507\pi\)
\(42\) 0 0
\(43\) −66.9381 + 66.9381i −0.237394 + 0.237394i −0.815770 0.578376i \(-0.803687\pi\)
0.578376 + 0.815770i \(0.303687\pi\)
\(44\) −146.836 158.796i −0.503100 0.544077i
\(45\) 0 0
\(46\) −201.509 88.1229i −0.645889 0.282457i
\(47\) 343.017 + 343.017i 1.06456 + 1.06456i 0.997767 + 0.0667913i \(0.0212762\pi\)
0.0667913 + 0.997767i \(0.478724\pi\)
\(48\) 0 0
\(49\) 340.392i 0.992395i
\(50\) −310.940 168.274i −0.879472 0.475951i
\(51\) 0 0
\(52\) −457.603 17.9066i −1.22035 0.0477539i
\(53\) −240.148 240.148i −0.622394 0.622394i 0.323749 0.946143i \(-0.395057\pi\)
−0.946143 + 0.323749i \(0.895057\pi\)
\(54\) 0 0
\(55\) 103.873 + 283.852i 0.254658 + 0.695901i
\(56\) −11.9813 34.5247i −0.0285905 0.0823848i
\(57\) 0 0
\(58\) −150.435 + 58.8929i −0.340571 + 0.133328i
\(59\) 738.207 1.62892 0.814461 0.580218i \(-0.197033\pi\)
0.814461 + 0.580218i \(0.197033\pi\)
\(60\) 0 0
\(61\) −187.952 −0.394506 −0.197253 0.980353i \(-0.563202\pi\)
−0.197253 + 0.980353i \(0.563202\pi\)
\(62\) −502.645 + 196.777i −1.02961 + 0.403077i
\(63\) 0 0
\(64\) 317.167 + 401.932i 0.619467 + 0.785022i
\(65\) 580.515 + 269.471i 1.10775 + 0.514212i
\(66\) 0 0
\(67\) 576.434 + 576.434i 1.05108 + 1.05108i 0.998623 + 0.0524612i \(0.0167066\pi\)
0.0524612 + 0.998623i \(0.483293\pi\)
\(68\) −16.0468 + 410.074i −0.0286170 + 0.731305i
\(69\) 0 0
\(70\) −3.13647 + 50.9761i −0.00535543 + 0.0870402i
\(71\) 157.380i 0.263064i 0.991312 + 0.131532i \(0.0419896\pi\)
−0.991312 + 0.131532i \(0.958010\pi\)
\(72\) 0 0
\(73\) 180.613 + 180.613i 0.289577 + 0.289577i 0.836913 0.547336i \(-0.184358\pi\)
−0.547336 + 0.836913i \(0.684358\pi\)
\(74\) 184.932 + 80.8733i 0.290512 + 0.127045i
\(75\) 0 0
\(76\) −334.114 + 308.950i −0.504284 + 0.466303i
\(77\) 30.8744 30.8744i 0.0456944 0.0456944i
\(78\) 0 0
\(79\) −55.6778 −0.0792942 −0.0396471 0.999214i \(-0.512623\pi\)
−0.0396471 + 0.999214i \(0.512623\pi\)
\(80\) −192.637 689.123i −0.269218 0.963079i
\(81\) 0 0
\(82\) −73.7430 188.368i −0.0993116 0.253680i
\(83\) −858.601 + 858.601i −1.13547 + 1.13547i −0.146213 + 0.989253i \(0.546708\pi\)
−0.989253 + 0.146213i \(0.953292\pi\)
\(84\) 0 0
\(85\) 241.482 520.219i 0.308146 0.663832i
\(86\) 245.320 + 107.282i 0.307599 + 0.134518i
\(87\) 0 0
\(88\) −266.835 + 550.468i −0.323235 + 0.666820i
\(89\) 158.689i 0.189000i 0.995525 + 0.0944998i \(0.0301252\pi\)
−0.995525 + 0.0944998i \(0.969875\pi\)
\(90\) 0 0
\(91\) 92.4525i 0.106502i
\(92\) −24.3239 + 621.596i −0.0275646 + 0.704411i
\(93\) 0 0
\(94\) 549.756 1257.12i 0.603223 1.37938i
\(95\) 597.238 218.553i 0.645003 0.236032i
\(96\) 0 0
\(97\) −1117.12 + 1117.12i −1.16935 + 1.16935i −0.186986 + 0.982363i \(0.559872\pi\)
−0.982363 + 0.186986i \(0.940128\pi\)
\(98\) −896.521 + 350.973i −0.924105 + 0.361772i
\(99\) 0 0
\(100\) −122.592 + 992.457i −0.122592 + 0.992457i
\(101\) −787.780 −0.776109 −0.388055 0.921636i \(-0.626853\pi\)
−0.388055 + 0.921636i \(0.626853\pi\)
\(102\) 0 0
\(103\) −522.455 + 522.455i −0.499796 + 0.499796i −0.911374 0.411578i \(-0.864978\pi\)
0.411578 + 0.911374i \(0.364978\pi\)
\(104\) 424.666 + 1223.69i 0.400403 + 1.15378i
\(105\) 0 0
\(106\) −384.887 + 880.114i −0.352674 + 0.806455i
\(107\) −615.276 615.276i −0.555897 0.555897i 0.372240 0.928137i \(-0.378590\pi\)
−0.928137 + 0.372240i \(0.878590\pi\)
\(108\) 0 0
\(109\) 398.877i 0.350509i 0.984523 + 0.175254i \(0.0560748\pi\)
−0.984523 + 0.175254i \(0.943925\pi\)
\(110\) 640.505 566.255i 0.555179 0.490821i
\(111\) 0 0
\(112\) −78.5770 + 67.1542i −0.0662931 + 0.0566560i
\(113\) −692.888 692.888i −0.576826 0.576826i 0.357201 0.934028i \(-0.383731\pi\)
−0.934028 + 0.357201i \(0.883731\pi\)
\(114\) 0 0
\(115\) 366.042 788.555i 0.296814 0.639419i
\(116\) 310.223 + 335.491i 0.248306 + 0.268531i
\(117\) 0 0
\(118\) −761.156 1944.28i −0.593814 1.51683i
\(119\) −82.8499 −0.0638221
\(120\) 0 0
\(121\) 600.109 0.450871
\(122\) 193.795 + 495.028i 0.143815 + 0.367358i
\(123\) 0 0
\(124\) 1036.54 + 1120.97i 0.750679 + 0.811821i
\(125\) 692.451 1213.93i 0.495477 0.868621i
\(126\) 0 0
\(127\) −498.629 498.629i −0.348395 0.348395i 0.511116 0.859512i \(-0.329232\pi\)
−0.859512 + 0.511116i \(0.829232\pi\)
\(128\) 731.577 1249.78i 0.505179 0.863015i
\(129\) 0 0
\(130\) 111.169 1806.80i 0.0750016 1.21898i
\(131\) 1747.61i 1.16557i −0.812626 0.582785i \(-0.801963\pi\)
0.812626 0.582785i \(-0.198037\pi\)
\(132\) 0 0
\(133\) −64.9613 64.9613i −0.0423523 0.0423523i
\(134\) 923.854 2112.56i 0.595588 1.36192i
\(135\) 0 0
\(136\) 1096.59 380.558i 0.691413 0.239945i
\(137\) −124.289 + 124.289i −0.0775092 + 0.0775092i −0.744799 0.667289i \(-0.767454\pi\)
0.667289 + 0.744799i \(0.267454\pi\)
\(138\) 0 0
\(139\) −9.83873 −0.00600367 −0.00300184 0.999995i \(-0.500956\pi\)
−0.00300184 + 0.999995i \(0.500956\pi\)
\(140\) 137.495 44.3000i 0.0830029 0.0267431i
\(141\) 0 0
\(142\) 414.506 162.272i 0.244962 0.0958985i
\(143\) −1094.32 + 1094.32i −0.639939 + 0.639939i
\(144\) 0 0
\(145\) −219.454 599.699i −0.125687 0.343464i
\(146\) 289.469 661.925i 0.164087 0.375214i
\(147\) 0 0
\(148\) 22.3229 570.459i 0.0123982 0.316834i
\(149\) 2840.41i 1.56171i 0.624711 + 0.780856i \(0.285217\pi\)
−0.624711 + 0.780856i \(0.714783\pi\)
\(150\) 0 0
\(151\) 2913.54i 1.57020i −0.619368 0.785101i \(-0.712611\pi\)
0.619368 0.785101i \(-0.287389\pi\)
\(152\) 1158.21 + 561.433i 0.618049 + 0.299594i
\(153\) 0 0
\(154\) −113.151 49.4826i −0.0592076 0.0258923i
\(155\) −733.255 2003.76i −0.379977 1.03836i
\(156\) 0 0
\(157\) 1572.29 1572.29i 0.799251 0.799251i −0.183727 0.982977i \(-0.558816\pi\)
0.982977 + 0.183727i \(0.0588161\pi\)
\(158\) 57.4087 + 146.644i 0.0289063 + 0.0738377i
\(159\) 0 0
\(160\) −1616.38 + 1217.91i −0.798664 + 0.601777i
\(161\) −125.585 −0.0614751
\(162\) 0 0
\(163\) −1457.19 + 1457.19i −0.700222 + 0.700222i −0.964458 0.264236i \(-0.914880\pi\)
0.264236 + 0.964458i \(0.414880\pi\)
\(164\) −420.087 + 388.448i −0.200020 + 0.184955i
\(165\) 0 0
\(166\) 3146.67 + 1376.08i 1.47126 + 0.643402i
\(167\) 801.239 + 801.239i 0.371268 + 0.371268i 0.867939 0.496671i \(-0.165444\pi\)
−0.496671 + 0.867939i \(0.665444\pi\)
\(168\) 0 0
\(169\) 1079.90i 0.491532i
\(170\) −1619.14 99.6228i −0.730484 0.0449454i
\(171\) 0 0
\(172\) 29.6122 756.739i 0.0131274 0.335470i
\(173\) 1180.59 + 1180.59i 0.518837 + 0.518837i 0.917220 0.398382i \(-0.130428\pi\)
−0.398382 + 0.917220i \(0.630428\pi\)
\(174\) 0 0
\(175\) −201.174 16.8959i −0.0868989 0.00729836i
\(176\) 1724.95 + 135.206i 0.738767 + 0.0579066i
\(177\) 0 0
\(178\) 417.953 163.622i 0.175994 0.0688987i
\(179\) −3724.41 −1.55517 −0.777585 0.628778i \(-0.783555\pi\)
−0.777585 + 0.628778i \(0.783555\pi\)
\(180\) 0 0
\(181\) 545.856 0.224161 0.112081 0.993699i \(-0.464249\pi\)
0.112081 + 0.993699i \(0.464249\pi\)
\(182\) −243.501 + 95.3266i −0.0991729 + 0.0388246i
\(183\) 0 0
\(184\) 1662.23 576.855i 0.665986 0.231121i
\(185\) −335.929 + 723.683i −0.133503 + 0.287601i
\(186\) 0 0
\(187\) 980.654 + 980.654i 0.383489 + 0.383489i
\(188\) −3877.83 151.745i −1.50436 0.0588677i
\(189\) 0 0
\(190\) −1191.43 1347.65i −0.454922 0.514574i
\(191\) 3668.60i 1.38980i −0.719109 0.694898i \(-0.755450\pi\)
0.719109 0.694898i \(-0.244550\pi\)
\(192\) 0 0
\(193\) −715.028 715.028i −0.266678 0.266678i 0.561082 0.827760i \(-0.310385\pi\)
−0.827760 + 0.561082i \(0.810385\pi\)
\(194\) 4094.13 + 1790.42i 1.51516 + 0.662602i
\(195\) 0 0
\(196\) 1848.78 + 1999.36i 0.673754 + 0.728631i
\(197\) −272.976 + 272.976i −0.0987246 + 0.0987246i −0.754744 0.656019i \(-0.772239\pi\)
0.656019 + 0.754744i \(0.272239\pi\)
\(198\) 0 0
\(199\) −4554.16 −1.62229 −0.811146 0.584844i \(-0.801156\pi\)
−0.811146 + 0.584844i \(0.801156\pi\)
\(200\) 2740.33 700.427i 0.968853 0.247638i
\(201\) 0 0
\(202\) 812.269 + 2074.85i 0.282926 + 0.722702i
\(203\) −65.2289 + 65.2289i −0.0225526 + 0.0225526i
\(204\) 0 0
\(205\) 750.915 274.790i 0.255835 0.0936203i
\(206\) 1914.73 + 837.341i 0.647601 + 0.283205i
\(207\) 0 0
\(208\) 2785.09 2380.22i 0.928419 0.793454i
\(209\) 1537.83i 0.508966i
\(210\) 0 0
\(211\) 4250.89i 1.38694i −0.720487 0.693468i \(-0.756082\pi\)
0.720487 0.693468i \(-0.243918\pi\)
\(212\) 2714.89 + 106.237i 0.879525 + 0.0344170i
\(213\) 0 0
\(214\) −986.105 + 2254.91i −0.314994 + 0.720292i
\(215\) −445.624 + 959.998i −0.141355 + 0.304518i
\(216\) 0 0
\(217\) −217.948 + 217.948i −0.0681809 + 0.0681809i
\(218\) 1050.56 411.276i 0.326389 0.127776i
\(219\) 0 0
\(220\) −2151.81 1103.10i −0.659433 0.338049i
\(221\) 2936.54 0.893814
\(222\) 0 0
\(223\) 258.746 258.746i 0.0776991 0.0776991i −0.667189 0.744888i \(-0.732503\pi\)
0.744888 + 0.667189i \(0.232503\pi\)
\(224\) 257.890 + 137.714i 0.0769241 + 0.0410776i
\(225\) 0 0
\(226\) −1110.49 + 2539.35i −0.326854 + 0.747412i
\(227\) 2127.58 + 2127.58i 0.622080 + 0.622080i 0.946063 0.323983i \(-0.105022\pi\)
−0.323983 + 0.946063i \(0.605022\pi\)
\(228\) 0 0
\(229\) 4654.98i 1.34328i 0.740880 + 0.671638i \(0.234409\pi\)
−0.740880 + 0.671638i \(0.765591\pi\)
\(230\) −2454.31 151.010i −0.703620 0.0432925i
\(231\) 0 0
\(232\) 563.746 1162.98i 0.159533 0.329111i
\(233\) −3392.53 3392.53i −0.953871 0.953871i 0.0451108 0.998982i \(-0.485636\pi\)
−0.998982 + 0.0451108i \(0.985636\pi\)
\(234\) 0 0
\(235\) 4919.41 + 2283.56i 1.36556 + 0.633885i
\(236\) −4336.02 + 4009.45i −1.19598 + 1.10590i
\(237\) 0 0
\(238\) 85.4254 + 218.209i 0.0232660 + 0.0594303i
\(239\) 1434.32 0.388195 0.194098 0.980982i \(-0.437822\pi\)
0.194098 + 0.980982i \(0.437822\pi\)
\(240\) 0 0
\(241\) −6438.62 −1.72094 −0.860472 0.509497i \(-0.829831\pi\)
−0.860472 + 0.509497i \(0.829831\pi\)
\(242\) −618.764 1580.56i −0.164362 0.419845i
\(243\) 0 0
\(244\) 1103.98 1020.83i 0.289652 0.267837i
\(245\) −1307.84 3573.91i −0.341040 0.931955i
\(246\) 0 0
\(247\) 2302.49 + 2302.49i 0.593134 + 0.593134i
\(248\) 1883.63 3885.85i 0.482301 0.994966i
\(249\) 0 0
\(250\) −3911.23 572.099i −0.989471 0.144731i
\(251\) 1877.58i 0.472159i 0.971734 + 0.236079i \(0.0758626\pi\)
−0.971734 + 0.236079i \(0.924137\pi\)
\(252\) 0 0
\(253\) 1486.49 + 1486.49i 0.369386 + 0.369386i
\(254\) −799.156 + 1827.42i −0.197415 + 0.451426i
\(255\) 0 0
\(256\) −4045.98 638.191i −0.987787 0.155808i
\(257\) −1940.33 + 1940.33i −0.470952 + 0.470952i −0.902223 0.431270i \(-0.858066\pi\)
0.431270 + 0.902223i \(0.358066\pi\)
\(258\) 0 0
\(259\) 115.254 0.0276506
\(260\) −4873.37 + 1570.17i −1.16244 + 0.374531i
\(261\) 0 0
\(262\) −4602.85 + 1801.94i −1.08536 + 0.424902i
\(263\) −1004.94 + 1004.94i −0.235616 + 0.235616i −0.815032 0.579416i \(-0.803281\pi\)
0.579416 + 0.815032i \(0.303281\pi\)
\(264\) 0 0
\(265\) −3444.10 1598.73i −0.798376 0.370601i
\(266\) −104.114 + 238.075i −0.0239986 + 0.0548772i
\(267\) 0 0
\(268\) −6516.62 255.004i −1.48532 0.0581227i
\(269\) 6594.94i 1.49480i −0.664376 0.747398i \(-0.731303\pi\)
0.664376 0.747398i \(-0.268697\pi\)
\(270\) 0 0
\(271\) 4781.49i 1.07179i 0.844285 + 0.535895i \(0.180026\pi\)
−0.844285 + 0.535895i \(0.819974\pi\)
\(272\) −2133.00 2495.81i −0.475485 0.556364i
\(273\) 0 0
\(274\) 455.506 + 199.199i 0.100431 + 0.0439200i
\(275\) 2181.21 + 2581.18i 0.478297 + 0.566005i
\(276\) 0 0
\(277\) 5490.27 5490.27i 1.19090 1.19090i 0.214082 0.976816i \(-0.431324\pi\)
0.976816 0.214082i \(-0.0686760\pi\)
\(278\) 10.1446 + 25.9132i 0.00218860 + 0.00559053i
\(279\) 0 0
\(280\) −258.446 316.455i −0.0551610 0.0675421i
\(281\) −3046.29 −0.646714 −0.323357 0.946277i \(-0.604811\pi\)
−0.323357 + 0.946277i \(0.604811\pi\)
\(282\) 0 0
\(283\) −5858.21 + 5858.21i −1.23051 + 1.23051i −0.266743 + 0.963768i \(0.585947\pi\)
−0.963768 + 0.266743i \(0.914053\pi\)
\(284\) −854.783 924.405i −0.178599 0.193146i
\(285\) 0 0
\(286\) 4010.53 + 1753.87i 0.829188 + 0.362616i
\(287\) −81.6767 81.6767i −0.0167987 0.0167987i
\(288\) 0 0
\(289\) 2281.47i 0.464374i
\(290\) −1353.21 + 1196.34i −0.274010 + 0.242246i
\(291\) 0 0
\(292\) −2041.84 79.9000i −0.409211 0.0160130i
\(293\) 5371.12 + 5371.12i 1.07094 + 1.07094i 0.997284 + 0.0736515i \(0.0234653\pi\)
0.0736515 + 0.997284i \(0.476535\pi\)
\(294\) 0 0
\(295\) 7750.75 2836.31i 1.52972 0.559784i
\(296\) −1525.49 + 529.399i −0.299551 + 0.103955i
\(297\) 0 0
\(298\) 7481.04 2928.71i 1.45425 0.569314i
\(299\) 4451.25 0.860944
\(300\) 0 0
\(301\) 152.889 0.0292770
\(302\) −7673.66 + 3004.11i −1.46215 + 0.572408i
\(303\) 0 0
\(304\) 284.481 3629.38i 0.0536713 0.684734i
\(305\) −1973.39 + 722.143i −0.370479 + 0.135573i
\(306\) 0 0
\(307\) 1464.75 + 1464.75i 0.272306 + 0.272306i 0.830028 0.557722i \(-0.188324\pi\)
−0.557722 + 0.830028i \(0.688324\pi\)
\(308\) −13.6583 + 349.037i −0.00252680 + 0.0645722i
\(309\) 0 0
\(310\) −4521.43 + 3997.29i −0.828387 + 0.732357i
\(311\) 1381.23i 0.251840i 0.992040 + 0.125920i \(0.0401882\pi\)
−0.992040 + 0.125920i \(0.959812\pi\)
\(312\) 0 0
\(313\) −1989.95 1989.95i −0.359356 0.359356i 0.504220 0.863575i \(-0.331780\pi\)
−0.863575 + 0.504220i \(0.831780\pi\)
\(314\) −5762.25 2519.92i −1.03561 0.452889i
\(315\) 0 0
\(316\) 327.036 302.405i 0.0582190 0.0538342i
\(317\) 2078.83 2078.83i 0.368325 0.368325i −0.498541 0.866866i \(-0.666131\pi\)
0.866866 + 0.498541i \(0.166131\pi\)
\(318\) 0 0
\(319\) 1544.17 0.271024
\(320\) 4874.36 + 3001.44i 0.851515 + 0.524330i
\(321\) 0 0
\(322\) 129.489 + 330.765i 0.0224104 + 0.0572447i
\(323\) 2063.34 2063.34i 0.355441 0.355441i
\(324\) 0 0
\(325\) 7130.42 + 598.861i 1.21700 + 0.102212i
\(326\) 5340.43 + 2335.45i 0.907298 + 0.396775i
\(327\) 0 0
\(328\) 1456.24 + 705.898i 0.245144 + 0.118831i
\(329\) 783.463i 0.131288i
\(330\) 0 0
\(331\) 8633.95i 1.43373i −0.697211 0.716866i \(-0.745576\pi\)
0.697211 0.716866i \(-0.254424\pi\)
\(332\) 379.830 9706.53i 0.0627888 1.60456i
\(333\) 0 0
\(334\) 1284.15 2936.44i 0.210376 0.481063i
\(335\) 8266.97 + 3837.47i 1.34828 + 0.625862i
\(336\) 0 0
\(337\) −3115.08 + 3115.08i −0.503528 + 0.503528i −0.912532 0.409004i \(-0.865876\pi\)
0.409004 + 0.912532i \(0.365876\pi\)
\(338\) 2844.22 1113.47i 0.457708 0.179185i
\(339\) 0 0
\(340\) 1407.09 + 4367.19i 0.224441 + 0.696601i
\(341\) 5159.48 0.819360
\(342\) 0 0
\(343\) −780.445 + 780.445i −0.122857 + 0.122857i
\(344\) −2023.62 + 702.271i −0.317170 + 0.110070i
\(345\) 0 0
\(346\) 1892.14 4326.73i 0.293995 0.672273i
\(347\) 646.980 + 646.980i 0.100091 + 0.100091i 0.755379 0.655288i \(-0.227453\pi\)
−0.655288 + 0.755379i \(0.727453\pi\)
\(348\) 0 0
\(349\) 9611.76i 1.47423i −0.675768 0.737114i \(-0.736188\pi\)
0.675768 0.737114i \(-0.263812\pi\)
\(350\) 162.927 + 547.271i 0.0248824 + 0.0835796i
\(351\) 0 0
\(352\) −1422.47 4682.57i −0.215391 0.709039i
\(353\) 5085.16 + 5085.16i 0.766730 + 0.766730i 0.977529 0.210799i \(-0.0676066\pi\)
−0.210799 + 0.977529i \(0.567607\pi\)
\(354\) 0 0
\(355\) 604.678 + 1652.40i 0.0904027 + 0.247043i
\(356\) −861.892 932.093i −0.128315 0.138766i
\(357\) 0 0
\(358\) 3840.19 + 9809.32i 0.566928 + 1.44815i
\(359\) −5598.06 −0.822992 −0.411496 0.911411i \(-0.634994\pi\)
−0.411496 + 0.911411i \(0.634994\pi\)
\(360\) 0 0
\(361\) −3623.33 −0.528259
\(362\) −562.825 1437.67i −0.0817167 0.208736i
\(363\) 0 0
\(364\) 502.141 + 543.040i 0.0723059 + 0.0781952i
\(365\) 2590.28 + 1202.39i 0.371455 + 0.172427i
\(366\) 0 0
\(367\) −3676.76 3676.76i −0.522957 0.522957i 0.395506 0.918463i \(-0.370569\pi\)
−0.918463 + 0.395506i \(0.870569\pi\)
\(368\) −3233.22 3783.19i −0.457999 0.535903i
\(369\) 0 0
\(370\) 2252.40 + 138.587i 0.316478 + 0.0194724i
\(371\) 548.506i 0.0767575i
\(372\) 0 0
\(373\) 6801.10 + 6801.10i 0.944096 + 0.944096i 0.998518 0.0544219i \(-0.0173316\pi\)
−0.0544219 + 0.998518i \(0.517332\pi\)
\(374\) 1571.70 3593.98i 0.217301 0.496899i
\(375\) 0 0
\(376\) 3598.72 + 10369.9i 0.493590 + 1.42230i
\(377\) 2311.98 2311.98i 0.315844 0.315844i
\(378\) 0 0
\(379\) −9992.48 −1.35430 −0.677150 0.735845i \(-0.736785\pi\)
−0.677150 + 0.735845i \(0.736785\pi\)
\(380\) −2320.97 + 4527.52i −0.313325 + 0.611202i
\(381\) 0 0
\(382\) −9662.34 + 3782.65i −1.29416 + 0.506642i
\(383\) 1910.84 1910.84i 0.254932 0.254932i −0.568057 0.822989i \(-0.692305\pi\)
0.822989 + 0.568057i \(0.192305\pi\)
\(384\) 0 0
\(385\) 205.539 442.788i 0.0272084 0.0586144i
\(386\) −1145.98 + 2620.49i −0.151111 + 0.345543i
\(387\) 0 0
\(388\) 494.196 12629.2i 0.0646624 1.65244i
\(389\) 152.974i 0.0199385i 0.999950 + 0.00996927i \(0.00317337\pi\)
−0.999950 + 0.00996927i \(0.996827\pi\)
\(390\) 0 0
\(391\) 3988.91i 0.515929i
\(392\) 3359.66 6930.82i 0.432878 0.893009i
\(393\) 0 0
\(394\) 1000.42 + 437.500i 0.127920 + 0.0559415i
\(395\) −584.585 + 213.923i −0.0744649 + 0.0272497i
\(396\) 0 0
\(397\) 3823.37 3823.37i 0.483349 0.483349i −0.422850 0.906199i \(-0.638970\pi\)
0.906199 + 0.422850i \(0.138970\pi\)
\(398\) 4695.74 + 11994.7i 0.591397 + 1.51065i
\(399\) 0 0
\(400\) −4670.30 6495.26i −0.583787 0.811907i
\(401\) −10939.9 −1.36238 −0.681190 0.732106i \(-0.738537\pi\)
−0.681190 + 0.732106i \(0.738537\pi\)
\(402\) 0 0
\(403\) 7724.96 7724.96i 0.954858 0.954858i
\(404\) 4627.20 4278.70i 0.569831 0.526914i
\(405\) 0 0
\(406\) 239.056 + 104.543i 0.0292221 + 0.0127792i
\(407\) −1364.20 1364.20i −0.166145 0.166145i
\(408\) 0 0
\(409\) 2982.65i 0.360593i −0.983612 0.180296i \(-0.942294\pi\)
0.983612 0.180296i \(-0.0577057\pi\)
\(410\) −1498.00 1694.42i −0.180441 0.204101i
\(411\) 0 0
\(412\) 231.125 5906.38i 0.0276376 0.706278i
\(413\) −843.045 843.045i −0.100444 0.100444i
\(414\) 0 0
\(415\) −5715.93 + 12313.7i −0.676106 + 1.45652i
\(416\) −9140.67 4881.13i −1.07730 0.575282i
\(417\) 0 0
\(418\) 4050.32 1585.64i 0.473942 0.185541i
\(419\) −2828.22 −0.329755 −0.164878 0.986314i \(-0.552723\pi\)
−0.164878 + 0.986314i \(0.552723\pi\)
\(420\) 0 0
\(421\) 739.946 0.0856597 0.0428299 0.999082i \(-0.486363\pi\)
0.0428299 + 0.999082i \(0.486363\pi\)
\(422\) −11196.0 + 4383.04i −1.29150 + 0.505600i
\(423\) 0 0
\(424\) −2519.48 7259.99i −0.288577 0.831548i
\(425\) 536.660 6389.81i 0.0612514 0.729297i
\(426\) 0 0
\(427\) 214.645 + 214.645i 0.0243265 + 0.0243265i
\(428\) 6955.73 + 272.187i 0.785555 + 0.0307399i
\(429\) 0 0
\(430\) 2987.91 + 183.841i 0.335093 + 0.0206177i
\(431\) 7074.45i 0.790636i −0.918544 0.395318i \(-0.870634\pi\)
0.918544 0.395318i \(-0.129366\pi\)
\(432\) 0 0
\(433\) 2645.06 + 2645.06i 0.293564 + 0.293564i 0.838487 0.544922i \(-0.183441\pi\)
−0.544922 + 0.838487i \(0.683441\pi\)
\(434\) 798.752 + 349.306i 0.0883441 + 0.0386341i
\(435\) 0 0
\(436\) −2166.43 2342.89i −0.237966 0.257349i
\(437\) 3127.64 3127.64i 0.342370 0.342370i
\(438\) 0 0
\(439\) 12903.4 1.40284 0.701419 0.712750i \(-0.252550\pi\)
0.701419 + 0.712750i \(0.252550\pi\)
\(440\) −686.624 + 6804.82i −0.0743944 + 0.737289i
\(441\) 0 0
\(442\) −3027.83 7734.23i −0.325835 0.832307i
\(443\) 2108.72 2108.72i 0.226159 0.226159i −0.584927 0.811086i \(-0.698877\pi\)
0.811086 + 0.584927i \(0.198877\pi\)
\(444\) 0 0
\(445\) 609.707 + 1666.14i 0.0649503 + 0.177489i
\(446\) −948.272 414.693i −0.100677 0.0440275i
\(447\) 0 0
\(448\) 96.8022 821.223i 0.0102087 0.0866052i
\(449\) 136.127i 0.0143079i 0.999974 + 0.00715394i \(0.00227719\pi\)
−0.999974 + 0.00715394i \(0.997723\pi\)
\(450\) 0 0
\(451\) 1933.53i 0.201877i
\(452\) 7833.13 + 306.521i 0.815132 + 0.0318972i
\(453\) 0 0
\(454\) 3409.88 7797.31i 0.352497 0.806048i
\(455\) −355.217 970.698i −0.0365996 0.100015i
\(456\) 0 0
\(457\) −6660.47 + 6660.47i −0.681759 + 0.681759i −0.960396 0.278638i \(-0.910117\pi\)
0.278638 + 0.960396i \(0.410117\pi\)
\(458\) 12260.3 4799.69i 1.25084 0.489683i
\(459\) 0 0
\(460\) 2132.88 + 6619.85i 0.216187 + 0.670983i
\(461\) −9556.54 −0.965493 −0.482747 0.875760i \(-0.660361\pi\)
−0.482747 + 0.875760i \(0.660361\pi\)
\(462\) 0 0
\(463\) 914.613 914.613i 0.0918049 0.0918049i −0.659713 0.751518i \(-0.729322\pi\)
0.751518 + 0.659713i \(0.229322\pi\)
\(464\) −3644.33 285.653i −0.364620 0.0285799i
\(465\) 0 0
\(466\) −5437.22 + 12433.2i −0.540503 + 1.23596i
\(467\) −541.819 541.819i −0.0536882 0.0536882i 0.679753 0.733441i \(-0.262087\pi\)
−0.733441 + 0.679753i \(0.762087\pi\)
\(468\) 0 0
\(469\) 1316.59i 0.129626i
\(470\) 942.075 15311.3i 0.0924568 1.50267i
\(471\) 0 0
\(472\) 15030.9 + 7286.09i 1.46579 + 0.710528i
\(473\) −1809.67 1809.67i −0.175917 0.175917i
\(474\) 0 0
\(475\) 5430.94 4589.36i 0.524607 0.443315i
\(476\) 486.637 449.986i 0.0468592 0.0433299i
\(477\) 0 0
\(478\) −1478.91 3777.71i −0.141514 0.361482i
\(479\) −19357.9 −1.84652 −0.923260 0.384176i \(-0.874486\pi\)
−0.923260 + 0.384176i \(0.874486\pi\)
\(480\) 0 0
\(481\) −4085.06 −0.387240
\(482\) 6638.77 + 16958.0i 0.627361 + 1.60252i
\(483\) 0 0
\(484\) −3524.87 + 3259.39i −0.331036 + 0.306104i
\(485\) −7436.99 + 16021.3i −0.696281 + 1.49998i
\(486\) 0 0
\(487\) 141.166 + 141.166i 0.0131352 + 0.0131352i 0.713644 0.700509i \(-0.247044\pi\)
−0.700509 + 0.713644i \(0.747044\pi\)
\(488\) −3826.96 1855.09i −0.354997 0.172082i
\(489\) 0 0
\(490\) −8064.45 + 7129.59i −0.743500 + 0.657310i
\(491\) 929.849i 0.0854654i −0.999087 0.0427327i \(-0.986394\pi\)
0.999087 0.0427327i \(-0.0136064\pi\)
\(492\) 0 0
\(493\) −2071.84 2071.84i −0.189272 0.189272i
\(494\) 3690.22 8438.36i 0.336095 0.768542i
\(495\) 0 0
\(496\) −12176.7 954.444i −1.10232 0.0864028i
\(497\) 179.730 179.730i 0.0162213 0.0162213i
\(498\) 0 0
\(499\) −13526.6 −1.21349 −0.606747 0.794895i \(-0.707526\pi\)
−0.606747 + 0.794895i \(0.707526\pi\)
\(500\) 2526.03 + 10891.2i 0.225935 + 0.974142i
\(501\) 0 0
\(502\) 4945.16 1935.95i 0.439668 0.172123i
\(503\) −4770.81 + 4770.81i −0.422902 + 0.422902i −0.886202 0.463300i \(-0.846665\pi\)
0.463300 + 0.886202i \(0.346665\pi\)
\(504\) 0 0
\(505\) −8271.23 + 3026.77i −0.728842 + 0.266712i
\(506\) 2382.40 5447.80i 0.209310 0.478625i
\(507\) 0 0
\(508\) 5637.03 + 220.585i 0.492328 + 0.0192655i
\(509\) 8188.23i 0.713039i −0.934288 0.356520i \(-0.883963\pi\)
0.934288 0.356520i \(-0.116037\pi\)
\(510\) 0 0
\(511\) 412.526i 0.0357125i
\(512\) 2490.89 + 11314.3i 0.215006 + 0.976613i
\(513\) 0 0
\(514\) 7111.09 + 3109.78i 0.610227 + 0.266861i
\(515\) −3478.12 + 7492.83i −0.297600 + 0.641113i
\(516\) 0 0
\(517\) −9273.48 + 9273.48i −0.788872 + 0.788872i
\(518\) −118.836 303.554i −0.0100799 0.0257479i
\(519\) 0 0
\(520\) 9160.38 + 11216.5i 0.772518 + 0.945912i
\(521\) 5465.70 0.459610 0.229805 0.973237i \(-0.426191\pi\)
0.229805 + 0.973237i \(0.426191\pi\)
\(522\) 0 0
\(523\) −9877.72 + 9877.72i −0.825856 + 0.825856i −0.986941 0.161085i \(-0.948501\pi\)
0.161085 + 0.986941i \(0.448501\pi\)
\(524\) 9491.88 + 10265.0i 0.791326 + 0.855780i
\(525\) 0 0
\(526\) 3682.97 + 1610.62i 0.305295 + 0.133510i
\(527\) −6922.60 6922.60i −0.572207 0.572207i
\(528\) 0 0
\(529\) 6120.55i 0.503045i
\(530\) −659.551 + 10719.5i −0.0540549 + 0.878537i
\(531\) 0 0
\(532\) 734.391 + 28.7377i 0.0598494 + 0.00234199i
\(533\) 2894.96 + 2894.96i 0.235262 + 0.235262i
\(534\) 0 0
\(535\) −8824.02 4096.05i −0.713076 0.331005i
\(536\) 6047.57 + 17426.4i 0.487342 + 1.40430i
\(537\) 0 0
\(538\) −17369.7 + 6799.95i −1.39193 + 0.544920i
\(539\) 9202.49 0.735397
\(540\) 0 0
\(541\) 15069.4 1.19757 0.598784 0.800910i \(-0.295651\pi\)
0.598784 + 0.800910i \(0.295651\pi\)
\(542\) 12593.5 4930.13i 0.998035 0.390715i
\(543\) 0 0
\(544\) −4374.15 + 8191.27i −0.344743 + 0.645584i
\(545\) 1532.55 + 4187.97i 0.120453 + 0.329162i
\(546\) 0 0
\(547\) −4573.04 4573.04i −0.357457 0.357457i 0.505418 0.862875i \(-0.331338\pi\)
−0.862875 + 0.505418i \(0.831338\pi\)
\(548\) 54.9835 1405.10i 0.00428609 0.109531i
\(549\) 0 0
\(550\) 4549.29 8406.27i 0.352695 0.651717i
\(551\) 3249.00i 0.251202i
\(552\) 0 0
\(553\) 63.5850 + 63.5850i 0.00488953 + 0.00488953i
\(554\) −20121.2 8799.29i −1.54308 0.674812i
\(555\) 0 0
\(556\) 57.7899 53.4375i 0.00440798 0.00407599i
\(557\) −1915.65 + 1915.65i −0.145725 + 0.145725i −0.776205 0.630480i \(-0.782858\pi\)
0.630480 + 0.776205i \(0.282858\pi\)
\(558\) 0 0
\(559\) −5419.00 −0.410017
\(560\) −566.996 + 1006.98i −0.0427856 + 0.0759873i
\(561\) 0 0
\(562\) 3140.99 + 8023.30i 0.235756 + 0.602211i
\(563\) 1561.15 1561.15i 0.116864 0.116864i −0.646256 0.763120i \(-0.723666\pi\)
0.763120 + 0.646256i \(0.223666\pi\)
\(564\) 0 0
\(565\) −9937.10 4612.74i −0.739924 0.343468i
\(566\) 21469.6 + 9388.98i 1.59441 + 0.697259i
\(567\) 0 0
\(568\) −1553.33 + 3204.46i −0.114747 + 0.236719i
\(569\) 21457.5i 1.58093i 0.612510 + 0.790463i \(0.290160\pi\)
−0.612510 + 0.790463i \(0.709840\pi\)
\(570\) 0 0
\(571\) 5553.22i 0.406997i 0.979075 + 0.203498i \(0.0652312\pi\)
−0.979075 + 0.203498i \(0.934769\pi\)
\(572\) 484.106 12371.3i 0.0353872 0.904318i
\(573\) 0 0
\(574\) −130.904 + 299.335i −0.00951884 + 0.0217666i
\(575\) 813.477 9685.77i 0.0589988 0.702477i
\(576\) 0 0
\(577\) 762.522 762.522i 0.0550160 0.0550160i −0.679064 0.734079i \(-0.737614\pi\)
0.734079 + 0.679064i \(0.237614\pi\)
\(578\) 6008.91 2352.39i 0.432418 0.169285i
\(579\) 0 0
\(580\) 4546.17 + 2330.53i 0.325465 + 0.166845i
\(581\) 1961.07 0.140033
\(582\) 0 0
\(583\) 6492.40 6492.40i 0.461214 0.461214i
\(584\) 1894.87 + 5460.17i 0.134265 + 0.386889i
\(585\) 0 0
\(586\) 8608.32 19684.5i 0.606837 1.38764i
\(587\) −15138.4 15138.4i −1.06445 1.06445i −0.997775 0.0666722i \(-0.978762\pi\)
−0.0666722 0.997775i \(-0.521238\pi\)
\(588\) 0 0
\(589\) 10855.8i 0.759432i
\(590\) −15461.9 17489.4i −1.07891 1.22038i
\(591\) 0 0
\(592\) 2967.24 + 3471.96i 0.206001 + 0.241042i
\(593\) −1637.51 1637.51i −0.113397 0.113397i 0.648131 0.761529i \(-0.275551\pi\)
−0.761529 + 0.648131i \(0.775551\pi\)
\(594\) 0 0
\(595\) −869.876 + 318.322i −0.0599352 + 0.0219327i
\(596\) −15427.2 16683.8i −1.06027 1.14663i
\(597\) 0 0
\(598\) −4589.62 11723.7i −0.313852 0.801699i
\(599\) 10193.4 0.695312 0.347656 0.937622i \(-0.386978\pi\)
0.347656 + 0.937622i \(0.386978\pi\)
\(600\) 0 0
\(601\) −10688.6 −0.725454 −0.362727 0.931895i \(-0.618154\pi\)
−0.362727 + 0.931895i \(0.618154\pi\)
\(602\) −157.642 402.677i −0.0106727 0.0272623i
\(603\) 0 0
\(604\) 15824.4 + 17113.3i 1.06604 + 1.15287i
\(605\) 6300.80 2305.71i 0.423411 0.154943i
\(606\) 0 0
\(607\) 12050.0 + 12050.0i 0.805759 + 0.805759i 0.983989 0.178230i \(-0.0570372\pi\)
−0.178230 + 0.983989i \(0.557037\pi\)
\(608\) −9852.35 + 2992.94i −0.657180 + 0.199638i
\(609\) 0 0
\(610\) 3936.71 + 4452.91i 0.261300 + 0.295563i
\(611\) 27769.1i 1.83866i
\(612\) 0 0
\(613\) 3893.39 + 3893.39i 0.256529 + 0.256529i 0.823641 0.567112i \(-0.191939\pi\)
−0.567112 + 0.823641i \(0.691939\pi\)
\(614\) 2347.57 5368.15i 0.154300 0.352835i
\(615\) 0 0
\(616\) 933.374 323.914i 0.0610498 0.0211865i
\(617\) −4210.58 + 4210.58i −0.274735 + 0.274735i −0.831003 0.556268i \(-0.812233\pi\)
0.556268 + 0.831003i \(0.312233\pi\)
\(618\) 0 0
\(619\) 6990.42 0.453907 0.226954 0.973906i \(-0.427123\pi\)
0.226954 + 0.973906i \(0.427123\pi\)
\(620\) 15190.0 + 7786.96i 0.983945 + 0.504406i
\(621\) 0 0
\(622\) 3637.86 1424.16i 0.234510 0.0918068i
\(623\) 181.225 181.225i 0.0116543 0.0116543i
\(624\) 0 0
\(625\) 2606.21 15406.1i 0.166797 0.985991i
\(626\) −3189.30 + 7292.91i −0.203626 + 0.465628i
\(627\) 0 0
\(628\) −695.553 + 17774.8i −0.0441968 + 1.12945i
\(629\) 3660.76i 0.232057i
\(630\) 0 0
\(631\) 16801.3i 1.05998i 0.848003 + 0.529991i \(0.177805\pi\)
−0.848003 + 0.529991i \(0.822195\pi\)
\(632\) −1133.67 549.539i −0.0713531 0.0345878i
\(633\) 0 0
\(634\) −7618.67 3331.76i −0.477249 0.208708i
\(635\) −7151.13 3319.51i −0.446904 0.207450i
\(636\) 0 0
\(637\) 13778.3 13778.3i 0.857010 0.857010i
\(638\) −1592.17 4067.01i −0.0988003 0.252374i
\(639\) 0 0
\(640\) 2879.29 15932.8i 0.177834 0.984060i
\(641\) −7637.22 −0.470596 −0.235298 0.971923i \(-0.575607\pi\)
−0.235298 + 0.971923i \(0.575607\pi\)
\(642\) 0 0
\(643\) 13378.3 13378.3i 0.820509 0.820509i −0.165672 0.986181i \(-0.552979\pi\)
0.986181 + 0.165672i \(0.0529793\pi\)
\(644\) 737.651 682.094i 0.0451359 0.0417365i
\(645\) 0 0
\(646\) −7561.90 3306.93i −0.460556 0.201408i
\(647\) 9497.02 + 9497.02i 0.577073 + 0.577073i 0.934096 0.357023i \(-0.116208\pi\)
−0.357023 + 0.934096i \(0.616208\pi\)
\(648\) 0 0
\(649\) 19957.4i 1.20708i
\(650\) −5774.80 19397.5i −0.348472 1.17051i
\(651\) 0 0
\(652\) 644.636 16473.6i 0.0387207 0.989506i
\(653\) −12420.7 12420.7i −0.744346 0.744346i 0.229065 0.973411i \(-0.426433\pi\)
−0.973411 + 0.229065i \(0.926433\pi\)
\(654\) 0 0
\(655\) −6714.61 18348.9i −0.400552 1.09458i
\(656\) 357.681 4563.26i 0.0212883 0.271594i
\(657\) 0 0
\(658\) −2063.48 + 807.819i −0.122254 + 0.0478603i
\(659\) 5899.85 0.348749 0.174374 0.984679i \(-0.444210\pi\)
0.174374 + 0.984679i \(0.444210\pi\)
\(660\) 0 0
\(661\) 25892.6 1.52361 0.761804 0.647808i \(-0.224314\pi\)
0.761804 + 0.647808i \(0.224314\pi\)
\(662\) −22740.0 + 8902.36i −1.33507 + 0.522658i
\(663\) 0 0
\(664\) −25956.6 + 9007.88i −1.51704 + 0.526466i
\(665\) −931.647 432.464i −0.0543274 0.0252184i
\(666\) 0 0
\(667\) −3140.53 3140.53i −0.182312 0.182312i
\(668\) −9058.05 354.454i −0.524650 0.0205303i
\(669\) 0 0
\(670\) 1583.14 25730.3i 0.0912865 1.48365i
\(671\) 5081.29i 0.292342i
\(672\) 0 0
\(673\) −19481.3 19481.3i −1.11582 1.11582i −0.992348 0.123475i \(-0.960596\pi\)
−0.123475 0.992348i \(-0.539404\pi\)
\(674\) 11416.4 + 4992.55i 0.652437 + 0.285320i
\(675\) 0 0
\(676\) −5865.28 6343.00i −0.333709 0.360890i
\(677\) 17811.4 17811.4i 1.01115 1.01115i 0.0112114 0.999937i \(-0.496431\pi\)
0.999937 0.0112114i \(-0.00356878\pi\)
\(678\) 0 0
\(679\) 2551.55 0.144211
\(680\) 10051.4 8208.93i 0.566846 0.462938i
\(681\) 0 0
\(682\) −5319.88 13589.0i −0.298693 0.762976i
\(683\) 13579.6 13579.6i 0.760775 0.760775i −0.215687 0.976463i \(-0.569199\pi\)
0.976463 + 0.215687i \(0.0691991\pi\)
\(684\) 0 0
\(685\) −827.428 + 1782.51i −0.0461524 + 0.0994249i
\(686\) 2860.24 + 1250.82i 0.159190 + 0.0696161i
\(687\) 0 0
\(688\) 3936.17 + 4605.70i 0.218118 + 0.255219i
\(689\) 19441.3i 1.07497i
\(690\) 0 0
\(691\) 12840.8i 0.706928i −0.935448 0.353464i \(-0.885004\pi\)
0.935448 0.353464i \(-0.114996\pi\)
\(692\) −13346.7 522.274i −0.733186 0.0286906i
\(693\) 0 0
\(694\) 1036.92 2371.10i 0.0567159 0.129691i
\(695\) −103.301 + 37.8019i −0.00563803 + 0.00206318i
\(696\) 0 0
\(697\) 2594.27 2594.27i 0.140983 0.140983i
\(698\) −25315.4 + 9910.56i −1.37278 + 0.537422i
\(699\) 0 0
\(700\) 1273.41 993.400i 0.0687574 0.0536386i
\(701\) 23786.6 1.28161 0.640805 0.767704i \(-0.278601\pi\)
0.640805 + 0.767704i \(0.278601\pi\)
\(702\) 0 0
\(703\) −2870.34 + 2870.34i −0.153993 + 0.153993i
\(704\) −10866.2 + 8574.62i −0.581727 + 0.459045i
\(705\) 0 0
\(706\) 8150.01 18636.5i 0.434461 0.993476i
\(707\) 899.658 + 899.658i 0.0478573 + 0.0478573i
\(708\) 0 0
\(709\) 21270.0i 1.12667i 0.826227 + 0.563337i \(0.190483\pi\)
−0.826227 + 0.563337i \(0.809517\pi\)
\(710\) 3728.59 3296.36i 0.197087 0.174240i
\(711\) 0 0
\(712\) −1566.25 + 3231.11i −0.0824408 + 0.170072i
\(713\) −10493.4 10493.4i −0.551164 0.551164i
\(714\) 0 0
\(715\) −7285.15 + 15694.2i −0.381048 + 0.820882i
\(716\) 21876.1 20228.5i 1.14183 1.05583i
\(717\) 0 0
\(718\) 5772.09 + 14744.1i 0.300017 + 0.766359i
\(719\) 22553.8 1.16984 0.584921 0.811090i \(-0.301126\pi\)
0.584921 + 0.811090i \(0.301126\pi\)
\(720\) 0 0
\(721\) 1193.30 0.0616380
\(722\) 3735.97 + 9543.10i 0.192574 + 0.491908i
\(723\) 0 0
\(724\) −3206.21 + 2964.73i −0.164583 + 0.152187i
\(725\) −4608.27 5453.31i −0.236065 0.279353i
\(726\) 0 0
\(727\) −19795.0 19795.0i −1.00984 1.00984i −0.999951 0.00989382i \(-0.996851\pi\)
−0.00989382 0.999951i \(-0.503149\pi\)
\(728\) 912.504 1882.46i 0.0464556 0.0958358i
\(729\) 0 0
\(730\) 496.042 8062.01i 0.0251498 0.408751i
\(731\) 4856.16i 0.245706i
\(732\) 0 0
\(733\) 10191.1 + 10191.1i 0.513528 + 0.513528i 0.915606 0.402078i \(-0.131712\pi\)
−0.402078 + 0.915606i \(0.631712\pi\)
\(734\) −5892.76 + 13474.9i −0.296329 + 0.677612i
\(735\) 0 0
\(736\) −6630.40 + 12416.4i −0.332065 + 0.621842i
\(737\) −15583.9 + 15583.9i −0.778888 + 0.778888i
\(738\) 0 0
\(739\) 28579.3 1.42261 0.711304 0.702885i \(-0.248105\pi\)
0.711304 + 0.702885i \(0.248105\pi\)
\(740\) −1957.42 6075.26i −0.0972379 0.301799i
\(741\) 0 0
\(742\) 1444.65 565.558i 0.0714755 0.0279815i
\(743\) −20848.1 + 20848.1i −1.02940 + 1.02940i −0.0298445 + 0.999555i \(0.509501\pi\)
−0.999555 + 0.0298445i \(0.990499\pi\)
\(744\) 0 0
\(745\) 10913.3 + 29822.6i 0.536687 + 1.46660i
\(746\) 10900.2 24925.2i 0.534964 1.22329i
\(747\) 0 0
\(748\) −11086.3 433.824i −0.541921 0.0212061i
\(749\) 1405.31i 0.0685566i
\(750\) 0 0
\(751\) 13588.4i 0.660252i 0.943937 + 0.330126i \(0.107091\pi\)
−0.943937 + 0.330126i \(0.892909\pi\)
\(752\) 23601.5 20170.5i 1.14449 0.978115i
\(753\) 0 0
\(754\) −8473.13 3705.42i −0.409248 0.178970i
\(755\) −11194.3 30590.5i −0.539605 1.47457i
\(756\) 0 0
\(757\) −1630.23 + 1630.23i −0.0782719 + 0.0782719i −0.745159 0.666887i \(-0.767626\pi\)
0.666887 + 0.745159i \(0.267626\pi\)
\(758\) 10303.1 + 26318.1i 0.493702 + 1.26110i
\(759\) 0 0
\(760\) 14317.7 + 1444.69i 0.683364 + 0.0689532i
\(761\) 33489.9 1.59528 0.797640 0.603134i \(-0.206081\pi\)
0.797640 + 0.603134i \(0.206081\pi\)
\(762\) 0 0
\(763\) 455.524 455.524i 0.0216135 0.0216135i
\(764\) 19925.4 + 21548.4i 0.943556 + 1.02041i
\(765\) 0 0
\(766\) −7002.98 3062.51i −0.330324 0.144455i
\(767\) 29881.0 + 29881.0i 1.40670 + 1.40670i
\(768\) 0 0
\(769\) 26755.6i 1.25466i −0.778755 0.627328i \(-0.784149\pi\)
0.778755 0.627328i \(-0.215851\pi\)
\(770\) −1378.14 84.7946i −0.0644996 0.00396855i
\(771\) 0 0
\(772\) 8083.43 + 316.316i 0.376851 + 0.0147467i
\(773\) 6155.27 + 6155.27i 0.286403 + 0.286403i 0.835656 0.549253i \(-0.185088\pi\)
−0.549253 + 0.835656i \(0.685088\pi\)
\(774\) 0 0
\(775\) −15397.5 18221.0i −0.713670 0.844540i
\(776\) −33772.1 + 11720.1i −1.56231 + 0.542176i
\(777\) 0 0
\(778\) 402.902 157.729i 0.0185665 0.00726848i
\(779\) 4068.25 0.187112
\(780\) 0 0
\(781\) −4254.76 −0.194939
\(782\) −10506.0 + 4112.92i −0.480425 + 0.188079i
\(783\) 0 0
\(784\) −21718.4 1702.35i −0.989361 0.0775489i
\(785\) 10467.1 22549.1i 0.475909 1.02524i
\(786\) 0 0
\(787\) 11524.6 + 11524.6i 0.521993 + 0.521993i 0.918173 0.396180i \(-0.129664\pi\)
−0.396180 + 0.918173i \(0.629664\pi\)
\(788\) 120.760 3086.01i 0.00545925 0.139511i
\(789\) 0 0
\(790\) 1166.19 + 1319.10i 0.0525203 + 0.0594070i
\(791\) 1582.58i 0.0711378i
\(792\) 0 0
\(793\) −7607.89 7607.89i −0.340686 0.340686i
\(794\) −14012.2 6127.74i −0.626290 0.273886i
\(795\) 0 0
\(796\) 26749.9 24735.2i 1.19111 1.10140i
\(797\) −656.794 + 656.794i −0.0291905 + 0.0291905i −0.721551 0.692361i \(-0.756571\pi\)
0.692361 + 0.721551i \(0.256571\pi\)
\(798\) 0 0
\(799\) 24884.9 1.10183
\(800\) −12291.7 + 18997.8i −0.543220 + 0.839590i
\(801\) 0 0
\(802\) 11280.0 + 28813.5i 0.496648 + 1.26863i
\(803\) −4882.87 + 4882.87i −0.214586 + 0.214586i
\(804\) 0 0
\(805\) −1318.57 + 482.517i −0.0577310 + 0.0211261i
\(806\) −28311.0 12380.8i −1.23724 0.541062i
\(807\) 0 0
\(808\) −16040.2 7775.37i −0.698383 0.338535i
\(809\) 14179.8i 0.616238i 0.951348 + 0.308119i \(0.0996994\pi\)
−0.951348 + 0.308119i \(0.900301\pi\)
\(810\) 0 0
\(811\) 29366.2i 1.27150i 0.771896 + 0.635749i \(0.219309\pi\)
−0.771896 + 0.635749i \(0.780691\pi\)
\(812\) 28.8561 737.417i 0.00124711 0.0318698i
\(813\) 0 0
\(814\) −2186.41 + 4999.63i −0.0941445 + 0.215279i
\(815\) −9700.92 + 20898.4i −0.416943 + 0.898209i
\(816\) 0 0
\(817\) −3807.63 + 3807.63i −0.163050 + 0.163050i
\(818\) −7855.67 + 3075.37i −0.335779 + 0.131452i
\(819\) 0 0
\(820\) −2918.19 + 5692.51i −0.124278 + 0.242428i
\(821\) −8845.67 −0.376025 −0.188012 0.982167i \(-0.560204\pi\)
−0.188012 + 0.982167i \(0.560204\pi\)
\(822\) 0 0
\(823\) 16257.0 16257.0i 0.688559 0.688559i −0.273355 0.961913i \(-0.588133\pi\)
0.961913 + 0.273355i \(0.0881332\pi\)
\(824\) −15794.5 + 5481.26i −0.667751 + 0.231734i
\(825\) 0 0
\(826\) −1351.15 + 3089.66i −0.0569160 + 0.130149i
\(827\) 19183.3 + 19183.3i 0.806612 + 0.806612i 0.984119 0.177507i \(-0.0568034\pi\)
−0.177507 + 0.984119i \(0.556803\pi\)
\(828\) 0 0
\(829\) 27097.5i 1.13527i −0.823282 0.567633i \(-0.807859\pi\)
0.823282 0.567633i \(-0.192141\pi\)
\(830\) 38325.3 + 2358.09i 1.60276 + 0.0986151i
\(831\) 0 0
\(832\) −3431.07 + 29107.5i −0.142970 + 1.21289i
\(833\) −12347.2 12347.2i −0.513571 0.513571i
\(834\) 0 0
\(835\) 11491.0 + 5334.06i 0.476244 + 0.221069i
\(836\) −8352.47 9032.78i −0.345546 0.373691i
\(837\) 0 0
\(838\) 2916.14 + 7448.93i 0.120210 + 0.307063i
\(839\) 13726.1 0.564814 0.282407 0.959295i \(-0.408867\pi\)
0.282407 + 0.959295i \(0.408867\pi\)
\(840\) 0 0
\(841\) 21126.6 0.866235
\(842\) −762.948 1948.86i −0.0312268 0.0797651i
\(843\) 0 0
\(844\) 23088.0 + 24968.6i 0.941615 + 1.01831i
\(845\) 4149.13 + 11338.3i 0.168916 + 0.461596i
\(846\) 0 0
\(847\) −685.334 685.334i −0.0278021 0.0278021i
\(848\) −16523.5 + 14121.5i −0.669127 + 0.571855i
\(849\) 0 0
\(850\) −17382.8 + 5175.00i −0.701440 + 0.208825i
\(851\) 5549.03i 0.223523i
\(852\) 0 0
\(853\) −20720.5 20720.5i −0.831720 0.831720i 0.156032 0.987752i \(-0.450130\pi\)
−0.987752 + 0.156032i \(0.950130\pi\)
\(854\) 344.012 786.648i 0.0137844 0.0315205i
\(855\) 0 0
\(856\) −6455.07 18600.6i −0.257745 0.742704i
\(857\) −26011.0 + 26011.0i −1.03678 + 1.03678i −0.0374797 + 0.999297i \(0.511933\pi\)
−0.999297 + 0.0374797i \(0.988067\pi\)
\(858\) 0 0
\(859\) 4857.84 0.192954 0.0964769 0.995335i \(-0.469243\pi\)
0.0964769 + 0.995335i \(0.469243\pi\)
\(860\) −2596.60 8059.09i −0.102957 0.319550i
\(861\) 0 0
\(862\) −18632.6 + 7294.37i −0.736229 + 0.288222i
\(863\) 23423.0 23423.0i 0.923904 0.923904i −0.0733988 0.997303i \(-0.523385\pi\)
0.997303 + 0.0733988i \(0.0233846\pi\)
\(864\) 0 0
\(865\) 16931.6 + 7859.52i 0.665539 + 0.308939i
\(866\) 4239.25 9693.81i 0.166346 0.380380i
\(867\) 0 0
\(868\) 96.4163 2463.91i 0.00377025 0.0963486i
\(869\) 1505.25i 0.0587596i
\(870\) 0 0
\(871\) 46665.5i 1.81539i
\(872\) −3936.90 + 8121.66i −0.152890 + 0.315406i
\(873\) 0 0
\(874\) −11462.4 5012.69i −0.443619 0.194001i
\(875\) −2177.12 + 595.543i −0.0841145 + 0.0230092i
\(876\) 0 0
\(877\) −19062.6 + 19062.6i −0.733976 + 0.733976i −0.971405 0.237429i \(-0.923695\pi\)
0.237429 + 0.971405i \(0.423695\pi\)
\(878\) −13304.5 33984.9i −0.511396 1.30630i
\(879\) 0 0
\(880\) 18630.4 5207.94i 0.713673 0.199499i
\(881\) 6538.78 0.250053 0.125027 0.992153i \(-0.460098\pi\)
0.125027 + 0.992153i \(0.460098\pi\)
\(882\) 0 0
\(883\) −23546.4 + 23546.4i −0.897395 + 0.897395i −0.995205 0.0978097i \(-0.968816\pi\)
0.0978097 + 0.995205i \(0.468816\pi\)
\(884\) −17248.4 + 15949.3i −0.656252 + 0.606826i
\(885\) 0 0
\(886\) −7728.22 3379.66i −0.293041 0.128151i
\(887\) −13448.5 13448.5i −0.509082 0.509082i 0.405162 0.914245i \(-0.367215\pi\)
−0.914245 + 0.405162i \(0.867215\pi\)
\(888\) 0 0
\(889\) 1138.89i 0.0429663i
\(890\) 3759.60 3323.78i 0.141598 0.125183i
\(891\) 0 0
\(892\) −114.465 + 2925.13i −0.00429659 + 0.109799i
\(893\) 19511.8 + 19511.8i 0.731175 + 0.731175i
\(894\) 0 0
\(895\) −39104.1 + 14309.8i −1.46045 + 0.534439i
\(896\) −2262.74 + 591.795i −0.0843671 + 0.0220653i
\(897\) 0 0
\(898\) 358.531 140.359i 0.0133233 0.00521585i
\(899\) −10900.5 −0.404397
\(900\) 0 0
\(901\) −17422.0 −0.644186
\(902\) 5092.53 1993.64i 0.187985 0.0735932i
\(903\) 0 0
\(904\) −7269.33 20946.9i −0.267449 0.770667i
\(905\) 5731.17 2097.27i 0.210509 0.0770337i
\(906\) 0 0
\(907\) −200.288 200.288i −0.00733237 0.00733237i 0.703431 0.710763i \(-0.251650\pi\)
−0.710763 + 0.703431i \(0.751650\pi\)
\(908\) −24052.4 941.202i −0.879081 0.0343997i
\(909\) 0 0
\(910\) −2190.36 + 1936.44i −0.0797908 + 0.0705411i
\(911\) 7662.84i 0.278684i −0.990244 0.139342i \(-0.955501\pi\)
0.990244 0.139342i \(-0.0444987\pi\)
\(912\) 0 0
\(913\) −23212.3 23212.3i −0.841417 0.841417i
\(914\) 24409.8 + 10674.8i 0.883375 + 0.386313i
\(915\) 0 0
\(916\) −25282.8 27342.1i −0.911973 0.986253i
\(917\) −1995.81 + 1995.81i −0.0718727 + 0.0718727i
\(918\) 0 0
\(919\) 17176.1 0.616527 0.308263 0.951301i \(-0.400252\pi\)
0.308263 + 0.951301i \(0.400252\pi\)
\(920\) 15236.1 12443.2i 0.546000 0.445914i
\(921\) 0 0
\(922\) 9853.62 + 25169.9i 0.351965 + 0.899054i
\(923\) −6370.38 + 6370.38i −0.227176 + 0.227176i
\(924\) 0 0
\(925\) −746.555 + 8888.95i −0.0265368 + 0.315964i
\(926\) −3351.95 1465.85i −0.118954 0.0520205i
\(927\) 0 0
\(928\) 3005.27 + 9892.94i 0.106307 + 0.349948i
\(929\) 27097.0i 0.956968i −0.878096 0.478484i \(-0.841186\pi\)
0.878096 0.478484i \(-0.158814\pi\)
\(930\) 0 0
\(931\) 19362.5i 0.681611i
\(932\) 38352.7 + 1500.80i 1.34795 + 0.0527470i
\(933\) 0 0
\(934\) −868.376 + 1985.70i −0.0304220 + 0.0695654i
\(935\) 14064.1 + 6528.47i 0.491921 + 0.228346i
\(936\) 0 0
\(937\) −4000.15 + 4000.15i −0.139465 + 0.139465i −0.773393 0.633927i \(-0.781442\pi\)
0.633927 + 0.773393i \(0.281442\pi\)
\(938\) −3467.64 + 1357.52i −0.120706 + 0.0472545i
\(939\) 0 0
\(940\) −41298.0 + 13306.0i −1.43297 + 0.461696i
\(941\) −37957.6 −1.31496 −0.657482 0.753470i \(-0.728379\pi\)
−0.657482 + 0.753470i \(0.728379\pi\)
\(942\) 0 0
\(943\) 3932.43 3932.43i 0.135798 0.135798i
\(944\) 3691.89 47100.8i 0.127289 1.62394i
\(945\) 0 0
\(946\) −2900.37 + 6632.22i −0.0996819 + 0.227941i
\(947\) −13560.7 13560.7i −0.465327 0.465327i 0.435070 0.900397i \(-0.356724\pi\)
−0.900397 + 0.435070i \(0.856724\pi\)
\(948\) 0 0
\(949\) 14621.6i 0.500145i
\(950\) −17687.2 9571.92i −0.604051 0.326899i
\(951\) 0 0
\(952\) −1686.93 817.726i −0.0574305 0.0278389i
\(953\) −15366.0 15366.0i −0.522302 0.522302i 0.395964 0.918266i \(-0.370411\pi\)
−0.918266 + 0.395964i \(0.870411\pi\)
\(954\) 0 0
\(955\) −14095.4 38518.2i −0.477607 1.30515i
\(956\) −8424.81 + 7790.29i −0.285019 + 0.263552i
\(957\) 0 0
\(958\) 19959.6 + 50984.6i 0.673138 + 1.71945i
\(959\) 283.881 0.00955892
\(960\) 0 0
\(961\) −6630.66 −0.222573
\(962\) 4212.05 + 10759.2i 0.141166 + 0.360593i
\(963\) 0 0
\(964\) 37818.6 34970.3i 1.26354 1.16838i
\(965\) −10254.6 4760.13i −0.342081 0.158792i
\(966\) 0 0
\(967\) −14792.8 14792.8i −0.491939 0.491939i 0.416978 0.908917i \(-0.363089\pi\)
−0.908917 + 0.416978i \(0.863089\pi\)
\(968\) 12219.0 + 5923.06i 0.405717 + 0.196668i
\(969\) 0 0
\(970\) 49865.0 + 3068.11i 1.65059 + 0.101558i
\(971\) 14139.9i 0.467322i −0.972318 0.233661i \(-0.924929\pi\)
0.972318 0.233661i \(-0.0750706\pi\)
\(972\) 0 0
\(973\) 11.2360 + 11.2360i 0.000370205 + 0.000370205i
\(974\) 226.247 517.355i 0.00744294 0.0170196i
\(975\) 0 0
\(976\) −939.980 + 11992.2i −0.0308279 + 0.393299i
\(977\) −2288.77 + 2288.77i −0.0749481 + 0.0749481i −0.743587 0.668639i \(-0.766877\pi\)
0.668639 + 0.743587i \(0.266877\pi\)
\(978\) 0 0
\(979\) −4290.15 −0.140055
\(980\) 27093.0 + 13888.9i 0.883117 + 0.452718i
\(981\) 0 0
\(982\) −2449.03 + 958.755i −0.0795842 + 0.0311559i
\(983\) −6757.28 + 6757.28i −0.219251 + 0.219251i −0.808183 0.588932i \(-0.799549\pi\)
0.588932 + 0.808183i \(0.299549\pi\)
\(984\) 0 0
\(985\) −1817.27 + 3914.91i −0.0587849 + 0.126639i
\(986\) −3320.56 + 7593.06i −0.107250 + 0.245246i
\(987\) 0 0
\(988\) −26029.8 1018.58i −0.838177 0.0327990i
\(989\) 7361.03i 0.236670i
\(990\) 0 0
\(991\) 18118.1i 0.580767i −0.956910 0.290384i \(-0.906217\pi\)
0.956910 0.290384i \(-0.0937829\pi\)
\(992\) 10041.4 + 33055.0i 0.321387 + 1.05796i
\(993\) 0 0
\(994\) −658.690 288.055i −0.0210185 0.00919169i
\(995\) −47816.1 + 17497.8i −1.52349 + 0.557505i
\(996\) 0 0
\(997\) 18211.2 18211.2i 0.578491 0.578491i −0.355996 0.934487i \(-0.615858\pi\)
0.934487 + 0.355996i \(0.115858\pi\)
\(998\) 13947.1 + 35626.2i 0.442372 + 1.12999i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.4.k.e.163.2 12
3.2 odd 2 20.4.e.b.3.5 yes 12
4.3 odd 2 inner 180.4.k.e.163.5 12
5.2 odd 4 inner 180.4.k.e.127.5 12
12.11 even 2 20.4.e.b.3.2 12
15.2 even 4 20.4.e.b.7.2 yes 12
15.8 even 4 100.4.e.e.7.5 12
15.14 odd 2 100.4.e.e.43.2 12
20.7 even 4 inner 180.4.k.e.127.2 12
24.5 odd 2 320.4.n.k.63.1 12
24.11 even 2 320.4.n.k.63.6 12
60.23 odd 4 100.4.e.e.7.2 12
60.47 odd 4 20.4.e.b.7.5 yes 12
60.59 even 2 100.4.e.e.43.5 12
120.77 even 4 320.4.n.k.127.6 12
120.107 odd 4 320.4.n.k.127.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.4.e.b.3.2 12 12.11 even 2
20.4.e.b.3.5 yes 12 3.2 odd 2
20.4.e.b.7.2 yes 12 15.2 even 4
20.4.e.b.7.5 yes 12 60.47 odd 4
100.4.e.e.7.2 12 60.23 odd 4
100.4.e.e.7.5 12 15.8 even 4
100.4.e.e.43.2 12 15.14 odd 2
100.4.e.e.43.5 12 60.59 even 2
180.4.k.e.127.2 12 20.7 even 4 inner
180.4.k.e.127.5 12 5.2 odd 4 inner
180.4.k.e.163.2 12 1.1 even 1 trivial
180.4.k.e.163.5 12 4.3 odd 2 inner
320.4.n.k.63.1 12 24.5 odd 2
320.4.n.k.63.6 12 24.11 even 2
320.4.n.k.127.1 12 120.107 odd 4
320.4.n.k.127.6 12 120.77 even 4