Properties

Label 180.2.n.c.59.4
Level $180$
Weight $2$
Character 180.59
Analytic conductor $1.437$
Analytic rank $0$
Dimension $8$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,2,Mod(59,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.59"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 180.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.43730723638\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 59.4
Root \(0.178197 - 1.72286i\) of defining polynomial
Character \(\chi\) \(=\) 180.59
Dual form 180.2.n.c.119.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(0.178197 - 1.72286i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-1.93649 - 1.11803i) q^{5} +(-1.00000 - 2.23607i) q^{6} +(2.62769 + 4.55129i) q^{7} -2.82843i q^{8} +(-2.93649 - 0.614017i) q^{9} -3.16228 q^{10} +(-2.80588 - 2.03151i) q^{12} +(6.43649 + 3.71611i) q^{14} +(-2.27129 + 3.13707i) q^{15} +(-2.00000 - 3.46410i) q^{16} +(-4.03063 + 1.32440i) q^{18} +(-3.87298 + 2.23607i) q^{20} +(8.30948 - 3.71611i) q^{21} +(6.50275 + 3.75437i) q^{23} +(-4.87298 - 0.504017i) q^{24} +(2.50000 + 4.33013i) q^{25} +(-1.58114 + 4.94975i) q^{27} +10.5107 q^{28} +(-0.627017 + 0.362008i) q^{29} +(-0.563508 + 5.44816i) q^{30} +(-4.89898 - 2.82843i) q^{32} -11.7514i q^{35} +(-4.00000 + 4.47214i) q^{36} +(-3.16228 + 5.47723i) q^{40} +(-7.06351 - 4.07812i) q^{41} +(7.54930 - 10.4270i) q^{42} +(-1.58114 - 2.73861i) q^{43} +(5.00000 + 4.47214i) q^{45} +10.6190 q^{46} +(-2.82852 + 1.63305i) q^{47} +(-6.32456 + 2.82843i) q^{48} +(-10.3095 + 17.8565i) q^{49} +(6.12372 + 3.53553i) q^{50} +(1.56351 + 7.18021i) q^{54} +(12.8730 - 7.43222i) q^{56} +(-0.511957 + 0.886735i) q^{58} +(3.16228 + 7.07107i) q^{60} +(-3.80948 - 6.59820i) q^{61} +(-4.92161 - 14.9783i) q^{63} -8.00000 q^{64} +(-2.11573 + 3.66455i) q^{67} +(7.62702 - 10.5343i) q^{69} +(-8.30948 - 14.3924i) q^{70} +(-1.73670 + 8.30565i) q^{72} +(7.90569 - 3.53553i) q^{75} +8.94427i q^{80} +(8.24597 + 3.60611i) q^{81} -11.5347 q^{82} +(-13.8512 + 7.99701i) q^{83} +(1.87298 - 18.1085i) q^{84} +(-3.87298 - 2.23607i) q^{86} +(0.511957 + 1.14477i) q^{87} -14.1404i q^{89} +(9.28600 + 1.94169i) q^{90} +(13.0055 - 7.50873i) q^{92} +(-2.30948 + 4.00013i) q^{94} +(-5.74597 + 7.93624i) q^{96} +29.1596i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 8 q^{6} - 8 q^{9} + 36 q^{14} - 16 q^{16} + 20 q^{21} - 8 q^{24} + 20 q^{25} - 36 q^{29} - 20 q^{30} - 32 q^{36} - 72 q^{41} + 40 q^{45} - 8 q^{46} - 36 q^{49} + 28 q^{54} + 72 q^{56} + 16 q^{61}+ \cdots + 16 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.866025 0.500000i
\(3\) 0.178197 1.72286i 0.102882 0.994694i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −1.93649 1.11803i −0.866025 0.500000i
\(6\) −1.00000 2.23607i −0.408248 0.912871i
\(7\) 2.62769 + 4.55129i 0.993172 + 1.72022i 0.597614 + 0.801784i \(0.296115\pi\)
0.395558 + 0.918441i \(0.370551\pi\)
\(8\) 2.82843i 1.00000i
\(9\) −2.93649 0.614017i −0.978831 0.204672i
\(10\) −3.16228 −1.00000
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) −2.80588 2.03151i −0.809989 0.586445i
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 6.43649 + 3.71611i 1.72022 + 0.993172i
\(15\) −2.27129 + 3.13707i −0.586445 + 0.809989i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −4.03063 + 1.32440i −0.950028 + 0.312164i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −3.87298 + 2.23607i −0.866025 + 0.500000i
\(21\) 8.30948 3.71611i 1.81328 0.810922i
\(22\) 0 0
\(23\) 6.50275 + 3.75437i 1.35592 + 0.782839i 0.989071 0.147442i \(-0.0471040\pi\)
0.366847 + 0.930281i \(0.380437\pi\)
\(24\) −4.87298 0.504017i −0.994694 0.102882i
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) −1.58114 + 4.94975i −0.304290 + 0.952579i
\(28\) 10.5107 1.98634
\(29\) −0.627017 + 0.362008i −0.116434 + 0.0672232i −0.557086 0.830455i \(-0.688081\pi\)
0.440652 + 0.897678i \(0.354747\pi\)
\(30\) −0.563508 + 5.44816i −0.102882 + 0.994694i
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) −4.89898 2.82843i −0.866025 0.500000i
\(33\) 0 0
\(34\) 0 0
\(35\) 11.7514i 1.98634i
\(36\) −4.00000 + 4.47214i −0.666667 + 0.745356i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −3.16228 + 5.47723i −0.500000 + 0.866025i
\(41\) −7.06351 4.07812i −1.10313 0.636895i −0.166092 0.986110i \(-0.553115\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 7.54930 10.4270i 1.16488 1.60892i
\(43\) −1.58114 2.73861i −0.241121 0.417635i 0.719913 0.694065i \(-0.244182\pi\)
−0.961034 + 0.276430i \(0.910849\pi\)
\(44\) 0 0
\(45\) 5.00000 + 4.47214i 0.745356 + 0.666667i
\(46\) 10.6190 1.56568
\(47\) −2.82852 + 1.63305i −0.412582 + 0.238204i −0.691898 0.721995i \(-0.743225\pi\)
0.279317 + 0.960199i \(0.409892\pi\)
\(48\) −6.32456 + 2.82843i −0.912871 + 0.408248i
\(49\) −10.3095 + 17.8565i −1.47278 + 2.55093i
\(50\) 6.12372 + 3.53553i 0.866025 + 0.500000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 1.56351 + 7.18021i 0.212767 + 0.977103i
\(55\) 0 0
\(56\) 12.8730 7.43222i 1.72022 0.993172i
\(57\) 0 0
\(58\) −0.511957 + 0.886735i −0.0672232 + 0.116434i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 3.16228 + 7.07107i 0.408248 + 0.912871i
\(61\) −3.80948 6.59820i −0.487753 0.844813i 0.512148 0.858898i \(-0.328850\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 0 0
\(63\) −4.92161 14.9783i −0.620065 1.88708i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.11573 + 3.66455i −0.258478 + 0.447696i −0.965834 0.259161i \(-0.916554\pi\)
0.707357 + 0.706857i \(0.249887\pi\)
\(68\) 0 0
\(69\) 7.62702 10.5343i 0.918185 1.26818i
\(70\) −8.30948 14.3924i −0.993172 1.72022i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −1.73670 + 8.30565i −0.204672 + 0.978831i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 7.90569 3.53553i 0.912871 0.408248i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 8.94427i 1.00000i
\(81\) 8.24597 + 3.60611i 0.916219 + 0.400679i
\(82\) −11.5347 −1.27379
\(83\) −13.8512 + 7.99701i −1.52037 + 0.877785i −0.520658 + 0.853766i \(0.674313\pi\)
−0.999711 + 0.0240199i \(0.992353\pi\)
\(84\) 1.87298 18.1085i 0.204359 1.97580i
\(85\) 0 0
\(86\) −3.87298 2.23607i −0.417635 0.241121i
\(87\) 0.511957 + 1.14477i 0.0548875 + 0.122732i
\(88\) 0 0
\(89\) 14.1404i 1.49888i −0.662071 0.749441i \(-0.730322\pi\)
0.662071 0.749441i \(-0.269678\pi\)
\(90\) 9.28600 + 1.94169i 0.978831 + 0.204672i
\(91\) 0 0
\(92\) 13.0055 7.50873i 1.35592 0.782839i
\(93\) 0 0
\(94\) −2.30948 + 4.00013i −0.238204 + 0.412582i
\(95\) 0 0
\(96\) −5.74597 + 7.93624i −0.586445 + 0.809989i
\(97\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(98\) 29.1596i 2.94556i
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) −7.74597 + 4.47214i −0.770752 + 0.444994i −0.833143 0.553058i \(-0.813461\pi\)
0.0623905 + 0.998052i \(0.480128\pi\)
\(102\) 0 0
\(103\) 7.90569 13.6931i 0.778971 1.34922i −0.153564 0.988139i \(-0.549075\pi\)
0.932535 0.361079i \(-0.117592\pi\)
\(104\) 0 0
\(105\) −20.2460 2.09406i −1.97580 0.204359i
\(106\) 0 0
\(107\) 0.976550i 0.0944066i 0.998885 + 0.0472033i \(0.0150309\pi\)
−0.998885 + 0.0472033i \(0.984969\pi\)
\(108\) 6.99208 + 7.68836i 0.672813 + 0.739813i
\(109\) 19.6190 1.87915 0.939577 0.342337i \(-0.111218\pi\)
0.939577 + 0.342337i \(0.111218\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.5107 18.2051i 0.993172 1.72022i
\(113\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(114\) 0 0
\(115\) −8.39502 14.5406i −0.782839 1.35592i
\(116\) 1.44803i 0.134446i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 8.87298 + 6.42419i 0.809989 + 0.586445i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) −9.33127 5.38741i −0.844813 0.487753i
\(123\) −8.28472 + 11.4427i −0.747008 + 1.03176i
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) −16.6190 14.8644i −1.48053 1.32423i
\(127\) −14.7422 −1.30816 −0.654080 0.756426i \(-0.726944\pi\)
−0.654080 + 0.756426i \(0.726944\pi\)
\(128\) −9.79796 + 5.65685i −0.866025 + 0.500000i
\(129\) −5.00000 + 2.23607i −0.440225 + 0.196875i
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 5.98419i 0.516955i
\(135\) 8.59585 7.81738i 0.739813 0.672813i
\(136\) 0 0
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 1.89226 18.2950i 0.161080 1.55737i
\(139\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) −20.3540 11.7514i −1.72022 0.993172i
\(141\) 2.30948 + 5.16414i 0.194493 + 0.434899i
\(142\) 0 0
\(143\) 0 0
\(144\) 3.74597 + 11.4003i 0.312164 + 0.950028i
\(145\) 1.61895 0.134446
\(146\) 0 0
\(147\) 28.9272 + 20.9438i 2.38587 + 1.72741i
\(148\) 0 0
\(149\) 19.9365 + 11.5103i 1.63326 + 0.942964i 0.983078 + 0.183186i \(0.0586410\pi\)
0.650183 + 0.759778i \(0.274692\pi\)
\(150\) 7.18246 9.92030i 0.586445 0.809989i
\(151\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 6.32456 + 10.9545i 0.500000 + 0.866025i
\(161\) 39.4612i 3.10998i
\(162\) 12.6491 1.41421i 0.993808 0.111111i
\(163\) 22.1359 1.73382 0.866910 0.498464i \(-0.166102\pi\)
0.866910 + 0.498464i \(0.166102\pi\)
\(164\) −14.1270 + 8.15624i −1.10313 + 0.636895i
\(165\) 0 0
\(166\) −11.3095 + 19.5886i −0.877785 + 1.52037i
\(167\) 17.5255 + 10.1183i 1.35616 + 0.782980i 0.989104 0.147219i \(-0.0470322\pi\)
0.367057 + 0.930199i \(0.380366\pi\)
\(168\) −10.5107 23.5027i −0.810922 1.81328i
\(169\) −6.50000 11.2583i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) −6.32456 −0.482243
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 1.43649 + 1.04004i 0.108900 + 0.0788455i
\(175\) −13.1384 + 22.7564i −0.993172 + 1.72022i
\(176\) 0 0
\(177\) 0 0
\(178\) −9.99879 17.3184i −0.749441 1.29807i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 12.7460 4.18812i 0.950028 0.312164i
\(181\) −24.2379 −1.80159 −0.900794 0.434246i \(-0.857015\pi\)
−0.900794 + 0.434246i \(0.857015\pi\)
\(182\) 0 0
\(183\) −12.0466 + 5.38741i −0.890512 + 0.398249i
\(184\) 10.6190 18.3926i 0.782839 1.35592i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 6.53218i 0.476408i
\(189\) −26.6825 + 5.81017i −1.94086 + 0.422628i
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −1.42558 + 13.7829i −0.102882 + 0.994694i
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 20.6190 + 35.7131i 1.47278 + 2.55093i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 12.2474 7.07107i 0.866025 0.500000i
\(201\) 5.93649 + 4.29812i 0.418728 + 0.303166i
\(202\) −6.32456 + 10.9545i −0.444994 + 0.770752i
\(203\) −3.29521 1.90249i −0.231278 0.133529i
\(204\) 0 0
\(205\) 9.11895 + 15.7945i 0.636895 + 1.10313i
\(206\) 22.3607i 1.55794i
\(207\) −16.7900 15.0175i −1.16699 1.04379i
\(208\) 0 0
\(209\) 0 0
\(210\) −26.2769 + 11.7514i −1.81328 + 0.810922i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.690525 + 1.19602i 0.0472033 + 0.0817585i
\(215\) 7.07107i 0.482243i
\(216\) 14.0000 + 4.47214i 0.952579 + 0.304290i
\(217\) 0 0
\(218\) 24.0282 13.8727i 1.62740 0.939577i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.6504 + 23.6432i 0.914098 + 1.58326i 0.808217 + 0.588885i \(0.200433\pi\)
0.105881 + 0.994379i \(0.466234\pi\)
\(224\) 29.7289i 1.98634i
\(225\) −4.68246 14.2504i −0.312164 0.950028i
\(226\) 0 0
\(227\) −8.57321 + 4.94975i −0.569024 + 0.328526i −0.756760 0.653693i \(-0.773219\pi\)
0.187735 + 0.982220i \(0.439885\pi\)
\(228\) 0 0
\(229\) 15.1190 26.1868i 0.999088 1.73047i 0.462573 0.886581i \(-0.346926\pi\)
0.536515 0.843891i \(-0.319740\pi\)
\(230\) −20.5635 11.8723i −1.35592 0.782839i
\(231\) 0 0
\(232\) 1.02391 + 1.77347i 0.0672232 + 0.116434i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 7.30320 0.476408
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 15.4097 + 1.59384i 0.994694 + 0.102882i
\(241\) −12.8095 22.1867i −0.825131 1.42917i −0.901819 0.432113i \(-0.857768\pi\)
0.0766885 0.997055i \(-0.475565\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 7.68223 13.5640i 0.492815 0.870134i
\(244\) −15.2379 −0.975507
\(245\) 39.9284 23.0527i 2.55093 1.47278i
\(246\) −2.05544 + 19.8726i −0.131050 + 1.26703i
\(247\) 0 0
\(248\) 0 0
\(249\) 11.3095 + 25.2888i 0.716709 + 1.60261i
\(250\) −7.90569 13.6931i −0.500000 0.866025i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) −30.8647 6.45378i −1.94429 0.406550i
\(253\) 0 0
\(254\) −18.0554 + 10.4243i −1.13290 + 0.654080i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) −4.54259 + 6.27415i −0.282809 + 0.390611i
\(259\) 0 0
\(260\) 0 0
\(261\) 2.06351 0.678035i 0.127728 0.0419693i
\(262\) 0 0
\(263\) 13.4722 7.77817i 0.830731 0.479623i −0.0233719 0.999727i \(-0.507440\pi\)
0.854103 + 0.520104i \(0.174107\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −24.3620 2.51978i −1.49093 0.154208i
\(268\) 4.23146 + 7.32910i 0.258478 + 0.447696i
\(269\) 9.60427i 0.585583i −0.956176 0.292791i \(-0.905416\pi\)
0.956176 0.292791i \(-0.0945841\pi\)
\(270\) 5.00000 15.6525i 0.304290 0.952579i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −10.6190 23.7447i −0.639186 1.42926i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −33.2379 −1.98634
\(281\) −4.55544 + 2.63009i −0.271755 + 0.156898i −0.629685 0.776851i \(-0.716816\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 6.48012 + 4.69171i 0.385885 + 0.279387i
\(283\) 8.90697 15.4273i 0.529465 0.917060i −0.469945 0.882696i \(-0.655726\pi\)
0.999409 0.0343638i \(-0.0109405\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 42.8641i 2.53019i
\(288\) 12.6491 + 11.3137i 0.745356 + 0.666667i
\(289\) −17.0000 −1.00000
\(290\) 1.98280 1.14477i 0.116434 0.0672232i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) 50.2379 + 5.19615i 2.92993 + 0.303046i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 32.5562 1.88593
\(299\) 0 0
\(300\) 1.78197 17.2286i 0.102882 0.994694i
\(301\) 8.30948 14.3924i 0.478950 0.829566i
\(302\) 0 0
\(303\) 6.32456 + 14.1421i 0.363336 + 0.812444i
\(304\) 0 0
\(305\) 17.0365i 0.975507i
\(306\) 0 0
\(307\) 13.7183 0.782944 0.391472 0.920190i \(-0.371966\pi\)
0.391472 + 0.920190i \(0.371966\pi\)
\(308\) 0 0
\(309\) −22.1825 16.0605i −1.26192 0.913648i
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 0 0
\(315\) −7.21554 + 34.5078i −0.406550 + 1.94429i
\(316\) 0 0
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 15.4919 + 8.94427i 0.866025 + 0.500000i
\(321\) 1.68246 + 0.174018i 0.0939057 + 0.00971275i
\(322\) 27.9033 + 48.3299i 1.55499 + 2.69332i
\(323\) 0 0
\(324\) 14.4919 10.6763i 0.805107 0.593129i
\(325\) 0 0
\(326\) 27.1109 15.6525i 1.50153 0.866910i
\(327\) 3.49604 33.8007i 0.193331 1.86918i
\(328\) −11.5347 + 19.9786i −0.636895 + 1.10313i
\(329\) −14.8649 8.58226i −0.819529 0.473156i
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 31.9880i 1.75557i
\(333\) 0 0
\(334\) 28.6190 1.56596
\(335\) 8.19419 4.73092i 0.447696 0.258478i
\(336\) −29.4919 21.3526i −1.60892 1.16488i
\(337\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) −15.9217 9.19239i −0.866025 0.500000i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −71.5727 −3.86456
\(344\) −7.74597 + 4.47214i −0.417635 + 0.241121i
\(345\) −26.5474 + 11.8723i −1.42926 + 0.639186i
\(346\) 0 0
\(347\) −20.8207 12.0208i −1.11771 0.645311i −0.176896 0.984230i \(-0.556606\pi\)
−0.940816 + 0.338918i \(0.889939\pi\)
\(348\) 2.49476 + 0.258035i 0.133733 + 0.0138321i
\(349\) 18.1190 + 31.3829i 0.969885 + 1.67989i 0.695874 + 0.718164i \(0.255017\pi\)
0.274011 + 0.961727i \(0.411649\pi\)
\(350\) 37.1611i 1.98634i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −24.4919 14.1404i −1.29807 0.749441i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 12.6491 14.1421i 0.666667 0.745356i
\(361\) 19.0000 1.00000
\(362\) −29.6852 + 17.1388i −1.56022 + 0.900794i
\(363\) −15.4324 11.1733i −0.809989 0.586445i
\(364\) 0 0
\(365\) 0 0
\(366\) −10.9446 + 15.1164i −0.572081 + 0.790149i
\(367\) −1.58114 2.73861i −0.0825348 0.142954i 0.821803 0.569771i \(-0.192968\pi\)
−0.904338 + 0.426817i \(0.859635\pi\)
\(368\) 30.0349i 1.56568i
\(369\) 18.2379 + 16.3125i 0.949427 + 0.849193i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −19.2622 1.99230i −0.994694 0.102882i
\(376\) 4.61895 + 8.00026i 0.238204 + 0.412582i
\(377\) 0 0
\(378\) −28.5708 + 25.9833i −1.46952 + 1.33644i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −2.62702 + 25.3988i −0.134586 + 1.30122i
\(382\) 0 0
\(383\) 23.2702 + 13.4350i 1.18905 + 0.686498i 0.958091 0.286466i \(-0.0924804\pi\)
0.230959 + 0.972964i \(0.425814\pi\)
\(384\) 8.00000 + 17.8885i 0.408248 + 0.912871i
\(385\) 0 0
\(386\) 0 0
\(387\) 2.96145 + 9.01276i 0.150539 + 0.458144i
\(388\) 0 0
\(389\) −31.5554 + 18.2185i −1.59992 + 0.923717i −0.608424 + 0.793612i \(0.708198\pi\)
−0.991500 + 0.130105i \(0.958469\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 50.5059 + 29.1596i 2.55093 + 1.47278i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 10.0000 17.3205i 0.500000 0.866025i
\(401\) 30.9839 + 17.8885i 1.54726 + 0.893311i 0.998350 + 0.0574304i \(0.0182907\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 10.3099 + 1.06636i 0.514212 + 0.0531854i
\(403\) 0 0
\(404\) 17.8885i 0.889988i
\(405\) −11.9365 16.2025i −0.593129 0.805107i
\(406\) −5.38105 −0.267057
\(407\) 0 0
\(408\) 0 0
\(409\) 2.00000 3.46410i 0.0988936 0.171289i −0.812333 0.583193i \(-0.801803\pi\)
0.911227 + 0.411905i \(0.135136\pi\)
\(410\) 22.3368 + 12.8961i 1.10313 + 0.636895i
\(411\) 0 0
\(412\) −15.8114 27.3861i −0.778971 1.34922i
\(413\) 0 0
\(414\) −31.1825 6.52021i −1.53253 0.320451i
\(415\) 35.7637 1.75557
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) −23.8730 + 32.9730i −1.16488 + 1.60892i
\(421\) −4.00000 6.92820i −0.194948 0.337660i 0.751935 0.659237i \(-0.229121\pi\)
−0.946883 + 0.321577i \(0.895787\pi\)
\(422\) 0 0
\(423\) 9.30864 3.05867i 0.452601 0.148717i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 20.0202 34.6760i 0.968846 1.67809i
\(428\) 1.69143 + 0.976550i 0.0817585 + 0.0472033i
\(429\) 0 0
\(430\) 5.00000 + 8.66025i 0.241121 + 0.417635i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 20.3087 4.42227i 0.977103 0.212767i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0.288492 2.78922i 0.0138321 0.133733i
\(436\) 19.6190 33.9810i 0.939577 1.62740i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 41.2379 46.1054i 1.96371 2.19549i
\(442\) 0 0
\(443\) −24.8739 + 14.3610i −1.18180 + 0.682310i −0.956429 0.291964i \(-0.905691\pi\)
−0.225367 + 0.974274i \(0.572358\pi\)
\(444\) 0 0
\(445\) −15.8095 + 27.3828i −0.749441 + 1.29807i
\(446\) 33.4365 + 19.3046i 1.58326 + 0.914098i
\(447\) 23.3833 32.2967i 1.10599 1.52758i
\(448\) −21.0215 36.4103i −0.993172 1.72022i
\(449\) 22.3607i 1.05527i −0.849473 0.527633i \(-0.823080\pi\)
0.849473 0.527633i \(-0.176920\pi\)
\(450\) −15.8114 14.1421i −0.745356 0.666667i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −7.00000 + 12.1244i −0.328526 + 0.569024i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 42.7628i 1.99818i
\(459\) 0 0
\(460\) −33.5801 −1.56568
\(461\) −27.6270 + 15.9505i −1.28672 + 0.742887i −0.978068 0.208288i \(-0.933211\pi\)
−0.308651 + 0.951175i \(0.599877\pi\)
\(462\) 0 0
\(463\) −20.5548 + 35.6020i −0.955263 + 1.65456i −0.221497 + 0.975161i \(0.571094\pi\)
−0.733766 + 0.679403i \(0.762239\pi\)
\(464\) 2.50807 + 1.44803i 0.116434 + 0.0672232i
\(465\) 0 0
\(466\) 0 0
\(467\) 32.5269i 1.50517i 0.658497 + 0.752583i \(0.271192\pi\)
−0.658497 + 0.752583i \(0.728808\pi\)
\(468\) 0 0
\(469\) −22.2379 −1.02685
\(470\) 8.94456 5.16414i 0.412582 0.238204i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 20.0000 8.94427i 0.912871 0.408248i
\(481\) 0 0
\(482\) −31.3767 18.1153i −1.42917 0.825131i
\(483\) 67.9861 + 7.03186i 3.09347 + 0.319961i
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) −0.182458 22.0447i −0.00827648 0.999966i
\(487\) 22.1359 1.00308 0.501538 0.865136i \(-0.332768\pi\)
0.501538 + 0.865136i \(0.332768\pi\)
\(488\) −18.6625 + 10.7748i −0.844813 + 0.487753i
\(489\) 3.94456 38.1371i 0.178379 1.72462i
\(490\) 32.6014 56.4673i 1.47278 2.55093i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 11.5347 + 25.7923i 0.520023 + 1.16281i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 31.7331 + 22.9753i 1.42199 + 1.02955i
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) −19.3649 11.1803i −0.866025 0.500000i
\(501\) 20.5554 28.3908i 0.918349 1.26841i
\(502\) 0 0
\(503\) 13.7045i 0.611052i 0.952184 + 0.305526i \(0.0988323\pi\)
−0.952184 + 0.305526i \(0.901168\pi\)
\(504\) −42.3649 + 13.9204i −1.88708 + 0.620065i
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) −20.5548 + 9.19239i −0.912871 + 0.408248i
\(508\) −14.7422 + 25.5343i −0.654080 + 1.13290i
\(509\) 23.8649 + 13.7784i 1.05779 + 0.610718i 0.924821 0.380402i \(-0.124214\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) 0 0
\(515\) −30.6186 + 17.6777i −1.34922 + 0.778971i
\(516\) −1.12702 + 10.8963i −0.0496141 + 0.479684i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 45.3173i 1.98539i −0.120656 0.992694i \(-0.538500\pi\)
0.120656 0.992694i \(-0.461500\pi\)
\(522\) 2.04783 2.28954i 0.0896310 0.100210i
\(523\) −8.32712 −0.364119 −0.182060 0.983287i \(-0.558276\pi\)
−0.182060 + 0.983287i \(0.558276\pi\)
\(524\) 0 0
\(525\) 36.8649 + 26.6908i 1.60892 + 1.16488i
\(526\) 11.0000 19.0526i 0.479623 0.830731i
\(527\) 0 0
\(528\) 0 0
\(529\) 16.6905 + 28.9088i 0.725675 + 1.25691i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −31.6190 + 14.1404i −1.36829 + 0.611916i
\(535\) 1.09182 1.89108i 0.0472033 0.0817585i
\(536\) 10.3649 + 5.98419i 0.447696 + 0.258478i
\(537\) 0 0
\(538\) −6.79124 11.7628i −0.292791 0.507129i
\(539\) 0 0
\(540\) −4.94425 22.7058i −0.212767 0.977103i
\(541\) −42.2379 −1.81595 −0.907975 0.419025i \(-0.862372\pi\)
−0.907975 + 0.419025i \(0.862372\pi\)
\(542\) 0 0
\(543\) −4.31912 + 41.7585i −0.185351 + 1.79203i
\(544\) 0 0
\(545\) −37.9919 21.9347i −1.62740 0.939577i
\(546\) 0 0
\(547\) −19.4177 33.6325i −0.830242 1.43802i −0.897846 0.440309i \(-0.854869\pi\)
0.0676046 0.997712i \(-0.478464\pi\)
\(548\) 0 0
\(549\) 7.13508 + 21.7147i 0.304518 + 0.926759i
\(550\) 0 0
\(551\) 0 0
\(552\) −29.7955 21.5725i −1.26818 0.918185i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −40.7079 + 23.5027i −1.72022 + 0.993172i
\(561\) 0 0
\(562\) −3.71950 + 6.44237i −0.156898 + 0.271755i
\(563\) −36.1880 20.8931i −1.52514 0.880541i −0.999556 0.0298010i \(-0.990513\pi\)
−0.525586 0.850740i \(-0.676154\pi\)
\(564\) 11.2540 + 1.16402i 0.473880 + 0.0490139i
\(565\) 0 0
\(566\) 25.1927i 1.05893i
\(567\) 5.25537 + 47.0055i 0.220705 + 1.97404i
\(568\) 0 0
\(569\) 27.1109 15.6525i 1.13655 0.656186i 0.190974 0.981595i \(-0.438835\pi\)
0.945573 + 0.325409i \(0.105502\pi\)
\(570\) 0 0
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −30.3095 52.4976i −1.26509 2.19121i
\(575\) 37.5437i 1.56568i
\(576\) 23.4919 + 4.91213i 0.978831 + 0.204672i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −20.8207 + 12.0208i −0.866025 + 0.500000i
\(579\) 0 0
\(580\) 1.61895 2.80410i 0.0672232 0.116434i
\(581\) −72.7933 42.0273i −3.01998 1.74358i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.8622 23.0145i 1.64529 0.949909i 0.666382 0.745611i \(-0.267842\pi\)
0.978909 0.204298i \(-0.0654911\pi\)
\(588\) 65.2028 29.1596i 2.68892 1.20252i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 39.8730 23.0207i 1.63326 0.942964i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) −10.0000 22.3607i −0.408248 0.912871i
\(601\) 14.0000 + 24.2487i 0.571072 + 0.989126i 0.996456 + 0.0841128i \(0.0268056\pi\)
−0.425384 + 0.905013i \(0.639861\pi\)
\(602\) 23.5027i 0.957900i
\(603\) 8.46292 9.46183i 0.344637 0.385316i
\(604\) 0 0
\(605\) −21.3014 + 12.2984i −0.866025 + 0.500000i
\(606\) 17.7460 + 12.8484i 0.720881 + 0.521929i
\(607\) −24.1611 + 41.8483i −0.980670 + 1.69857i −0.320882 + 0.947119i \(0.603979\pi\)
−0.659788 + 0.751452i \(0.729354\pi\)
\(608\) 0 0
\(609\) −3.86492 + 5.33816i −0.156614 + 0.216313i
\(610\) 12.0466 + 20.8654i 0.487753 + 0.844813i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 16.8014 9.70030i 0.678050 0.391472i
\(615\) 28.8367 12.8961i 1.16281 0.520023i
\(616\) 0 0
\(617\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(618\) −38.5243 3.98461i −1.54968 0.160284i
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) −28.8649 + 26.2508i −1.15831 + 1.05341i
\(622\) 0 0
\(623\) 64.3571 37.1566i 2.57841 1.48865i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 15.5635 + 47.3654i 0.620065 + 1.88708i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.5482 + 16.4823i 1.13290 + 0.654080i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 25.2982 1.00000
\(641\) 30.3014 17.4945i 1.19683 0.690992i 0.236986 0.971513i \(-0.423841\pi\)
0.959848 + 0.280521i \(0.0905072\pi\)
\(642\) 2.18363 0.976550i 0.0861811 0.0385413i
\(643\) 23.1372 40.0748i 0.912443 1.58040i 0.101841 0.994801i \(-0.467527\pi\)
0.810602 0.585597i \(-0.199140\pi\)
\(644\) 68.3488 + 39.4612i 2.69332 + 1.55499i
\(645\) 12.1825 + 1.26004i 0.479684 + 0.0496141i
\(646\) 0 0
\(647\) 50.2716i 1.97638i 0.153234 + 0.988190i \(0.451031\pi\)
−0.153234 + 0.988190i \(0.548969\pi\)
\(648\) 10.1996 23.3231i 0.400679 0.916219i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 22.1359 38.3406i 0.866910 1.50153i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) −19.6190 43.8693i −0.767162 1.71543i
\(655\) 0 0
\(656\) 32.6249i 1.27379i
\(657\) 0 0
\(658\) −24.2743 −0.946311
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) −16.0000 + 27.7128i −0.622328 + 1.07790i 0.366723 + 0.930330i \(0.380480\pi\)
−0.989051 + 0.147573i \(0.952854\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 22.6190 + 39.1772i 0.877785 + 1.52037i
\(665\) 0 0
\(666\) 0 0
\(667\) −5.43645 −0.210500
\(668\) 35.0509 20.2367i 1.35616 0.782980i
\(669\) 43.1663 19.3046i 1.66891 0.746358i
\(670\) 6.69052 11.5883i 0.258478 0.447696i
\(671\) 0 0
\(672\) −51.2187 5.29760i −1.97580 0.204359i
\(673\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) 0 0
\(675\) −25.3859 + 5.52784i −0.977103 + 0.212767i
\(676\) −26.0000 −1.00000
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 7.00000 + 15.6525i 0.268241 + 0.599804i
\(682\) 0 0
\(683\) 43.8406i 1.67751i −0.544505 0.838757i \(-0.683283\pi\)
0.544505 0.838757i \(-0.316717\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −87.6583 + 50.6095i −3.34681 + 1.93228i
\(687\) −42.4220 30.7142i −1.61850 1.17182i
\(688\) −6.32456 + 10.9545i −0.241121 + 0.417635i
\(689\) 0 0
\(690\) −24.1187 + 33.3124i −0.918185 + 1.26818i
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −34.0000 −1.29062
\(695\) 0 0
\(696\) 3.23790 1.44803i 0.122732 0.0548875i
\(697\) 0 0
\(698\) 44.3822 + 25.6241i 1.67989 + 0.969885i
\(699\) 0 0
\(700\) 26.2769 + 45.5129i 0.993172 + 1.72022i
\(701\) 52.7496i 1.99232i 0.0875323 + 0.996162i \(0.472102\pi\)
−0.0875323 + 0.996162i \(0.527898\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.30141 12.5824i 0.0490139 0.473880i
\(706\) 0 0
\(707\) −40.7079 23.5027i −1.53098 0.883912i
\(708\) 0 0
\(709\) 0.118950 + 0.206028i 0.00446726 + 0.00773753i 0.868250 0.496126i \(-0.165245\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −39.9952 −1.49888
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 5.49193 26.2648i 0.204672 0.978831i
\(721\) 83.0948 3.09461
\(722\) 23.2702 13.4350i 0.866025 0.500000i
\(723\) −40.5071 + 18.1153i −1.50648 + 0.673716i
\(724\) −24.2379 + 41.9813i −0.900794 + 1.56022i
\(725\) −3.13508 1.81004i −0.116434 0.0672232i
\(726\) −26.8014 2.77209i −0.994694 0.102882i
\(727\) −11.6026 20.0962i −0.430315 0.745328i 0.566585 0.824003i \(-0.308264\pi\)
−0.996900 + 0.0786754i \(0.974931\pi\)
\(728\) 0 0
\(729\) −22.0000 15.6525i −0.814815 0.579721i
\(730\) 0 0
\(731\) 0 0
\(732\) −2.71535 + 26.2528i −0.100362 + 0.970330i
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) −3.87298 2.23607i −0.142954 0.0825348i
\(735\) −32.6014 72.8990i −1.20252 2.68892i
\(736\) −21.2379 36.7851i −0.782839 1.35592i
\(737\) 0 0
\(738\) 33.8714 + 7.08248i 1.24682 + 0.260710i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −47.2107 27.2571i −1.73199 0.999966i −0.870095 0.492883i \(-0.835943\pi\)
−0.861897 0.507083i \(-0.830724\pi\)
\(744\) 0 0
\(745\) −25.7379 44.5794i −0.942964 1.63326i
\(746\) 0 0
\(747\) 45.5843 14.9783i 1.66784 0.548026i
\(748\) 0 0
\(749\) −4.44456 + 2.56607i −0.162401 + 0.0937620i
\(750\) −25.0000 + 11.1803i −0.912871 + 0.408248i
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 11.3141 + 6.53218i 0.412582 + 0.238204i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −16.6190 + 52.0255i −0.604425 + 1.89215i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.0081 + 9.24226i 0.580292 + 0.335032i 0.761249 0.648459i \(-0.224586\pi\)
−0.180957 + 0.983491i \(0.557920\pi\)
\(762\) 14.7422 + 32.9646i 0.534054 + 1.19418i
\(763\) 51.5525 + 89.2915i 1.86632 + 3.23257i
\(764\) 0 0
\(765\) 0 0
\(766\) 38.0000 1.37300
\(767\) 0 0
\(768\) 22.4471 + 16.2520i 0.809989 + 0.586445i
\(769\) −19.7379 + 34.1870i −0.711767 + 1.23282i 0.252426 + 0.967616i \(0.418771\pi\)
−0.964193 + 0.265200i \(0.914562\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 10.0000 + 8.94427i 0.359443 + 0.321495i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −25.7649 + 44.6261i −0.923717 + 1.59992i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.800449 3.67596i −0.0286057 0.131368i
\(784\) 82.4758 2.94556
\(785\) 0 0
\(786\) 0 0
\(787\) −20.5548 + 35.6020i −0.732700 + 1.26907i 0.223026 + 0.974813i \(0.428407\pi\)
−0.955725 + 0.294260i \(0.904927\pi\)
\(788\) 0 0
\(789\) −11.0000 24.5967i −0.391610 0.875667i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 28.2843i 1.00000i
\(801\) −8.68246 + 41.5232i −0.306780 + 1.46715i
\(802\) 50.5964 1.78662
\(803\) 0 0
\(804\) 13.3810 5.98419i 0.471913 0.211046i
\(805\) 44.1190 76.4163i 1.55499 2.69332i
\(806\) 0 0
\(807\) −16.5468 1.71145i −0.582475 0.0602460i
\(808\) 12.6491 + 21.9089i 0.444994 + 0.770752i
\(809\) 17.8885i 0.628928i 0.949269 + 0.314464i \(0.101825\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) −26.0760 11.4035i −0.916219 0.400679i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −6.59041 + 3.80498i −0.231278 + 0.133529i
\(813\) 0 0
\(814\) 0 0
\(815\) −42.8661 24.7487i −1.50153 0.866910i
\(816\) 0 0
\(817\) 0 0
\(818\) 5.65685i 0.197787i
\(819\) 0 0
\(820\) 36.4758 1.27379
\(821\) 22.4446 12.9584i 0.783320 0.452250i −0.0542853 0.998525i \(-0.517288\pi\)
0.837606 + 0.546275i \(0.183955\pi\)
\(822\) 0 0
\(823\) 19.9297 34.5192i 0.694705 1.20326i −0.275575 0.961280i \(-0.588868\pi\)
0.970280 0.241985i \(-0.0777984\pi\)
\(824\) −38.7298 22.3607i −1.34922 0.778971i
\(825\) 0 0
\(826\) 0 0
\(827\) 24.8157i 0.862928i 0.902130 + 0.431464i \(0.142003\pi\)
−0.902130 + 0.431464i \(0.857997\pi\)
\(828\) −42.8010 + 14.0637i −1.48744 + 0.488748i
\(829\) −16.3810 −0.568937 −0.284469 0.958685i \(-0.591817\pi\)
−0.284469 + 0.958685i \(0.591817\pi\)
\(830\) 43.8014 25.2888i 1.52037 0.877785i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −22.6253 39.1881i −0.782980 1.35616i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) −5.92289 + 57.2642i −0.204359 + 1.97580i
\(841\) −14.2379 + 24.6608i −0.490962 + 0.850371i
\(842\) −9.79796 5.65685i −0.337660 0.194948i
\(843\) 3.71950 + 8.31706i 0.128106 + 0.286455i
\(844\) 0 0
\(845\) 29.0689i 1.00000i
\(846\) 9.23790 10.3283i 0.317606 0.355094i
\(847\) 57.8091 1.98634
\(848\) 0 0
\(849\) −24.9919 18.0946i −0.857721 0.621004i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(854\) 56.6257i 1.93769i
\(855\) 0 0
\(856\) 2.76210 0.0944066
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 12.2474 + 7.07107i 0.417635 + 0.241121i
\(861\) −73.8488 7.63825i −2.51676 0.260311i
\(862\) 0 0
\(863\) 37.2072i 1.26655i −0.773928 0.633274i \(-0.781711\pi\)
0.773928 0.633274i \(-0.218289\pi\)
\(864\) 21.7460 19.7766i 0.739813 0.672813i
\(865\) 0 0
\(866\) 0 0
\(867\) −3.02935 + 29.2886i −0.102882 + 0.994694i
\(868\) 0 0
\(869\) 0 0
\(870\) −1.61895 3.62008i −0.0548875 0.122732i
\(871\) 0 0
\(872\) 55.4908i 1.87915i
\(873\) 0 0
\(874\) 0 0
\(875\) 50.8849 29.3784i 1.72022 0.993172i
\(876\) 0 0
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.6766i 0.629230i −0.949219 0.314615i \(-0.898125\pi\)
0.949219 0.314615i \(-0.101875\pi\)
\(882\) 17.9045 85.6269i 0.602875 2.88321i
\(883\) −58.8330 −1.97989 −0.989944 0.141457i \(-0.954821\pi\)
−0.989944 + 0.141457i \(0.954821\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −20.3095 + 35.1770i −0.682310 + 1.18180i
\(887\) 45.3156 + 26.1630i 1.52155 + 0.878466i 0.999676 + 0.0254417i \(0.00809921\pi\)
0.521871 + 0.853024i \(0.325234\pi\)
\(888\) 0 0
\(889\) −38.7379 67.0960i −1.29923 2.25033i
\(890\) 44.7159i 1.49888i
\(891\) 0 0
\(892\) 54.6016 1.82820
\(893\) 0 0
\(894\) 5.80141 56.0897i 0.194028 1.87592i
\(895\) 0 0
\(896\) −51.4919 29.7289i −1.72022 0.993172i
\(897\) 0 0
\(898\) −15.8114 27.3861i −0.527633 0.913887i
\(899\) 0 0
\(900\) −29.3649 6.14017i −0.978831 0.204672i
\(901\) 0 0
\(902\) 0 0
\(903\) −23.3154 16.8807i −0.775889 0.561756i
\(904\) 0 0
\(905\) 46.9365 + 27.0988i 1.56022 + 0.900794i
\(906\) 0 0
\(907\) 16.8579 + 29.1988i 0.559759 + 0.969530i 0.997516 + 0.0704373i \(0.0224395\pi\)
−0.437758 + 0.899093i \(0.644227\pi\)
\(908\) 19.7990i 0.657053i
\(909\) 25.4919 8.37624i 0.845514 0.277822i
\(910\) 0 0
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 29.3515 + 3.03585i 0.970330 + 0.100362i
\(916\) −30.2379 52.3736i −0.999088 1.73047i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) −41.1270 + 23.7447i −1.35592 + 0.782839i
\(921\) 2.44456 23.6347i 0.0805509 0.778790i
\(922\) −22.5574 + 39.0705i −0.742887 + 1.28672i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 58.1378i 1.91053i
\(927\) −31.6228 + 35.3553i −1.03863 + 1.16122i
\(928\) 4.09566 0.134446
\(929\) −42.6028 + 24.5967i −1.39775 + 0.806993i −0.994157 0.107944i \(-0.965573\pi\)
−0.403596 + 0.914937i \(0.632240\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 23.0000 + 39.8372i 0.752583 + 1.30351i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) −27.2358 + 15.7246i −0.889279 + 0.513425i
\(939\) 0 0
\(940\) 7.30320 12.6495i 0.238204 0.412582i
\(941\) 50.8649 + 29.3669i 1.65815 + 0.957333i 0.973568 + 0.228395i \(0.0733479\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) −30.6215 53.0380i −0.997173 1.72715i
\(944\) 0 0
\(945\) 58.1663 + 18.5806i 1.89215 + 0.604425i
\(946\) 0 0
\(947\) 19.2169 11.0949i 0.624465 0.360535i −0.154140 0.988049i \(-0.549261\pi\)
0.778605 + 0.627514i \(0.215927\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 18.1703 25.0966i 0.586445 0.809989i
\(961\) −15.5000 26.8468i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0.599618 2.86763i 0.0193224 0.0924081i
\(964\) −51.2379 −1.65026
\(965\) 0 0
\(966\) 88.2379 39.4612i 2.83901 1.26964i
\(967\) −9.93089 + 17.2008i −0.319356 + 0.553141i −0.980354 0.197247i \(-0.936800\pi\)
0.660998 + 0.750388i \(0.270133\pi\)
\(968\) −26.9444 15.5563i −0.866025 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −15.8114 26.8701i −0.507151 0.861858i
\(973\) 0 0
\(974\) 27.1109 15.6525i 0.868689 0.501538i
\(975\) 0 0
\(976\) −15.2379 + 26.3928i −0.487753 + 0.844813i
\(977\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(978\) −22.1359 49.4975i −0.707829 1.58275i
\(979\) 0 0
\(980\) 92.2107i 2.94556i
\(981\) −57.6109 12.0464i −1.83937 0.384611i
\(982\) 0 0
\(983\) 17.8168 10.2865i 0.568268 0.328090i −0.188189 0.982133i \(-0.560262\pi\)
0.756457 + 0.654043i \(0.226928\pi\)
\(984\) 32.3649 + 23.4327i 1.03176 + 0.747008i
\(985\) 0 0
\(986\) 0 0
\(987\) −17.4349 + 24.0808i −0.554960 + 0.766501i
\(988\) 0 0
\(989\) 23.7447i 0.755037i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 55.1109 + 5.70017i 1.74626 + 0.180617i
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.2.n.c.59.4 yes 8
3.2 odd 2 540.2.n.c.179.2 8
4.3 odd 2 inner 180.2.n.c.59.1 8
5.2 odd 4 900.2.r.a.851.3 8
5.3 odd 4 900.2.r.a.851.2 8
5.4 even 2 inner 180.2.n.c.59.1 8
9.2 odd 6 inner 180.2.n.c.119.4 yes 8
9.7 even 3 540.2.n.c.359.2 8
12.11 even 2 540.2.n.c.179.4 8
15.14 odd 2 540.2.n.c.179.4 8
20.3 even 4 900.2.r.a.851.3 8
20.7 even 4 900.2.r.a.851.2 8
20.19 odd 2 CM 180.2.n.c.59.4 yes 8
36.7 odd 6 540.2.n.c.359.4 8
36.11 even 6 inner 180.2.n.c.119.1 yes 8
45.2 even 12 900.2.r.a.551.2 8
45.29 odd 6 inner 180.2.n.c.119.1 yes 8
45.34 even 6 540.2.n.c.359.4 8
45.38 even 12 900.2.r.a.551.3 8
60.59 even 2 540.2.n.c.179.2 8
180.47 odd 12 900.2.r.a.551.3 8
180.79 odd 6 540.2.n.c.359.2 8
180.83 odd 12 900.2.r.a.551.2 8
180.119 even 6 inner 180.2.n.c.119.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.c.59.1 8 4.3 odd 2 inner
180.2.n.c.59.1 8 5.4 even 2 inner
180.2.n.c.59.4 yes 8 1.1 even 1 trivial
180.2.n.c.59.4 yes 8 20.19 odd 2 CM
180.2.n.c.119.1 yes 8 36.11 even 6 inner
180.2.n.c.119.1 yes 8 45.29 odd 6 inner
180.2.n.c.119.4 yes 8 9.2 odd 6 inner
180.2.n.c.119.4 yes 8 180.119 even 6 inner
540.2.n.c.179.2 8 3.2 odd 2
540.2.n.c.179.2 8 60.59 even 2
540.2.n.c.179.4 8 12.11 even 2
540.2.n.c.179.4 8 15.14 odd 2
540.2.n.c.359.2 8 9.7 even 3
540.2.n.c.359.2 8 180.79 odd 6
540.2.n.c.359.4 8 36.7 odd 6
540.2.n.c.359.4 8 45.34 even 6
900.2.r.a.551.2 8 45.2 even 12
900.2.r.a.551.2 8 180.83 odd 12
900.2.r.a.551.3 8 45.38 even 12
900.2.r.a.551.3 8 180.47 odd 12
900.2.r.a.851.2 8 5.3 odd 4
900.2.r.a.851.2 8 20.7 even 4
900.2.r.a.851.3 8 5.2 odd 4
900.2.r.a.851.3 8 20.3 even 4