Properties

Label 18.44.a.f
Level $18$
Weight $44$
Character orbit 18.a
Self dual yes
Analytic conductor $210.799$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [18,44,Mod(1,18)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("18.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4194304,0,8796093022208,981175039776420] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(210.798711622\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 916465037439930 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4}\cdot 5\cdot 7 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 362880\sqrt{3665860149759721}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2097152 q^{2} + 4398046511104 q^{4} + ( - 47 \beta + 490587519888210) q^{5} + (81137 \beta - 81\!\cdots\!08) q^{7} + 92\!\cdots\!08 q^{8} + ( - 98566144 \beta + 10\!\cdots\!20) q^{10} + (1128796702 \beta - 16\!\cdots\!80) q^{11}+ \cdots + ( - 27\!\cdots\!84 \beta + 34\!\cdots\!92) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4194304 q^{2} + 8796093022208 q^{4} + 981175039776420 q^{5} - 16\!\cdots\!16 q^{7} + 18\!\cdots\!16 q^{8} + 20\!\cdots\!40 q^{10} - 33\!\cdots\!60 q^{11} + 31\!\cdots\!12 q^{13} - 34\!\cdots\!32 q^{14}+ \cdots + 69\!\cdots\!84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.02732e7
−3.02732e7
2.09715e6 0 4.39805e12 −5.42052e14 0 9.71973e17 9.22337e18 0 −1.13677e21
1.2 2.09715e6 0 4.39805e12 1.52323e15 0 −2.59336e18 9.22337e18 0 3.19444e21
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.44.a.f 2
3.b odd 2 1 6.44.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.44.a.c 2 3.b odd 2 1
18.44.a.f 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 981175039776420T_{5} - 825668732088888693013979437500 \) acting on \(S_{44}^{\mathrm{new}}(\Gamma_0(18))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2097152)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 82\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 25\!\cdots\!36 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 33\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 46\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 52\!\cdots\!76 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 25\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 30\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 90\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 80\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 21\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 26\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 31\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 36\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 92\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 17\!\cdots\!64 \) Copy content Toggle raw display
show more
show less