Properties

Label 1773.2.a.f.1.3
Level $1773$
Weight $2$
Character 1773.1
Self dual yes
Analytic conductor $14.157$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1773,2,Mod(1,1773)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1773.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1773, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1773 = 3^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1773.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.1574762784\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 15x^{8} - x^{7} + 78x^{6} + 7x^{5} - 165x^{4} - 15x^{3} + 123x^{2} + 9x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 197)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.82964\) of defining polynomial
Character \(\chi\) \(=\) 1773.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.82964 q^{2} +1.34760 q^{4} -2.39480 q^{5} -2.47846 q^{7} +1.19366 q^{8} +4.38163 q^{10} -2.44912 q^{11} +0.427303 q^{13} +4.53471 q^{14} -4.87917 q^{16} +3.61425 q^{17} -0.675704 q^{19} -3.22723 q^{20} +4.48103 q^{22} -8.55393 q^{23} +0.735052 q^{25} -0.781813 q^{26} -3.33998 q^{28} -4.41033 q^{29} +0.899928 q^{31} +6.53984 q^{32} -6.61279 q^{34} +5.93542 q^{35} -9.25303 q^{37} +1.23630 q^{38} -2.85857 q^{40} +3.48904 q^{41} +4.73199 q^{43} -3.30044 q^{44} +15.6507 q^{46} -9.87379 q^{47} -0.857212 q^{49} -1.34488 q^{50} +0.575834 q^{52} -0.432240 q^{53} +5.86515 q^{55} -2.95844 q^{56} +8.06933 q^{58} +0.232893 q^{59} -8.06257 q^{61} -1.64655 q^{62} -2.20723 q^{64} -1.02330 q^{65} +12.2707 q^{67} +4.87056 q^{68} -10.8597 q^{70} +14.4805 q^{71} +10.8630 q^{73} +16.9298 q^{74} -0.910579 q^{76} +6.07007 q^{77} +8.35190 q^{79} +11.6846 q^{80} -6.38370 q^{82} +0.446491 q^{83} -8.65538 q^{85} -8.65785 q^{86} -2.92342 q^{88} -16.9275 q^{89} -1.05906 q^{91} -11.5273 q^{92} +18.0655 q^{94} +1.61817 q^{95} +6.50799 q^{97} +1.56839 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{4} - 2 q^{5} + 11 q^{7} + 3 q^{8} - 2 q^{10} - 2 q^{11} + 8 q^{13} + 9 q^{14} - 2 q^{16} + 3 q^{17} + 17 q^{19} + 2 q^{20} + 3 q^{22} + 4 q^{23} + 6 q^{25} + 13 q^{26} + 16 q^{28} + 9 q^{29}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.82964 −1.29375 −0.646877 0.762594i \(-0.723925\pi\)
−0.646877 + 0.762594i \(0.723925\pi\)
\(3\) 0 0
\(4\) 1.34760 0.673800
\(5\) −2.39480 −1.07099 −0.535493 0.844540i \(-0.679874\pi\)
−0.535493 + 0.844540i \(0.679874\pi\)
\(6\) 0 0
\(7\) −2.47846 −0.936772 −0.468386 0.883524i \(-0.655164\pi\)
−0.468386 + 0.883524i \(0.655164\pi\)
\(8\) 1.19366 0.422022
\(9\) 0 0
\(10\) 4.38163 1.38559
\(11\) −2.44912 −0.738438 −0.369219 0.929342i \(-0.620375\pi\)
−0.369219 + 0.929342i \(0.620375\pi\)
\(12\) 0 0
\(13\) 0.427303 0.118513 0.0592563 0.998243i \(-0.481127\pi\)
0.0592563 + 0.998243i \(0.481127\pi\)
\(14\) 4.53471 1.21195
\(15\) 0 0
\(16\) −4.87917 −1.21979
\(17\) 3.61425 0.876583 0.438292 0.898833i \(-0.355584\pi\)
0.438292 + 0.898833i \(0.355584\pi\)
\(18\) 0 0
\(19\) −0.675704 −0.155017 −0.0775085 0.996992i \(-0.524697\pi\)
−0.0775085 + 0.996992i \(0.524697\pi\)
\(20\) −3.22723 −0.721630
\(21\) 0 0
\(22\) 4.48103 0.955358
\(23\) −8.55393 −1.78362 −0.891809 0.452412i \(-0.850564\pi\)
−0.891809 + 0.452412i \(0.850564\pi\)
\(24\) 0 0
\(25\) 0.735052 0.147010
\(26\) −0.781813 −0.153326
\(27\) 0 0
\(28\) −3.33998 −0.631197
\(29\) −4.41033 −0.818977 −0.409489 0.912315i \(-0.634293\pi\)
−0.409489 + 0.912315i \(0.634293\pi\)
\(30\) 0 0
\(31\) 0.899928 0.161632 0.0808159 0.996729i \(-0.474247\pi\)
0.0808159 + 0.996729i \(0.474247\pi\)
\(32\) 6.53984 1.15609
\(33\) 0 0
\(34\) −6.61279 −1.13408
\(35\) 5.93542 1.00327
\(36\) 0 0
\(37\) −9.25303 −1.52119 −0.760594 0.649227i \(-0.775092\pi\)
−0.760594 + 0.649227i \(0.775092\pi\)
\(38\) 1.23630 0.200554
\(39\) 0 0
\(40\) −2.85857 −0.451980
\(41\) 3.48904 0.544896 0.272448 0.962171i \(-0.412167\pi\)
0.272448 + 0.962171i \(0.412167\pi\)
\(42\) 0 0
\(43\) 4.73199 0.721621 0.360811 0.932639i \(-0.382500\pi\)
0.360811 + 0.932639i \(0.382500\pi\)
\(44\) −3.30044 −0.497560
\(45\) 0 0
\(46\) 15.6507 2.30756
\(47\) −9.87379 −1.44024 −0.720120 0.693850i \(-0.755913\pi\)
−0.720120 + 0.693850i \(0.755913\pi\)
\(48\) 0 0
\(49\) −0.857212 −0.122459
\(50\) −1.34488 −0.190195
\(51\) 0 0
\(52\) 0.575834 0.0798538
\(53\) −0.432240 −0.0593728 −0.0296864 0.999559i \(-0.509451\pi\)
−0.0296864 + 0.999559i \(0.509451\pi\)
\(54\) 0 0
\(55\) 5.86515 0.790857
\(56\) −2.95844 −0.395339
\(57\) 0 0
\(58\) 8.06933 1.05956
\(59\) 0.232893 0.0303201 0.0151600 0.999885i \(-0.495174\pi\)
0.0151600 + 0.999885i \(0.495174\pi\)
\(60\) 0 0
\(61\) −8.06257 −1.03231 −0.516153 0.856496i \(-0.672637\pi\)
−0.516153 + 0.856496i \(0.672637\pi\)
\(62\) −1.64655 −0.209112
\(63\) 0 0
\(64\) −2.20723 −0.275904
\(65\) −1.02330 −0.126925
\(66\) 0 0
\(67\) 12.2707 1.49911 0.749554 0.661944i \(-0.230268\pi\)
0.749554 + 0.661944i \(0.230268\pi\)
\(68\) 4.87056 0.590642
\(69\) 0 0
\(70\) −10.8597 −1.29798
\(71\) 14.4805 1.71852 0.859259 0.511540i \(-0.170925\pi\)
0.859259 + 0.511540i \(0.170925\pi\)
\(72\) 0 0
\(73\) 10.8630 1.27142 0.635708 0.771930i \(-0.280708\pi\)
0.635708 + 0.771930i \(0.280708\pi\)
\(74\) 16.9298 1.96804
\(75\) 0 0
\(76\) −0.910579 −0.104451
\(77\) 6.07007 0.691748
\(78\) 0 0
\(79\) 8.35190 0.939663 0.469831 0.882756i \(-0.344315\pi\)
0.469831 + 0.882756i \(0.344315\pi\)
\(80\) 11.6846 1.30638
\(81\) 0 0
\(82\) −6.38370 −0.704961
\(83\) 0.446491 0.0490087 0.0245044 0.999700i \(-0.492199\pi\)
0.0245044 + 0.999700i \(0.492199\pi\)
\(84\) 0 0
\(85\) −8.65538 −0.938808
\(86\) −8.65785 −0.933600
\(87\) 0 0
\(88\) −2.92342 −0.311637
\(89\) −16.9275 −1.79431 −0.897157 0.441711i \(-0.854372\pi\)
−0.897157 + 0.441711i \(0.854372\pi\)
\(90\) 0 0
\(91\) −1.05906 −0.111019
\(92\) −11.5273 −1.20180
\(93\) 0 0
\(94\) 18.0655 1.86332
\(95\) 1.61817 0.166021
\(96\) 0 0
\(97\) 6.50799 0.660786 0.330393 0.943843i \(-0.392819\pi\)
0.330393 + 0.943843i \(0.392819\pi\)
\(98\) 1.56839 0.158432
\(99\) 0 0
\(100\) 0.990556 0.0990556
\(101\) −7.81122 −0.777245 −0.388623 0.921397i \(-0.627049\pi\)
−0.388623 + 0.921397i \(0.627049\pi\)
\(102\) 0 0
\(103\) 0.291943 0.0287660 0.0143830 0.999897i \(-0.495422\pi\)
0.0143830 + 0.999897i \(0.495422\pi\)
\(104\) 0.510054 0.0500150
\(105\) 0 0
\(106\) 0.790846 0.0768138
\(107\) 15.2591 1.47515 0.737574 0.675266i \(-0.235971\pi\)
0.737574 + 0.675266i \(0.235971\pi\)
\(108\) 0 0
\(109\) −4.64110 −0.444536 −0.222268 0.974986i \(-0.571346\pi\)
−0.222268 + 0.974986i \(0.571346\pi\)
\(110\) −10.7311 −1.02317
\(111\) 0 0
\(112\) 12.0929 1.14267
\(113\) −3.00447 −0.282637 −0.141318 0.989964i \(-0.545134\pi\)
−0.141318 + 0.989964i \(0.545134\pi\)
\(114\) 0 0
\(115\) 20.4849 1.91023
\(116\) −5.94336 −0.551827
\(117\) 0 0
\(118\) −0.426111 −0.0392267
\(119\) −8.95778 −0.821158
\(120\) 0 0
\(121\) −5.00180 −0.454709
\(122\) 14.7516 1.33555
\(123\) 0 0
\(124\) 1.21274 0.108908
\(125\) 10.2137 0.913540
\(126\) 0 0
\(127\) −5.47730 −0.486031 −0.243016 0.970022i \(-0.578137\pi\)
−0.243016 + 0.970022i \(0.578137\pi\)
\(128\) −9.04122 −0.799139
\(129\) 0 0
\(130\) 1.87228 0.164210
\(131\) 9.82962 0.858818 0.429409 0.903110i \(-0.358722\pi\)
0.429409 + 0.903110i \(0.358722\pi\)
\(132\) 0 0
\(133\) 1.67471 0.145216
\(134\) −22.4511 −1.93948
\(135\) 0 0
\(136\) 4.31418 0.369938
\(137\) 5.13739 0.438917 0.219458 0.975622i \(-0.429571\pi\)
0.219458 + 0.975622i \(0.429571\pi\)
\(138\) 0 0
\(139\) 12.0692 1.02369 0.511847 0.859076i \(-0.328961\pi\)
0.511847 + 0.859076i \(0.328961\pi\)
\(140\) 7.99857 0.676003
\(141\) 0 0
\(142\) −26.4942 −2.22334
\(143\) −1.04652 −0.0875142
\(144\) 0 0
\(145\) 10.5618 0.877113
\(146\) −19.8754 −1.64490
\(147\) 0 0
\(148\) −12.4694 −1.02498
\(149\) 21.8887 1.79319 0.896597 0.442847i \(-0.146032\pi\)
0.896597 + 0.442847i \(0.146032\pi\)
\(150\) 0 0
\(151\) 4.21008 0.342611 0.171306 0.985218i \(-0.445201\pi\)
0.171306 + 0.985218i \(0.445201\pi\)
\(152\) −0.806560 −0.0654207
\(153\) 0 0
\(154\) −11.1061 −0.894952
\(155\) −2.15514 −0.173105
\(156\) 0 0
\(157\) −9.05645 −0.722783 −0.361392 0.932414i \(-0.617698\pi\)
−0.361392 + 0.932414i \(0.617698\pi\)
\(158\) −15.2810 −1.21569
\(159\) 0 0
\(160\) −15.6616 −1.23816
\(161\) 21.2006 1.67084
\(162\) 0 0
\(163\) 7.80210 0.611108 0.305554 0.952175i \(-0.401158\pi\)
0.305554 + 0.952175i \(0.401158\pi\)
\(164\) 4.70183 0.367151
\(165\) 0 0
\(166\) −0.816920 −0.0634053
\(167\) −2.46900 −0.191057 −0.0955286 0.995427i \(-0.530454\pi\)
−0.0955286 + 0.995427i \(0.530454\pi\)
\(168\) 0 0
\(169\) −12.8174 −0.985955
\(170\) 15.8363 1.21459
\(171\) 0 0
\(172\) 6.37683 0.486228
\(173\) 14.5901 1.10926 0.554632 0.832096i \(-0.312859\pi\)
0.554632 + 0.832096i \(0.312859\pi\)
\(174\) 0 0
\(175\) −1.82180 −0.137715
\(176\) 11.9497 0.900742
\(177\) 0 0
\(178\) 30.9714 2.32140
\(179\) −1.85653 −0.138764 −0.0693820 0.997590i \(-0.522103\pi\)
−0.0693820 + 0.997590i \(0.522103\pi\)
\(180\) 0 0
\(181\) 21.8401 1.62336 0.811680 0.584103i \(-0.198553\pi\)
0.811680 + 0.584103i \(0.198553\pi\)
\(182\) 1.93770 0.143632
\(183\) 0 0
\(184\) −10.2105 −0.752727
\(185\) 22.1591 1.62917
\(186\) 0 0
\(187\) −8.85173 −0.647303
\(188\) −13.3059 −0.970434
\(189\) 0 0
\(190\) −2.96068 −0.214790
\(191\) 6.86482 0.496721 0.248361 0.968668i \(-0.420108\pi\)
0.248361 + 0.968668i \(0.420108\pi\)
\(192\) 0 0
\(193\) −9.21587 −0.663373 −0.331687 0.943390i \(-0.607618\pi\)
−0.331687 + 0.943390i \(0.607618\pi\)
\(194\) −11.9073 −0.854895
\(195\) 0 0
\(196\) −1.15518 −0.0825129
\(197\) −1.00000 −0.0712470
\(198\) 0 0
\(199\) −20.7712 −1.47243 −0.736216 0.676746i \(-0.763389\pi\)
−0.736216 + 0.676746i \(0.763389\pi\)
\(200\) 0.877402 0.0620417
\(201\) 0 0
\(202\) 14.2918 1.00556
\(203\) 10.9308 0.767195
\(204\) 0 0
\(205\) −8.35553 −0.583576
\(206\) −0.534151 −0.0372161
\(207\) 0 0
\(208\) −2.08489 −0.144561
\(209\) 1.65488 0.114471
\(210\) 0 0
\(211\) 7.15252 0.492400 0.246200 0.969219i \(-0.420818\pi\)
0.246200 + 0.969219i \(0.420818\pi\)
\(212\) −0.582487 −0.0400054
\(213\) 0 0
\(214\) −27.9187 −1.90848
\(215\) −11.3321 −0.772846
\(216\) 0 0
\(217\) −2.23044 −0.151412
\(218\) 8.49156 0.575121
\(219\) 0 0
\(220\) 7.90388 0.532880
\(221\) 1.54438 0.103886
\(222\) 0 0
\(223\) 15.1364 1.01361 0.506803 0.862062i \(-0.330827\pi\)
0.506803 + 0.862062i \(0.330827\pi\)
\(224\) −16.2088 −1.08299
\(225\) 0 0
\(226\) 5.49711 0.365663
\(227\) 23.7864 1.57876 0.789380 0.613905i \(-0.210402\pi\)
0.789380 + 0.613905i \(0.210402\pi\)
\(228\) 0 0
\(229\) −19.8173 −1.30956 −0.654781 0.755819i \(-0.727239\pi\)
−0.654781 + 0.755819i \(0.727239\pi\)
\(230\) −37.4802 −2.47137
\(231\) 0 0
\(232\) −5.26443 −0.345627
\(233\) 29.0910 1.90581 0.952907 0.303261i \(-0.0980754\pi\)
0.952907 + 0.303261i \(0.0980754\pi\)
\(234\) 0 0
\(235\) 23.6457 1.54248
\(236\) 0.313847 0.0204297
\(237\) 0 0
\(238\) 16.3896 1.06238
\(239\) 17.2766 1.11753 0.558765 0.829326i \(-0.311275\pi\)
0.558765 + 0.829326i \(0.311275\pi\)
\(240\) 0 0
\(241\) 4.48258 0.288749 0.144374 0.989523i \(-0.453883\pi\)
0.144374 + 0.989523i \(0.453883\pi\)
\(242\) 9.15151 0.588281
\(243\) 0 0
\(244\) −10.8651 −0.695569
\(245\) 2.05285 0.131152
\(246\) 0 0
\(247\) −0.288730 −0.0183715
\(248\) 1.07421 0.0682122
\(249\) 0 0
\(250\) −18.6874 −1.18190
\(251\) −7.48094 −0.472193 −0.236097 0.971730i \(-0.575868\pi\)
−0.236097 + 0.971730i \(0.575868\pi\)
\(252\) 0 0
\(253\) 20.9496 1.31709
\(254\) 10.0215 0.628805
\(255\) 0 0
\(256\) 20.9567 1.30979
\(257\) −26.1724 −1.63259 −0.816296 0.577634i \(-0.803976\pi\)
−0.816296 + 0.577634i \(0.803976\pi\)
\(258\) 0 0
\(259\) 22.9333 1.42501
\(260\) −1.37901 −0.0855223
\(261\) 0 0
\(262\) −17.9847 −1.11110
\(263\) 2.11510 0.130422 0.0652112 0.997871i \(-0.479228\pi\)
0.0652112 + 0.997871i \(0.479228\pi\)
\(264\) 0 0
\(265\) 1.03513 0.0635874
\(266\) −3.06412 −0.187873
\(267\) 0 0
\(268\) 16.5360 1.01010
\(269\) −5.43243 −0.331221 −0.165611 0.986191i \(-0.552959\pi\)
−0.165611 + 0.986191i \(0.552959\pi\)
\(270\) 0 0
\(271\) 8.88131 0.539501 0.269751 0.962930i \(-0.413059\pi\)
0.269751 + 0.962930i \(0.413059\pi\)
\(272\) −17.6345 −1.06925
\(273\) 0 0
\(274\) −9.39960 −0.567850
\(275\) −1.80023 −0.108558
\(276\) 0 0
\(277\) 3.85160 0.231420 0.115710 0.993283i \(-0.463086\pi\)
0.115710 + 0.993283i \(0.463086\pi\)
\(278\) −22.0823 −1.32441
\(279\) 0 0
\(280\) 7.08487 0.423402
\(281\) 16.6051 0.990575 0.495288 0.868729i \(-0.335063\pi\)
0.495288 + 0.868729i \(0.335063\pi\)
\(282\) 0 0
\(283\) 19.9449 1.18560 0.592801 0.805349i \(-0.298022\pi\)
0.592801 + 0.805349i \(0.298022\pi\)
\(284\) 19.5139 1.15794
\(285\) 0 0
\(286\) 1.91476 0.113222
\(287\) −8.64745 −0.510443
\(288\) 0 0
\(289\) −3.93723 −0.231602
\(290\) −19.3244 −1.13477
\(291\) 0 0
\(292\) 14.6390 0.856680
\(293\) −14.7094 −0.859331 −0.429665 0.902988i \(-0.641369\pi\)
−0.429665 + 0.902988i \(0.641369\pi\)
\(294\) 0 0
\(295\) −0.557731 −0.0324724
\(296\) −11.0450 −0.641976
\(297\) 0 0
\(298\) −40.0486 −2.31995
\(299\) −3.65512 −0.211381
\(300\) 0 0
\(301\) −11.7281 −0.675994
\(302\) −7.70295 −0.443255
\(303\) 0 0
\(304\) 3.29688 0.189089
\(305\) 19.3082 1.10559
\(306\) 0 0
\(307\) −4.72211 −0.269505 −0.134753 0.990879i \(-0.543024\pi\)
−0.134753 + 0.990879i \(0.543024\pi\)
\(308\) 8.18002 0.466100
\(309\) 0 0
\(310\) 3.94315 0.223956
\(311\) −17.5323 −0.994168 −0.497084 0.867702i \(-0.665596\pi\)
−0.497084 + 0.867702i \(0.665596\pi\)
\(312\) 0 0
\(313\) 12.1697 0.687873 0.343937 0.938993i \(-0.388239\pi\)
0.343937 + 0.938993i \(0.388239\pi\)
\(314\) 16.5701 0.935104
\(315\) 0 0
\(316\) 11.2550 0.633145
\(317\) 16.4965 0.926535 0.463268 0.886218i \(-0.346677\pi\)
0.463268 + 0.886218i \(0.346677\pi\)
\(318\) 0 0
\(319\) 10.8014 0.604764
\(320\) 5.28587 0.295489
\(321\) 0 0
\(322\) −38.7896 −2.16166
\(323\) −2.44216 −0.135885
\(324\) 0 0
\(325\) 0.314090 0.0174226
\(326\) −14.2751 −0.790623
\(327\) 0 0
\(328\) 4.16472 0.229958
\(329\) 24.4718 1.34918
\(330\) 0 0
\(331\) 3.14512 0.172872 0.0864358 0.996257i \(-0.472452\pi\)
0.0864358 + 0.996257i \(0.472452\pi\)
\(332\) 0.601691 0.0330221
\(333\) 0 0
\(334\) 4.51740 0.247181
\(335\) −29.3859 −1.60552
\(336\) 0 0
\(337\) 28.8759 1.57297 0.786486 0.617608i \(-0.211898\pi\)
0.786486 + 0.617608i \(0.211898\pi\)
\(338\) 23.4513 1.27558
\(339\) 0 0
\(340\) −11.6640 −0.632569
\(341\) −2.20403 −0.119355
\(342\) 0 0
\(343\) 19.4738 1.05149
\(344\) 5.64838 0.304540
\(345\) 0 0
\(346\) −26.6947 −1.43511
\(347\) −31.5438 −1.69336 −0.846681 0.532101i \(-0.821403\pi\)
−0.846681 + 0.532101i \(0.821403\pi\)
\(348\) 0 0
\(349\) −6.54560 −0.350378 −0.175189 0.984535i \(-0.556054\pi\)
−0.175189 + 0.984535i \(0.556054\pi\)
\(350\) 3.33325 0.178170
\(351\) 0 0
\(352\) −16.0169 −0.853702
\(353\) 2.38253 0.126809 0.0634047 0.997988i \(-0.479804\pi\)
0.0634047 + 0.997988i \(0.479804\pi\)
\(354\) 0 0
\(355\) −34.6778 −1.84051
\(356\) −22.8115 −1.20901
\(357\) 0 0
\(358\) 3.39680 0.179526
\(359\) 15.0342 0.793473 0.396737 0.917932i \(-0.370143\pi\)
0.396737 + 0.917932i \(0.370143\pi\)
\(360\) 0 0
\(361\) −18.5434 −0.975970
\(362\) −39.9596 −2.10023
\(363\) 0 0
\(364\) −1.42718 −0.0748048
\(365\) −26.0146 −1.36167
\(366\) 0 0
\(367\) −29.0871 −1.51833 −0.759167 0.650896i \(-0.774393\pi\)
−0.759167 + 0.650896i \(0.774393\pi\)
\(368\) 41.7361 2.17565
\(369\) 0 0
\(370\) −40.5433 −2.10775
\(371\) 1.07129 0.0556187
\(372\) 0 0
\(373\) −3.41639 −0.176894 −0.0884469 0.996081i \(-0.528190\pi\)
−0.0884469 + 0.996081i \(0.528190\pi\)
\(374\) 16.1955 0.837451
\(375\) 0 0
\(376\) −11.7859 −0.607813
\(377\) −1.88455 −0.0970591
\(378\) 0 0
\(379\) −10.8111 −0.555331 −0.277666 0.960678i \(-0.589561\pi\)
−0.277666 + 0.960678i \(0.589561\pi\)
\(380\) 2.18065 0.111865
\(381\) 0 0
\(382\) −12.5602 −0.642635
\(383\) 20.0610 1.02507 0.512534 0.858667i \(-0.328707\pi\)
0.512534 + 0.858667i \(0.328707\pi\)
\(384\) 0 0
\(385\) −14.5366 −0.740852
\(386\) 16.8618 0.858242
\(387\) 0 0
\(388\) 8.77017 0.445238
\(389\) −15.1626 −0.768773 −0.384387 0.923172i \(-0.625587\pi\)
−0.384387 + 0.923172i \(0.625587\pi\)
\(390\) 0 0
\(391\) −30.9160 −1.56349
\(392\) −1.02322 −0.0516804
\(393\) 0 0
\(394\) 1.82964 0.0921762
\(395\) −20.0011 −1.00637
\(396\) 0 0
\(397\) 33.7992 1.69633 0.848167 0.529729i \(-0.177706\pi\)
0.848167 + 0.529729i \(0.177706\pi\)
\(398\) 38.0040 1.90497
\(399\) 0 0
\(400\) −3.58645 −0.179322
\(401\) −18.8451 −0.941080 −0.470540 0.882379i \(-0.655941\pi\)
−0.470540 + 0.882379i \(0.655941\pi\)
\(402\) 0 0
\(403\) 0.384542 0.0191554
\(404\) −10.5264 −0.523708
\(405\) 0 0
\(406\) −19.9996 −0.992561
\(407\) 22.6618 1.12330
\(408\) 0 0
\(409\) −27.1293 −1.34146 −0.670728 0.741704i \(-0.734018\pi\)
−0.670728 + 0.741704i \(0.734018\pi\)
\(410\) 15.2877 0.755004
\(411\) 0 0
\(412\) 0.393422 0.0193825
\(413\) −0.577217 −0.0284030
\(414\) 0 0
\(415\) −1.06925 −0.0524876
\(416\) 2.79449 0.137011
\(417\) 0 0
\(418\) −3.02785 −0.148097
\(419\) −18.7712 −0.917035 −0.458518 0.888685i \(-0.651619\pi\)
−0.458518 + 0.888685i \(0.651619\pi\)
\(420\) 0 0
\(421\) −30.2422 −1.47392 −0.736958 0.675938i \(-0.763739\pi\)
−0.736958 + 0.675938i \(0.763739\pi\)
\(422\) −13.0866 −0.637045
\(423\) 0 0
\(424\) −0.515948 −0.0250566
\(425\) 2.65666 0.128867
\(426\) 0 0
\(427\) 19.9828 0.967036
\(428\) 20.5631 0.993956
\(429\) 0 0
\(430\) 20.7338 0.999873
\(431\) −39.4571 −1.90058 −0.950292 0.311361i \(-0.899215\pi\)
−0.950292 + 0.311361i \(0.899215\pi\)
\(432\) 0 0
\(433\) 26.0606 1.25239 0.626197 0.779665i \(-0.284611\pi\)
0.626197 + 0.779665i \(0.284611\pi\)
\(434\) 4.08091 0.195890
\(435\) 0 0
\(436\) −6.25434 −0.299529
\(437\) 5.77992 0.276491
\(438\) 0 0
\(439\) −38.8850 −1.85588 −0.927940 0.372730i \(-0.878422\pi\)
−0.927940 + 0.372730i \(0.878422\pi\)
\(440\) 7.00099 0.333759
\(441\) 0 0
\(442\) −2.82566 −0.134403
\(443\) −30.5988 −1.45379 −0.726896 0.686747i \(-0.759038\pi\)
−0.726896 + 0.686747i \(0.759038\pi\)
\(444\) 0 0
\(445\) 40.5380 1.92169
\(446\) −27.6942 −1.31136
\(447\) 0 0
\(448\) 5.47055 0.258459
\(449\) −34.6750 −1.63641 −0.818207 0.574924i \(-0.805032\pi\)
−0.818207 + 0.574924i \(0.805032\pi\)
\(450\) 0 0
\(451\) −8.54508 −0.402372
\(452\) −4.04883 −0.190441
\(453\) 0 0
\(454\) −43.5207 −2.04253
\(455\) 2.53622 0.118900
\(456\) 0 0
\(457\) −8.62517 −0.403468 −0.201734 0.979440i \(-0.564658\pi\)
−0.201734 + 0.979440i \(0.564658\pi\)
\(458\) 36.2586 1.69425
\(459\) 0 0
\(460\) 27.6055 1.28711
\(461\) −17.2908 −0.805315 −0.402657 0.915351i \(-0.631913\pi\)
−0.402657 + 0.915351i \(0.631913\pi\)
\(462\) 0 0
\(463\) 17.1023 0.794814 0.397407 0.917643i \(-0.369910\pi\)
0.397407 + 0.917643i \(0.369910\pi\)
\(464\) 21.5188 0.998983
\(465\) 0 0
\(466\) −53.2262 −2.46566
\(467\) −20.0251 −0.926650 −0.463325 0.886188i \(-0.653344\pi\)
−0.463325 + 0.886188i \(0.653344\pi\)
\(468\) 0 0
\(469\) −30.4125 −1.40432
\(470\) −43.2633 −1.99559
\(471\) 0 0
\(472\) 0.277995 0.0127958
\(473\) −11.5892 −0.532873
\(474\) 0 0
\(475\) −0.496677 −0.0227891
\(476\) −12.0715 −0.553297
\(477\) 0 0
\(478\) −31.6101 −1.44581
\(479\) 27.6009 1.26112 0.630559 0.776141i \(-0.282825\pi\)
0.630559 + 0.776141i \(0.282825\pi\)
\(480\) 0 0
\(481\) −3.95385 −0.180280
\(482\) −8.20154 −0.373570
\(483\) 0 0
\(484\) −6.74042 −0.306383
\(485\) −15.5853 −0.707693
\(486\) 0 0
\(487\) 10.3523 0.469109 0.234554 0.972103i \(-0.424637\pi\)
0.234554 + 0.972103i \(0.424637\pi\)
\(488\) −9.62397 −0.435657
\(489\) 0 0
\(490\) −3.75599 −0.169678
\(491\) 36.6785 1.65528 0.827638 0.561262i \(-0.189684\pi\)
0.827638 + 0.561262i \(0.189684\pi\)
\(492\) 0 0
\(493\) −15.9400 −0.717902
\(494\) 0.528274 0.0237682
\(495\) 0 0
\(496\) −4.39091 −0.197157
\(497\) −35.8894 −1.60986
\(498\) 0 0
\(499\) 14.0562 0.629243 0.314622 0.949217i \(-0.398122\pi\)
0.314622 + 0.949217i \(0.398122\pi\)
\(500\) 13.7640 0.615543
\(501\) 0 0
\(502\) 13.6875 0.610902
\(503\) −25.4260 −1.13369 −0.566844 0.823825i \(-0.691836\pi\)
−0.566844 + 0.823825i \(0.691836\pi\)
\(504\) 0 0
\(505\) 18.7063 0.832418
\(506\) −38.3304 −1.70399
\(507\) 0 0
\(508\) −7.38121 −0.327488
\(509\) 15.1509 0.671551 0.335775 0.941942i \(-0.391002\pi\)
0.335775 + 0.941942i \(0.391002\pi\)
\(510\) 0 0
\(511\) −26.9235 −1.19103
\(512\) −20.2609 −0.895412
\(513\) 0 0
\(514\) 47.8863 2.11217
\(515\) −0.699143 −0.0308079
\(516\) 0 0
\(517\) 24.1821 1.06353
\(518\) −41.9598 −1.84361
\(519\) 0 0
\(520\) −1.22148 −0.0535653
\(521\) −23.8145 −1.04333 −0.521666 0.853150i \(-0.674689\pi\)
−0.521666 + 0.853150i \(0.674689\pi\)
\(522\) 0 0
\(523\) 38.0421 1.66346 0.831732 0.555177i \(-0.187350\pi\)
0.831732 + 0.555177i \(0.187350\pi\)
\(524\) 13.2464 0.578672
\(525\) 0 0
\(526\) −3.86988 −0.168735
\(527\) 3.25256 0.141684
\(528\) 0 0
\(529\) 50.1698 2.18129
\(530\) −1.89392 −0.0822664
\(531\) 0 0
\(532\) 2.25684 0.0978463
\(533\) 1.49088 0.0645770
\(534\) 0 0
\(535\) −36.5423 −1.57986
\(536\) 14.6471 0.632657
\(537\) 0 0
\(538\) 9.93942 0.428519
\(539\) 2.09942 0.0904284
\(540\) 0 0
\(541\) −23.8834 −1.02683 −0.513413 0.858141i \(-0.671619\pi\)
−0.513413 + 0.858141i \(0.671619\pi\)
\(542\) −16.2496 −0.697982
\(543\) 0 0
\(544\) 23.6366 1.01341
\(545\) 11.1145 0.476092
\(546\) 0 0
\(547\) −10.8990 −0.466006 −0.233003 0.972476i \(-0.574855\pi\)
−0.233003 + 0.972476i \(0.574855\pi\)
\(548\) 6.92315 0.295742
\(549\) 0 0
\(550\) 3.29379 0.140448
\(551\) 2.98007 0.126955
\(552\) 0 0
\(553\) −20.6999 −0.880249
\(554\) −7.04707 −0.299401
\(555\) 0 0
\(556\) 16.2644 0.689766
\(557\) 13.5365 0.573559 0.286779 0.957997i \(-0.407415\pi\)
0.286779 + 0.957997i \(0.407415\pi\)
\(558\) 0 0
\(559\) 2.02199 0.0855212
\(560\) −28.9599 −1.22378
\(561\) 0 0
\(562\) −30.3814 −1.28156
\(563\) 43.2131 1.82121 0.910607 0.413274i \(-0.135615\pi\)
0.910607 + 0.413274i \(0.135615\pi\)
\(564\) 0 0
\(565\) 7.19510 0.302700
\(566\) −36.4921 −1.53388
\(567\) 0 0
\(568\) 17.2848 0.725253
\(569\) 19.9320 0.835594 0.417797 0.908540i \(-0.362802\pi\)
0.417797 + 0.908540i \(0.362802\pi\)
\(570\) 0 0
\(571\) −24.7452 −1.03556 −0.517778 0.855515i \(-0.673241\pi\)
−0.517778 + 0.855515i \(0.673241\pi\)
\(572\) −1.41029 −0.0589671
\(573\) 0 0
\(574\) 15.8218 0.660388
\(575\) −6.28758 −0.262210
\(576\) 0 0
\(577\) 33.3646 1.38899 0.694493 0.719499i \(-0.255629\pi\)
0.694493 + 0.719499i \(0.255629\pi\)
\(578\) 7.20373 0.299636
\(579\) 0 0
\(580\) 14.2331 0.590999
\(581\) −1.10661 −0.0459100
\(582\) 0 0
\(583\) 1.05861 0.0438431
\(584\) 12.9667 0.536566
\(585\) 0 0
\(586\) 26.9129 1.11176
\(587\) −39.7834 −1.64204 −0.821019 0.570901i \(-0.806594\pi\)
−0.821019 + 0.570901i \(0.806594\pi\)
\(588\) 0 0
\(589\) −0.608085 −0.0250557
\(590\) 1.02045 0.0420113
\(591\) 0 0
\(592\) 45.1471 1.85554
\(593\) 3.83642 0.157543 0.0787715 0.996893i \(-0.474900\pi\)
0.0787715 + 0.996893i \(0.474900\pi\)
\(594\) 0 0
\(595\) 21.4521 0.879449
\(596\) 29.4973 1.20825
\(597\) 0 0
\(598\) 6.68758 0.273475
\(599\) 41.3503 1.68953 0.844763 0.535140i \(-0.179741\pi\)
0.844763 + 0.535140i \(0.179741\pi\)
\(600\) 0 0
\(601\) −39.5659 −1.61393 −0.806963 0.590602i \(-0.798890\pi\)
−0.806963 + 0.590602i \(0.798890\pi\)
\(602\) 21.4582 0.874570
\(603\) 0 0
\(604\) 5.67351 0.230852
\(605\) 11.9783 0.486987
\(606\) 0 0
\(607\) −20.6997 −0.840174 −0.420087 0.907484i \(-0.638000\pi\)
−0.420087 + 0.907484i \(0.638000\pi\)
\(608\) −4.41899 −0.179214
\(609\) 0 0
\(610\) −35.3272 −1.43036
\(611\) −4.21910 −0.170687
\(612\) 0 0
\(613\) −1.30007 −0.0525092 −0.0262546 0.999655i \(-0.508358\pi\)
−0.0262546 + 0.999655i \(0.508358\pi\)
\(614\) 8.63979 0.348674
\(615\) 0 0
\(616\) 7.24559 0.291933
\(617\) −3.57289 −0.143839 −0.0719196 0.997410i \(-0.522913\pi\)
−0.0719196 + 0.997410i \(0.522913\pi\)
\(618\) 0 0
\(619\) −9.76477 −0.392479 −0.196240 0.980556i \(-0.562873\pi\)
−0.196240 + 0.980556i \(0.562873\pi\)
\(620\) −2.90427 −0.116638
\(621\) 0 0
\(622\) 32.0780 1.28621
\(623\) 41.9543 1.68086
\(624\) 0 0
\(625\) −28.1350 −1.12540
\(626\) −22.2663 −0.889939
\(627\) 0 0
\(628\) −12.2045 −0.487012
\(629\) −33.4427 −1.33345
\(630\) 0 0
\(631\) 13.9942 0.557102 0.278551 0.960421i \(-0.410146\pi\)
0.278551 + 0.960421i \(0.410146\pi\)
\(632\) 9.96933 0.396559
\(633\) 0 0
\(634\) −30.1827 −1.19871
\(635\) 13.1170 0.520533
\(636\) 0 0
\(637\) −0.366290 −0.0145129
\(638\) −19.7628 −0.782416
\(639\) 0 0
\(640\) 21.6519 0.855866
\(641\) −9.77562 −0.386114 −0.193057 0.981188i \(-0.561840\pi\)
−0.193057 + 0.981188i \(0.561840\pi\)
\(642\) 0 0
\(643\) −7.28129 −0.287146 −0.143573 0.989640i \(-0.545859\pi\)
−0.143573 + 0.989640i \(0.545859\pi\)
\(644\) 28.5700 1.12581
\(645\) 0 0
\(646\) 4.46828 0.175802
\(647\) 23.9804 0.942767 0.471384 0.881928i \(-0.343755\pi\)
0.471384 + 0.881928i \(0.343755\pi\)
\(648\) 0 0
\(649\) −0.570384 −0.0223895
\(650\) −0.574673 −0.0225405
\(651\) 0 0
\(652\) 10.5141 0.411765
\(653\) 38.0906 1.49060 0.745299 0.666730i \(-0.232307\pi\)
0.745299 + 0.666730i \(0.232307\pi\)
\(654\) 0 0
\(655\) −23.5399 −0.919782
\(656\) −17.0236 −0.664660
\(657\) 0 0
\(658\) −44.7748 −1.74550
\(659\) −14.7028 −0.572739 −0.286370 0.958119i \(-0.592449\pi\)
−0.286370 + 0.958119i \(0.592449\pi\)
\(660\) 0 0
\(661\) 25.4067 0.988208 0.494104 0.869403i \(-0.335496\pi\)
0.494104 + 0.869403i \(0.335496\pi\)
\(662\) −5.75446 −0.223653
\(663\) 0 0
\(664\) 0.532958 0.0206828
\(665\) −4.01059 −0.155524
\(666\) 0 0
\(667\) 37.7256 1.46074
\(668\) −3.32723 −0.128734
\(669\) 0 0
\(670\) 53.7657 2.07715
\(671\) 19.7462 0.762295
\(672\) 0 0
\(673\) 30.5437 1.17737 0.588687 0.808361i \(-0.299645\pi\)
0.588687 + 0.808361i \(0.299645\pi\)
\(674\) −52.8327 −2.03504
\(675\) 0 0
\(676\) −17.2728 −0.664337
\(677\) −14.2822 −0.548908 −0.274454 0.961600i \(-0.588497\pi\)
−0.274454 + 0.961600i \(0.588497\pi\)
\(678\) 0 0
\(679\) −16.1298 −0.619006
\(680\) −10.3316 −0.396198
\(681\) 0 0
\(682\) 4.03260 0.154416
\(683\) 25.9111 0.991461 0.495731 0.868476i \(-0.334900\pi\)
0.495731 + 0.868476i \(0.334900\pi\)
\(684\) 0 0
\(685\) −12.3030 −0.470074
\(686\) −35.6302 −1.36037
\(687\) 0 0
\(688\) −23.0882 −0.880229
\(689\) −0.184698 −0.00703642
\(690\) 0 0
\(691\) 24.8832 0.946603 0.473302 0.880900i \(-0.343062\pi\)
0.473302 + 0.880900i \(0.343062\pi\)
\(692\) 19.6616 0.747422
\(693\) 0 0
\(694\) 57.7140 2.19079
\(695\) −28.9032 −1.09636
\(696\) 0 0
\(697\) 12.6102 0.477647
\(698\) 11.9761 0.453303
\(699\) 0 0
\(700\) −2.45506 −0.0927925
\(701\) −21.1982 −0.800644 −0.400322 0.916375i \(-0.631102\pi\)
−0.400322 + 0.916375i \(0.631102\pi\)
\(702\) 0 0
\(703\) 6.25231 0.235810
\(704\) 5.40578 0.203738
\(705\) 0 0
\(706\) −4.35919 −0.164060
\(707\) 19.3598 0.728101
\(708\) 0 0
\(709\) 25.8806 0.971964 0.485982 0.873969i \(-0.338462\pi\)
0.485982 + 0.873969i \(0.338462\pi\)
\(710\) 63.4481 2.38117
\(711\) 0 0
\(712\) −20.2057 −0.757241
\(713\) −7.69792 −0.288290
\(714\) 0 0
\(715\) 2.50620 0.0937265
\(716\) −2.50187 −0.0934992
\(717\) 0 0
\(718\) −27.5072 −1.02656
\(719\) 33.5697 1.25194 0.625968 0.779848i \(-0.284704\pi\)
0.625968 + 0.779848i \(0.284704\pi\)
\(720\) 0 0
\(721\) −0.723570 −0.0269471
\(722\) 33.9279 1.26267
\(723\) 0 0
\(724\) 29.4317 1.09382
\(725\) −3.24182 −0.120398
\(726\) 0 0
\(727\) 48.7995 1.80987 0.904937 0.425545i \(-0.139918\pi\)
0.904937 + 0.425545i \(0.139918\pi\)
\(728\) −1.26415 −0.0468526
\(729\) 0 0
\(730\) 47.5976 1.76166
\(731\) 17.1026 0.632561
\(732\) 0 0
\(733\) 26.7007 0.986214 0.493107 0.869969i \(-0.335861\pi\)
0.493107 + 0.869969i \(0.335861\pi\)
\(734\) 53.2191 1.96435
\(735\) 0 0
\(736\) −55.9413 −2.06202
\(737\) −30.0525 −1.10700
\(738\) 0 0
\(739\) 17.3969 0.639954 0.319977 0.947425i \(-0.396325\pi\)
0.319977 + 0.947425i \(0.396325\pi\)
\(740\) 29.8617 1.09774
\(741\) 0 0
\(742\) −1.96008 −0.0719569
\(743\) −50.6579 −1.85846 −0.929229 0.369505i \(-0.879527\pi\)
−0.929229 + 0.369505i \(0.879527\pi\)
\(744\) 0 0
\(745\) −52.4190 −1.92049
\(746\) 6.25077 0.228857
\(747\) 0 0
\(748\) −11.9286 −0.436153
\(749\) −37.8190 −1.38188
\(750\) 0 0
\(751\) 6.22588 0.227186 0.113593 0.993527i \(-0.463764\pi\)
0.113593 + 0.993527i \(0.463764\pi\)
\(752\) 48.1759 1.75679
\(753\) 0 0
\(754\) 3.44805 0.125571
\(755\) −10.0823 −0.366932
\(756\) 0 0
\(757\) −1.43773 −0.0522550 −0.0261275 0.999659i \(-0.508318\pi\)
−0.0261275 + 0.999659i \(0.508318\pi\)
\(758\) 19.7806 0.718462
\(759\) 0 0
\(760\) 1.93155 0.0700646
\(761\) −9.52056 −0.345120 −0.172560 0.984999i \(-0.555204\pi\)
−0.172560 + 0.984999i \(0.555204\pi\)
\(762\) 0 0
\(763\) 11.5028 0.416429
\(764\) 9.25104 0.334691
\(765\) 0 0
\(766\) −36.7044 −1.32619
\(767\) 0.0995159 0.00359331
\(768\) 0 0
\(769\) −0.107823 −0.00388818 −0.00194409 0.999998i \(-0.500619\pi\)
−0.00194409 + 0.999998i \(0.500619\pi\)
\(770\) 26.5968 0.958481
\(771\) 0 0
\(772\) −12.4193 −0.446981
\(773\) 18.3261 0.659145 0.329573 0.944130i \(-0.393095\pi\)
0.329573 + 0.944130i \(0.393095\pi\)
\(774\) 0 0
\(775\) 0.661494 0.0237616
\(776\) 7.76832 0.278867
\(777\) 0 0
\(778\) 27.7421 0.994604
\(779\) −2.35755 −0.0844682
\(780\) 0 0
\(781\) −35.4645 −1.26902
\(782\) 56.5653 2.02277
\(783\) 0 0
\(784\) 4.18249 0.149375
\(785\) 21.6884 0.774091
\(786\) 0 0
\(787\) −12.3630 −0.440694 −0.220347 0.975422i \(-0.570719\pi\)
−0.220347 + 0.975422i \(0.570719\pi\)
\(788\) −1.34760 −0.0480063
\(789\) 0 0
\(790\) 36.5949 1.30199
\(791\) 7.44648 0.264766
\(792\) 0 0
\(793\) −3.44516 −0.122341
\(794\) −61.8406 −2.19464
\(795\) 0 0
\(796\) −27.9913 −0.992125
\(797\) −4.56337 −0.161643 −0.0808213 0.996729i \(-0.525754\pi\)
−0.0808213 + 0.996729i \(0.525754\pi\)
\(798\) 0 0
\(799\) −35.6863 −1.26249
\(800\) 4.80712 0.169957
\(801\) 0 0
\(802\) 34.4799 1.21753
\(803\) −26.6048 −0.938862
\(804\) 0 0
\(805\) −50.7712 −1.78945
\(806\) −0.703575 −0.0247824
\(807\) 0 0
\(808\) −9.32393 −0.328015
\(809\) 27.7914 0.977095 0.488547 0.872537i \(-0.337527\pi\)
0.488547 + 0.872537i \(0.337527\pi\)
\(810\) 0 0
\(811\) 25.2664 0.887225 0.443612 0.896219i \(-0.353697\pi\)
0.443612 + 0.896219i \(0.353697\pi\)
\(812\) 14.7304 0.516936
\(813\) 0 0
\(814\) −41.4631 −1.45328
\(815\) −18.6844 −0.654488
\(816\) 0 0
\(817\) −3.19742 −0.111864
\(818\) 49.6369 1.73551
\(819\) 0 0
\(820\) −11.2599 −0.393213
\(821\) 41.2375 1.43920 0.719599 0.694390i \(-0.244326\pi\)
0.719599 + 0.694390i \(0.244326\pi\)
\(822\) 0 0
\(823\) −17.9367 −0.625234 −0.312617 0.949879i \(-0.601206\pi\)
−0.312617 + 0.949879i \(0.601206\pi\)
\(824\) 0.348480 0.0121399
\(825\) 0 0
\(826\) 1.05610 0.0367465
\(827\) −44.4745 −1.54653 −0.773265 0.634083i \(-0.781378\pi\)
−0.773265 + 0.634083i \(0.781378\pi\)
\(828\) 0 0
\(829\) 1.60966 0.0559059 0.0279529 0.999609i \(-0.491101\pi\)
0.0279529 + 0.999609i \(0.491101\pi\)
\(830\) 1.95636 0.0679061
\(831\) 0 0
\(832\) −0.943157 −0.0326981
\(833\) −3.09818 −0.107345
\(834\) 0 0
\(835\) 5.91276 0.204620
\(836\) 2.23012 0.0771303
\(837\) 0 0
\(838\) 34.3447 1.18642
\(839\) 47.6291 1.64434 0.822169 0.569243i \(-0.192764\pi\)
0.822169 + 0.569243i \(0.192764\pi\)
\(840\) 0 0
\(841\) −9.54901 −0.329276
\(842\) 55.3326 1.90689
\(843\) 0 0
\(844\) 9.63874 0.331779
\(845\) 30.6951 1.05594
\(846\) 0 0
\(847\) 12.3968 0.425958
\(848\) 2.10897 0.0724225
\(849\) 0 0
\(850\) −4.86074 −0.166722
\(851\) 79.1498 2.71322
\(852\) 0 0
\(853\) 41.7275 1.42872 0.714361 0.699778i \(-0.246718\pi\)
0.714361 + 0.699778i \(0.246718\pi\)
\(854\) −36.5614 −1.25111
\(855\) 0 0
\(856\) 18.2141 0.622546
\(857\) −55.8573 −1.90805 −0.954024 0.299729i \(-0.903104\pi\)
−0.954024 + 0.299729i \(0.903104\pi\)
\(858\) 0 0
\(859\) −13.5803 −0.463355 −0.231677 0.972793i \(-0.574421\pi\)
−0.231677 + 0.972793i \(0.574421\pi\)
\(860\) −15.2712 −0.520744
\(861\) 0 0
\(862\) 72.1926 2.45889
\(863\) 47.5067 1.61715 0.808574 0.588395i \(-0.200240\pi\)
0.808574 + 0.588395i \(0.200240\pi\)
\(864\) 0 0
\(865\) −34.9403 −1.18800
\(866\) −47.6817 −1.62029
\(867\) 0 0
\(868\) −3.00574 −0.102022
\(869\) −20.4548 −0.693883
\(870\) 0 0
\(871\) 5.24332 0.177663
\(872\) −5.53989 −0.187604
\(873\) 0 0
\(874\) −10.5752 −0.357712
\(875\) −25.3143 −0.855778
\(876\) 0 0
\(877\) −8.06528 −0.272345 −0.136173 0.990685i \(-0.543480\pi\)
−0.136173 + 0.990685i \(0.543480\pi\)
\(878\) 71.1457 2.40105
\(879\) 0 0
\(880\) −28.6171 −0.964682
\(881\) −38.7817 −1.30659 −0.653294 0.757104i \(-0.726613\pi\)
−0.653294 + 0.757104i \(0.726613\pi\)
\(882\) 0 0
\(883\) 13.6849 0.460535 0.230268 0.973127i \(-0.426040\pi\)
0.230268 + 0.973127i \(0.426040\pi\)
\(884\) 2.08121 0.0699985
\(885\) 0 0
\(886\) 55.9849 1.88085
\(887\) 4.89122 0.164231 0.0821156 0.996623i \(-0.473832\pi\)
0.0821156 + 0.996623i \(0.473832\pi\)
\(888\) 0 0
\(889\) 13.5753 0.455300
\(890\) −74.1701 −2.48619
\(891\) 0 0
\(892\) 20.3978 0.682969
\(893\) 6.67175 0.223262
\(894\) 0 0
\(895\) 4.44602 0.148614
\(896\) 22.4084 0.748611
\(897\) 0 0
\(898\) 63.4429 2.11712
\(899\) −3.96898 −0.132373
\(900\) 0 0
\(901\) −1.56222 −0.0520452
\(902\) 15.6345 0.520571
\(903\) 0 0
\(904\) −3.58631 −0.119279
\(905\) −52.3025 −1.73860
\(906\) 0 0
\(907\) −4.79442 −0.159196 −0.0795981 0.996827i \(-0.525364\pi\)
−0.0795981 + 0.996827i \(0.525364\pi\)
\(908\) 32.0546 1.06377
\(909\) 0 0
\(910\) −4.64039 −0.153827
\(911\) −27.3364 −0.905694 −0.452847 0.891588i \(-0.649592\pi\)
−0.452847 + 0.891588i \(0.649592\pi\)
\(912\) 0 0
\(913\) −1.09351 −0.0361899
\(914\) 15.7810 0.521989
\(915\) 0 0
\(916\) −26.7058 −0.882383
\(917\) −24.3624 −0.804516
\(918\) 0 0
\(919\) 54.3152 1.79169 0.895846 0.444365i \(-0.146571\pi\)
0.895846 + 0.444365i \(0.146571\pi\)
\(920\) 24.4520 0.806160
\(921\) 0 0
\(922\) 31.6361 1.04188
\(923\) 6.18756 0.203666
\(924\) 0 0
\(925\) −6.80146 −0.223631
\(926\) −31.2912 −1.02829
\(927\) 0 0
\(928\) −28.8428 −0.946812
\(929\) −21.7090 −0.712249 −0.356124 0.934439i \(-0.615902\pi\)
−0.356124 + 0.934439i \(0.615902\pi\)
\(930\) 0 0
\(931\) 0.579222 0.0189832
\(932\) 39.2031 1.28414
\(933\) 0 0
\(934\) 36.6388 1.19886
\(935\) 21.1981 0.693252
\(936\) 0 0
\(937\) −14.5142 −0.474158 −0.237079 0.971490i \(-0.576190\pi\)
−0.237079 + 0.971490i \(0.576190\pi\)
\(938\) 55.6442 1.81685
\(939\) 0 0
\(940\) 31.8650 1.03932
\(941\) 44.5490 1.45226 0.726128 0.687560i \(-0.241318\pi\)
0.726128 + 0.687560i \(0.241318\pi\)
\(942\) 0 0
\(943\) −29.8450 −0.971886
\(944\) −1.13633 −0.0369842
\(945\) 0 0
\(946\) 21.2042 0.689406
\(947\) 40.2068 1.30655 0.653274 0.757122i \(-0.273395\pi\)
0.653274 + 0.757122i \(0.273395\pi\)
\(948\) 0 0
\(949\) 4.64179 0.150679
\(950\) 0.908743 0.0294835
\(951\) 0 0
\(952\) −10.6925 −0.346547
\(953\) −25.6261 −0.830109 −0.415055 0.909797i \(-0.636238\pi\)
−0.415055 + 0.909797i \(0.636238\pi\)
\(954\) 0 0
\(955\) −16.4399 −0.531981
\(956\) 23.2820 0.752993
\(957\) 0 0
\(958\) −50.4999 −1.63158
\(959\) −12.7328 −0.411165
\(960\) 0 0
\(961\) −30.1901 −0.973875
\(962\) 7.23414 0.233238
\(963\) 0 0
\(964\) 6.04073 0.194559
\(965\) 22.0701 0.710463
\(966\) 0 0
\(967\) 30.8216 0.991156 0.495578 0.868563i \(-0.334956\pi\)
0.495578 + 0.868563i \(0.334956\pi\)
\(968\) −5.97044 −0.191897
\(969\) 0 0
\(970\) 28.5156 0.915580
\(971\) −5.70753 −0.183163 −0.0915817 0.995798i \(-0.529192\pi\)
−0.0915817 + 0.995798i \(0.529192\pi\)
\(972\) 0 0
\(973\) −29.9130 −0.958968
\(974\) −18.9411 −0.606912
\(975\) 0 0
\(976\) 39.3387 1.25920
\(977\) 4.69258 0.150129 0.0750644 0.997179i \(-0.476084\pi\)
0.0750644 + 0.997179i \(0.476084\pi\)
\(978\) 0 0
\(979\) 41.4576 1.32499
\(980\) 2.76642 0.0883701
\(981\) 0 0
\(982\) −67.1086 −2.14152
\(983\) −10.5465 −0.336381 −0.168190 0.985755i \(-0.553792\pi\)
−0.168190 + 0.985755i \(0.553792\pi\)
\(984\) 0 0
\(985\) 2.39480 0.0763046
\(986\) 29.1646 0.928789
\(987\) 0 0
\(988\) −0.389093 −0.0123787
\(989\) −40.4771 −1.28710
\(990\) 0 0
\(991\) −30.6070 −0.972265 −0.486132 0.873885i \(-0.661593\pi\)
−0.486132 + 0.873885i \(0.661593\pi\)
\(992\) 5.88538 0.186861
\(993\) 0 0
\(994\) 65.6648 2.08276
\(995\) 49.7428 1.57695
\(996\) 0 0
\(997\) 56.0308 1.77451 0.887257 0.461275i \(-0.152608\pi\)
0.887257 + 0.461275i \(0.152608\pi\)
\(998\) −25.7179 −0.814086
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1773.2.a.f.1.3 10
3.2 odd 2 197.2.a.c.1.8 10
12.11 even 2 3152.2.a.m.1.7 10
15.14 odd 2 4925.2.a.i.1.3 10
21.20 even 2 9653.2.a.j.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.2.a.c.1.8 10 3.2 odd 2
1773.2.a.f.1.3 10 1.1 even 1 trivial
3152.2.a.m.1.7 10 12.11 even 2
4925.2.a.i.1.3 10 15.14 odd 2
9653.2.a.j.1.8 10 21.20 even 2